Книга: Холодильник Эйнштейна. Как перепад температур объясняет Вселенную
Назад: Глава 16. Информация материальна
Дальше: Глава 18. Математика жизни

Глава 17

Демоны

Процесс диффузии может быть полностью предотвращен армией разумных “демонов” Максвелла.

Уильям Томсон


В прошлый раз мы встречались с Джеймсом Клерком Максвеллом в конце 1860-х годов в его лондонской мансарде, где он вместе со своей женой Кэтрин проводил эксперименты для проверки сделанного им статистического описания поведения молекул газа. В последующие годы в своих научных изысканиях Максвелл обратился к электричеству и магнетизму, что привело к созданию главного труда его жизни, системы уравнений, с большой точностью описывающих их свойства. Эти равенства проложили путь к открытию радио и созданию теории относительности Эйнштейна. Впрочем, Максвелл сохранил горячий интерес к термодинамике, а его репутация в этой сфере была такова, что в 1867 году, решив написать историю этой области науки, друживший с ним физик Питер Гатри Тэйт обратился к Максвеллу за информацией и помощью.

Тэйт был британцем и преследовал отчасти националистические цели. Он уже опубликовал краткую историю термодинамики под названием “Исторический очерк о динамической теории теплоты” в журнале North British Review. Этот опус вызвал достаточно обоснованный гнев Рудольфа Клаузиуса. Тэйт главным образом описывал заслуги британских ученых, совершавших открытия в термодинамике, и рассказывал о трудах Уильяма Томсона и Джеймса Джоуля, но почти не упоминал об их европейских коллегах. В связи с этим Тэйт написал Максвеллу: “Клаузиус и другие весьма возмущены фрагментами, в которых рассказывается о них”. Он надеялся, что друг его поддержит.

В ответном письме Максвелл вежливо отказался вступать в полемику и отметил: “Я не могу судить об авторском приоритете”. Однако он согласился изложить основные положения науки и указать на потенциальные изъяны в принятой тогда термодинамической теории. Для этого Максвелл предложил мысленный эксперимент, который стал легендарным в истории науки. Впервые кто-то нащупал возможную связь между энергией, энтропией и информацией, и это спровоцировало плодотворную научную дискуссию, которая продолжалась значительно больше века. Сегодня этот мысленный эксперимент называют демоном Максвелла.

В своем письме Тэйту Максвелл обозначил стоящую перед ним задачу: “Изучить несовершенство второго начала термодинамики, в соответствии с которым при контакте двух тел горячее не может забирать теплоту у холодного без внешнего воздействия”. Это начало, открытое благодаря объединенным усилиям Уильяма Томсона, Рудольфа Клаузиуса и других ученых, к 1860-м годам считалось универсально верным. Оно также соответствовало интуитивным представлениям и опыту людей, которые свидетельствовали, что теплота никогда самопроизвольно не переходит от холодного тела к теплому. В конце концов, чашка чуть теплого чая никогда сама по себе не становится горячее, забирая теплоту у холодного стола, на котором стоит.

Максвелл усомнился в неизбежности такого исхода и предложил мысленный эксперимент. Он хотел показать, что в определенных, пусть и необычных, обстоятельствах теплота может перемещаться в “неправильную” сторону, из холодной зоны в горячую, не требуя компенсации в форме теплового потока, идущего в обратном направлении в другом месте. Как ни странно, для этого, похоже, необходимо было использовать информацию.

Максвелл просит нас представить герметично закрытый сосуд с газом. Сосуд разделен на две равные части диафрагмой – тонкой перегородкой, которая не позволяет молекулам газа проходить сквозь нее. Затем Максвелл говорит, что температура газа по одну сторону перегородки выше, чем по другую, и напоминает, каким образом это проявляется на молекулярном уровне: средняя скорость движения молекул в горячей части сосуда оказывается выше, чем в холодной. Однако, как отметил Максвелл, речь идет о средних скоростях. Таким образом, некоторые молекулы в горячей части неторопливы и движутся с более низкой скоростью, чем средняя скорость молекул в холодной части. Аналогичным образом некоторые молекулы в холодной части движутся с более высокой скоростью, чем средняя скорость молекул в горячей части.

Далее излагается поразительная и забавная мысль. “Представьте себе крошечное существо, – пишет Максвелл, – которое знает траектории и скорости всех молекул, благодаря простому наблюдению, но может лишь открывать и закрывать отверстие в перегородке посредством сдвига без переноса массы”.

“Крошечное существо” Максвелла может открывать и закрывать сдвижную дверцу в перегородке, разделяющей сосуд. Важно отметить, что делается это посредством “сдвига без переноса массы”, то есть не требует энергии. Это, в свою очередь, означает, что “существу” не нужна энергия для открытия и закрытия дверцы. Главным образом ему нужна способность получать информацию об отдельных молекулах по обе стороны перегородки. В частности, существо внимательно следит за молекулами, которые случайным образом подходят к дверце в перегородке, разделяющей сосуд. Существо проявляет особенный интерес к необычно медленной молекуле, которая находится в горячей части сосуда, но скорость которой ниже средней скорости молекул в холодной части. Когда существо замечает, как одна из таких молекул приближается к дверце, оно открывает дверцу. В результате медленная молекула перемещается из горячей половины сосуда в холодную.

Подобным образом существо ищет быстрые молекулы в холодной части, высматривая любую молекулу, скорость которой выше средней скорости молекул в горячей части. Замечая, как одна из таких молекул приближается к дверце, существо открывает дверцу. Быстрая молекула перемещается из холодной половины сосуда в горячую.

Через некоторое время, отмечает Максвелл, происходит нечто необычайное. Все больше быстрых молекул оказывается в горячей части сосуда, и все больше медленных молекул собирается в холодной части. Получается, что холодная половина становится холоднее, а горячая – горячее, а это прямо противоречит второму началу термодинамики, которое гласит, что теплота не может перемещаться из горячей зоны в холодную без потребления работы. Но здесь, как пишет Максвелл, “не выполняется никакой работы, а используется лишь разум очень наблюдательного и ловкого существа”.

Максвелл не пытался описать, как существо работает, не потребляя энергии, и как устроить в перегородке дверцу, лишенную массы. Эти идеи причудливы и нереалистичны, ведь своим мысленным экспериментом Максвелл намеревался доказать истинность второго начала термодинамики. В том же письме к Тэйту он утверждает, что если бы мы могли распознавать и эксплуатировать движения отдельных молекул, то могли бы и обратить второе начало. Но в реальности осуществлять такие наблюдения невозможно. Или, как пишет Максвелл, “мы для этого недостаточно умны”.

В 1871 году, через четыре года после того, как Максвелл предложил этот мысленный эксперимент в письме к Тэйту, он описал его снова в учебнике “Теория теплоты”. Вскоре после этого идея, похоже, попалась на глаза Уильяму Томсону, который изложил свои соображения в опубликованной в 1874 Г°ДУ статье, где назвал “крошечное существо” Максвелла “демоном”. Прозвище прижилось. Томсон, как и Максвелл, подчеркнул абсурдность демона, чтобы показать, что в реальном мире, где демонов не существует, теплота самопроизвольно перемещается лишь из горячей зоны в холодную, но не наоборот. Второе начало термодинамики было в безопасности.

Следующие шесть десятилетий демон Максвелла жил в относительной безвестности. Затем, в 1929 году, он вернулся, чтобы подразнить нас наличием возможной связи между информацией, энергией и энтропией. На этот раз его воскресил ученый Лео Сцилард, с которым мы уже встречались в пятнадцатой главе.

В 1929 году Сцилард жил в Берлине и вместе с Эйнштейном занимался разработкой безопасных холодильников. В своей докторской диссертации он также анализировал статистические основы термодинамики. Таким образом, Сцилард прекрасно понимал тему как с теоретической, так и с практической стороны. Демон Максвелла захватил его воображение. Но если Максвелл и Томсон считали демона способом проверить состоятельность второго начала термодинамики, то Сцилард считал, что он может быть полезен для изучения физики информации.

Сцилард упростил задачу, которую Максвелл поставил своему демону. В изначальном варианте мысленного эксперимента шотландец предположил, что демону придется снова и снова измерять скорость множества разных молекул, чтобы в итоге обратить вспять второе начало термодинамики. В статье с блестящим названием “Снижение энтропии благодаря вмешательству разумных существ” Сцилард заявил, что демону не обязательно выполнять столь грандиозную задачу, чтобы проворачивать свою шалость.



Двигатель, функционирующий благодаря единственной молекуле





Как и Максвелл, Сцилард просит нас представить сосуд с перегородкой. Внутри этого сосуда, однако, находится лишь одна подвижная молекула. Сначала она свободно движется по сосуду, время от время сталкиваясь со стенками и отскакивая от них. Демону Сциларда, таким образом, достаточно следить за одной молекулой, в то время как демону Максвелла приходилось наблюдать за целыми триллионами частиц. Далее Сцилард еще сильнее упрощает задачу своему демону. Он просит его лишь следить, в какой половине сосуда – в левой или в правой – молекула находится в каждый момент времени. Заметив молекулу, скажем, в левой половине сосуда, демон Сциларда ставит перегородку, которая разделяет сосуд пополам, и молекула, по сути, оказывается в ловушке в его левой части.

Сцилард делает перегородку подвижной: она может двигаться внутри сосуда подобно тому, как поршень движется внутри цилиндра двигателя.

Поняв, в какой стороне сосуда находится молекула, демон приступает к действию. Если он знает, что молекула в левой части сосуда, то через блок прикрепляет груз к левой части подвижной перегородки. Теперь, двигаясь из стороны в сторону, молекула периодически сталкивается с подвижной перегородкой. При этом перегородка сдвигается дальше вправо и поднимает груз.

Суть этого остроумного устройства в том, что, имея одну простую единицу информации, в частности знание, что молекула находится в левой части сосуда, демон Сциларда способен поднимать груз, то есть совершать работу. Демон может повторять этот процесс бесконечно. По сути, он получает нечто из ничего, благодаря единственному биту информации – знанию, в которой части сосуда находится молекула. Я не случайно использовал здесь слово “бит”. Выбор между левой и правой частью сосуда двоичен, как и выбор между 1 и 0. Располагая лишь двоичной информацией, демон Сциларда способен преобразовать случайные движения молекулы в полезную работу. Это противоречит второму началу термодинамики, поскольку предполагает, что выполнять полезную работу можно и без перемещения теплоты из горячей зоны в холодную. С “демоном Сциларда” мы могли бы получать энергию из любого объема газа, даже если бы его температура везде была одинаковой. Если выпустить достаточное количество “демонов Сциларда”, можно генерировать все необходимое нам электричество из воздуха в земной атмосфере! Кажется, что можно создать “вечный двигатель”, как выражается Сцилард, просто “позволив разумному существу вмешиваться в работу термодинамической системы”.

Что же это значит? В предыдущей главе мы увидели, что обработка информации приводит к увеличению энтропии. Неужели, описывая свой мысленный эксперимент, Сцилард предполагает, что информация может делать и обратное, преодолевая второе начало термодинамики и преобразуя теплый воздух постоянной температуры в полезную работу? Такая система уменьшала бы энтропию Вселенной, поскольку “дармовую” работу можно было бы использовать, чтобы заставить теплоту перемещаться в “неправильном” направлении из холодной зоны в горячую.

Сцилард категорически заявляет, что этого не может произойти по следующей причине: в момент измерения, когда демон определяет местоположение молекулы, энтропия не может не увеличиваться, и это увеличение в итоге компенсирует любое уменьшение энтропии в результате работы поршня.

Аргумент Сциларда кажется закольцованным, и ученый лишь в общих чертах описал, как его демон провоцирует увеличение энтропии. Однако в своей статье он первым заявил, что обработка битов информации должна приводить к рассеянию теплоты, потому что в ином случае мы могли бы конструировать вечные двигатели, противоречащие законам термодинамики. Любопытно и то, что Сцилард написал эту статью в 1929 году, за несколько десятилетий до начала применения битов в глобальных сетях связи и осознания их важности для передачи и хранения информации.

Следующие лет тридцать демон Сциларда/Максвелла оставался в тени: ученые считали его любопытной, но все-таки не слишком значимой головоломкой. Немногие научные статьи, которые выходили в этот период и упоминали о демоне, следовали логике Сциларда. Их авторы строили догадки относительно того, какой аппарат демон может использовать для определения положения молекулы, и приходили, как и Сцилард, к выводу, что любая подобная система будет рассеивать достаточное количество теплоты, чтобы компенсировать снижение энтропии, которое происходит, когда поршень поднимает груз.

Однако с 1950-х годов, когда количество битов и транзисторов в мире начало стремительно возрастать, а компьютеры стали выдавать заметное количество теплоты, демон Максвелла/Сциларда превратился из научной диковины в технологически и коммерчески значимую вещь. Ученые из исследовательского отдела компьютерного гиганта IBM вспомнили о демоне, когда вопрос о том, имеет ли информация термодинамическую цену, снова вышел на первый план. Подобно тому, как более чем столетие назад Сади Карно осознал, что невозможно в полной мере разобраться в устройстве паровой машины, не изучив, помимо ее конструкции, также лежащие в основе ее работы физические законы, ученые из IBM поняли, что, для того чтобы в полной мере исследовать информацию, необходимо аналогииным образом идеализировать и проанализировать работающие с ней машины.

Двое ученых из IBM, Рольф Ландауэр и Чарльз Беннетт, так описали свою работу: “Мы ищем общие законы, которые должны управлять всей обработкой информации, каким бы образом она ни осуществлялась. Любые обнаруженные нами ограничения должны проистекать исключительно из фундаментальных физических законов, а не из особенностей используемой в настоящий момент технологии”.

Старший из ученых, Рольф Ландауэр, родился в еврейской семье в немецком Штутгарте 4 февраля 1927 года. Его отец Карл, успешный архитектор и строитель, умер в 1934 году от ран, полученных, когда он сражался в рядах немецкой армии на Первой мировой войне. До конца уверенный, что нацисты долго не протянут, в последнем письме Карл попросил свою жену Анну вырастить их сыновей хорошими немцами. Анна, однако, поняла сущность Третьего рейха и уже в начале 1938 года вместе с семьей эмигрировала в Нью-Йорк. На новом месте Рольф добился успехов в учебе и окончил Гарвард в 1945 году. После этого он вступил в ВМС США и прошел подготовку на помощника техника по электронному оборудованию. Ландауэр отметил, что этот практический опыт оказался бесценным для его последующей работы.

Несмотря на блестящий диплом, Ландауэр обнаружил, что многие американские университеты и промышленные лаборатории в начале 1950-х годов неохотно брали на работу евреев. По совету старого друга в 1952 году он устроился в исследовательскую лабораторию IBM, только что открытую на месте бывшего консервного завода в Покипси, в штате Нью-Йорк. Как и руководство AT&T, директор IBM Томас Уотсон – старший призывал исследователей заниматься интересующими их научными проблемами, не обращая внимания на коммерческую ценность изысканий. Кроме того, лаборатория IBM поддерживала тесные связи с университетскими учеными, в том числе из Колумбийского университета.

Ландауэр устроился в IBM в важный момент в истории компьютеров: у него на глазах произошел переход от электронных ламп к транзисторам. Компьютеры, по сути, представляют собой гигантские массивы двухпозиционных переключателей. В первых машинах переключателями служили электронные лампы, но они были энергоемкими, ненадежными и большими – размером примерно с электрическую лампочку. Один из первых компьютеров, ЭНИАК, средства на создание которого выделила армия США, намеревавшаяся использовать его для расчетов баллистических таблиц, занимал 1700 квадратных метров, весил 27 тонн и потреблял 174 кВт электричества. ЭНИАК выделял большое количество теплоты – два вентилятора мощностью по 20 лошадиных сил постоянно обдували его холодным воздухом, чтобы не допустить перегрева.

Транзистор, изобретенный в Лабораториях Белла в 1948 году, также работал в качестве переключателя, но его размер был сравним с горошиной. Кроме того, он потреблял совсем немного энергии и выделял гораздо меньше теплоты, чем электронная лампа. В связи с этим, когда в 1958 году IBM предложила свой первый компьютер на базе транзисторов, оказалось, что он имеет огромные преимущества в сравнении со своим предшественником на базе электронных ламп. Он был быстрее и мощнее, но весил вдвое меньше. Энергопотребление компьютера и его системы охлаждения сократилось более чем на 60 %. В результате инженеры и ученые, работающие в этой сфере, пришли к выводу, что за миниатюризацией – будущее, ведь чем меньше размер транзисторов, тем большее их количество можно разместить на отведенном месте, а это, в свою очередь, способствует повышению вычислительной мощности.

Продемонстрировав удивительную дальновидность, Ландауэр стал изучать, к чему может привести миниатюризация электронных компонентов. В опубликованной в 1961 году статье он написал: “Стремление к созданию более быстрых и компактных компьютерных схем напрямую ведет к вопросу: каковы принципиальные физические ограничения прогресса в этом направлении?”

В 1972 году к Ландауэру в IBM Research присоединился 29-летний Чарльз Беннетт. Он учился на химика, но затем получил в Гарварде докторскую степень за работу, в которой с помощью компьютерных моделей демонстрировал поведение молекул. Вместе с Ландауэром они вычислили конечную термодинамическую стоимость бита.

Чтобы понять, как они это сделали, снова представьте демона Лео Сциларда, который использует информацию о местоположении единственной молекулы в сосуде, чтобы производить работу. Теперь представьте, что демон определяет местоположение частицы с помощью аппарата, изготовленного настолько искусно, что в ходе его работы не рассеивается теплота. Может показаться, что в таком случае аргумент лишается смысла, но это не отличается от подхода Сади Карно, который просил читателей представить себе паровую машину, работающую без трения.

Для начала рассмотрим, что происходит, когда частица оказывается в левой половине сосуда. Демон получает этот “бит” информации и приступает к действию, прикрепляя груз к перегородке. Частица ударяется о перегородку, как я описывал выше, перегородка сдвигается и поднимает груз.

Но что происходит, когда перегородка оказывается придвинута к стенке сосуда? Как демону обеспечить, чтобы движения молекулы и дальше превращались в работу?

Он должен повторить описанный выше процесс, и для этого он возвращает перегородку в середину сосуда и получает второй бит информации, определяя, где молекула находится теперь. Как и раньше, он прикрепляет груз к перегородке и позволяет молекуле ее толкать.

Но здесь возникает проблема, связанная с прошлым битом информации. Демон должен стереть его, чтобы освободить место для нового бита. Но что, если в распоряжении у демона есть большое устройство для хранения информации? Даже в таком случае в какой-то момент оно заполнится, и, чтобы продолжать работу, демону придется стирать биты информации, полученные ранее.

Здесь и кроется ответ на загадку о минимальной термодинамической цене бита. Ландауэр и Беннетт подчеркнули, что демон не сможет продолжать работу, если в какой-то момент не начнет стирать биты информации. Он должен забывать ранние измерения, чтобы освобождать место для новых. И это забывание должно тратить теплоту в таком количестве, чтобы компенсировать работу движущейся перегородки.

Вспомните описание паровой машины, предложенное Сади Карно. Он утверждал, что полезную движущую силу, например осуществляющую подъем груза, в паровой машине можно получить лишь в том случае, если теплота перемещается из горячего источника, такого как нагреватель, в охладитель, такой как атмосфера. Главное свойство охладителя в том, что он должен быть в состоянии поглощать любое количество теплоты, не становясь при этом заметно теплее. Это реалистичное допущение, поскольку настоящие паровые машины сбрасывают теплоту в земную атмосферу, которая не становится теплее немедленно. Теперь представьте, что случится, если охладитель окажется лишен возможности бесконечно поглощать теплоту. Он будет постепенно становиться горячее, поглощая теплоту, идущую из нагревателя. Через некоторое время температура охладителя сравняется с температурой нагревателя, и тогда машина перестанет работать. Она перестанет выполнять работу, даже если в нагревателе и дальше будет сжигаться топливо.

Ландауэр и Беннетт продемонстрировали, что поток информации аналогичен тепловому потоку. Подобно тому, как паровая машина при работе должна сбрасывать или рассеивать теплоту, демон должен сбрасывать биты. Когда он сбрасывает каждый следующий бит, из его памяти рассеивается некоторое количество теплоты, какой бы материал и механизм ни использовался для хранения этого бита.

Можно сказать, что, если бы память демона была бесконечно велика, он мог бы хранить все “использованные” биты и производить работу, никогда не рассеивая теплоту. Это верно в теории, но неверно на практике. На самом деле, подобно тому как перестает работать паровая машина, охладитель которой становится таким же горячим, как нагреватель, перестает работать и демон, чья память оказывается заполненной “старыми” битами информации. Чтобы заработать снова, демону необходимо стереть хранящиеся у него биты, чтобы “впустить” в память новую информацию.

Поразительно, что такая логика позволила Ландауэру и Беннетту вычислить, какое количество теплоты рассеивается, когда стирается один бит информации, даже если получение и хранение информации осуществляется без трения. Выше я упоминал, что настоящий транзистор рассеивает около 10 миллионмиллионных джоуля энергии при каждом переключении. В основном теплота выделяется при движении субатомных частиц в кремнии, из которого изготовлен транзистор. Но представим, что память демона состоит из идеальных транзисторов, которые вообще не рассеивают теплоту. Даже в таком случае при сбросе бита информации будет выделяться небольшое количество теплоты. Это и есть минимальное количество теплоты, рассеиваемой при стирании одного бита информации.

Это количество – фундаментальный предел, устанавливаемый законами физики. Он фундаментален в той же степени, что и закон, гласящий, что нельзя превысить скорость света. Называемый сегодня пределом Ландауэра, он говорит нам, что даже при использовании самой совершенной технологии обработки битов окружающая среда будет становиться немного теплее всякий раз, когда эти биты будут стираться. Насколько теплее? При температуре, характерной для земной поверхности, количество теплоты, рассеивающейся в момент, когда даже идеальное устройство хранения стирает один бит информации, составляет 3000 миллиардмиллиардных джоуля.

После 2012 года этот предел подтвердили в физических лабораториях по всему миру. Одними из первых это сделали Эрик Лутц и его коллеги из Аугсбургского университета в Германии. Это значит, что у нас есть ответ на вопрос, поставленный в предыдущей главе: можем ли мы теоретически сконструировать машину, которая сможет думать, не увеличивая энтропию Вселенной? Нет, но с одной оговоркой.

Существует любопытная возможность создания компьютера, которому не придется стирать данные и который не будет рассеивать энергию. Такой машине не обязательно будет располагать бесконечной памятью, но в некотором роде она сможет помнить все данные, которыми однажды располагала. Это сродни созданию автомобиля, который не теряет энергию при трении и заряжает батарею при торможении. Чтобы снова разогнаться, он повторно использует сохраненную энергию. Если эти перемещения энергии осуществляются идеально, то теоретически автомобиль может вечно ездить без дозаправки. В том же духе можно представить компьютер, который способен отменять все предпринимаемые им шаги и таким образом никогда не забывать свое прошлое. Однако создание такого устройства, как и описанного автомобиля, сопряжено с колоссальными техническими сложностями. В обозримом будущем предел Ландауэра никуда не денется.

Но предел Ландауэра очень мал. Настоящие транзисторы рассеивают в 10 млрд раз больше теплоты. И все же крайне важно знать, каков идеальный минимум рассеиваемой при стирании бита теплоты, поскольку это говорит нам, что законы физики позволяют существенно усовершенствовать текущую технологию на основе кремния. Возможно, мы никогда не создадим полезный компьютер, который будет при стирании битов выделять не больше теплоты, чем предусматривается пределом Ландауэра, но знание этого предела показывает, что теоретически мы можем в тысячи, если не в миллионы, раз сократить количество теплоты, выделяемой нашими чипами.

Есть и другая причина верить, что за обработку битов можно платить и гораздо меньшую термодинамическую цену, чем мы платим при использовании современных технологий. Для этого необходимо применить методы измерения информации, предложенные Клодом Шенноном, к системе, которая с максимальной эффективностью обрабатывает информацию на протяжении миллиардов лет, то есть к живой природе.

Возьмем, например, скромную Escherichia coli, или Е. coli, крошечную одноклеточную бактерию, называемую также кишечной палочкой. Длина каждой бактерии составляет около 0,002 мм, а ширина в десять раз меньше. Миллионы этих бактерий живут в нижней части нашего кишечника, а также в подобных органах большинства теплокровных существ. В последние годы, изучая химические процессы в Е. coli, ученые установили, сколько битов информации одной Е. coli необходимо обработать, чтобы воспроизвести саму себя. Измерив скорость воспроизводства клеток и количество потребляемой энергии, ученые пришли к выводу, что для обработки одного бита информации Е. coli задействует в десять тысяч раз меньше энергии, чем транзисторы, используемые в большинстве созданных человеком устройств для обработки информации.

Сложно смириться с тем, что организм, живущий у нас в кишечнике, обрабатывает информацию гораздо эффективнее, чем наши самые сложные кремниевые транзисторы. Удивительно, однако, что, объединив свои знания о теплоте и информации, мы сделали открытие об устройстве живого мира. Такое впечатление, что жизнь существует на стыке термодинамики и информации. Чтобы понять эту новую сферу, нам необходимо вернуться к человеку, с которым мы в последний раз встречались, когда он пил чай с Клодом Шенноном в кафетерии Лабораторий Белла, – к человеку, которого сам Шеннон назвал обладателем “великого ума, поистине великого ума”.

Назад: Глава 16. Информация материальна
Дальше: Глава 18. Математика жизни