Еще один аспект зрительного восприятия – то, что мозг регистрирует события, такие как вспышки света, с привязкой к определенному времени. Временные задержки нейронов зрительной коры при реакции на зрительный стимул варьируют от 25 до 100 миллисекунд, часто в пределах одной и той же области коры. Но вместе с тем мы можем определить порядок двух вспышек, произошедших с разрывом 40 милисекунд, и порядок двух звуков с разницей во времени менее 10 милисекунд. Еще более парадоксально то, что обработка в самой сетчатке занимает определенное время, которое не фиксировано, но зависит от интенсивности вспышки, так что, хотя есть разница во времени прибытия первого импульса от тусклой и от яркой вспышки, кажется, что они пришли одновременно. И возникает вопрос, почему восприятие кажется единым, что вовсе не очевидно из распределенных в пространстве и времени схем активности по всей коре.
Вопрос одновременности становится еще острее, когда мы проводим кроссмодальные сравнения. Когда вы наблюдаете, как кто-то рубит дерево, вы одновременно видите и слышите, как топор ударяется о дерево, хотя скорость звука намного меньше скорости света. Кроме того, иллюзия одновременности сохраняется и с увеличением расстояния до дерева, хотя абсолютная задержка между зрительными и слуховыми сигналами, по мере того как они достигают вашего мозга, может достигать 80 милисекунд, прежде чем иллюзия разрушится и звук перестанет совпадать с ударами топора.
Исследователи, изучающие временные аспекты зрения, обнаружили еще одно явление, называемое эффектом запаздывания вспышки. Его можно наблюдать, когда самолет с мигающими хвостовыми огнями проходит над головой, а свет и хвост не совпадают. Или изучить в лаборатории с помощью визуального стимула, как показано на рис 16.3. При эффекте запаздывания вспышки кажется, что движущийся объект и вспышка, находящиеся в одном месте, смещены по отношению друг к другу.
Основное объяснение – интуитивно понятное и отчасти подтвержденное данными из записей активности мозга, – мозг предсказывает, где движущееся пятно будет через короткий промежуток времени. Однако чувственные эксперименты показали, что это не может объяснять эффект запаздывания вспышки, потому что восприятие, приписываемое времени вспышки, зависит от событий, которые происходят в течение 80 миллисекунд после вспышки, а не до нее, и которые претендуют на роль основы для прогнозирования.
Рис. 16.3. Эффект задержки вспышки. Кольцо движется слева направо (черное, сверху). Когда оно проходит над лампочкой, на миг вспыхивает свет (желтый, вверху). Наблюдатели же сообщают, что все выглядит, как на нижнем рисунке: в момент вспышки объект смещается вправо
Такое толкование эффекта запаздывания означает, что мозг больше работает с уже имеющейся информацией, чем с предсказаниями. То есть мозг постоянно обращается к опыту, чтобы согласовать воспринимаемое настоящее с будущим. Один из примеров того, как наш мозг генерирует правдоподобные интерпретации, основанные на зашумленных и неполных данных, – использование фокусниками эффекта «ловкости рук».
Визуализация мозга дает нам общую картину характера мозговой деятельности, когда мы воспринимаем или не воспринимаем что-либо. Используя экспериментальные данные, исследователи разработали очень заманчивую гипотезу: мы осознаем что-то только тогда, когда уровень мозговой активности в лобной части коры, необходимый для планирования и принятия решений, достигает порогового уровня и запускает обратную связь. Идея любопытная, но бездоказательная, поскольку с помощью наблюдений установили не причинно-следственные связи, а только корреляцию. Если НКС ответственны за сознательное состояние, должна быть возможность изменить их и таким образом изменить сознание. Дорис Цао показала, что она может препятствовать распознаванию лиц у обезьян, стимулируя «лицевые» области в зрительной коре. Когда подобный эксперимент проводился на людях, испытуемые сообщали, что лица будто бы расплываются, плавятся.
Недавно стали доступны новые методы, такие как оптогенетика, для избирательного манипулирования активностью нейронов, что позволяет проверить причинно-следственные связи НКС. Это может оказаться сложным, если относящиеся к восприятию структуры соответствуют сильно распределенным схемам деятельности, но в принципе такой подход может выявить, как формируется восприятие и другие особенности сознания.
Визуальный поиск – задача, которая зависит как от обработки сенсорной информации «снизу вверх», так и от управления процессами внимания «сверху вниз» (рис. 16.4 A). Эти два процесса переплетены в мозге, но недавно была разработана новая поисковая задача, чтобы отделить их друг от друга. Участников эксперимента усадили перед пустым экраном и сказали, что их задача – исследовать экран глазами, чтобы найти скрытое местоположение цели, которая издаст звуковой сигнал, когда взгляд зафиксируется на ней. Положение скрытой цели изменялось от раза к разу и было построено на основе гауссовского распределения – колоколообразной кривой с определенной шириной и верхней точкой, которые не были известны участнику, но оставались постоянными в течение сеанса (рис. 16.4 Г).
Рис. 16.4. Учимся искать визуальную цель. (А) Опытный пешеход заранее знает, где искать знаки, автомобили и тротуары на улице. (Б) Утки ищут корм на лугу. (В) Изображение на экране накладывается на распределение скрытых целей, изученное в ходе сеанса, а также отмечена траектория взгляда участника М во время трех попыток. Первая фиксация взгляда при каждой попытке отмечена черной точкой. Финальная, за которой последовало вознаграждение, – точкой, окрашенной оттенками серого. (Г) Область, выбранная для фиксации взгляда, сжимается от всего экрана при ранних попытках (серо-голубые круги; первые пять попыток) до области, которая примерно соответствует положению и размеру целей согласно распределению гауссовых целых чисел (квадраты, затемненные пропорционально вероятности для изображения A) при более поздних попытках (круги; попытки 32–39)
В начале эксперимента участники не располагали предварительными данными для поиска. После того как фиксация была вознаграждена, участники могли использовать обратную связь, чтобы лучше справиться при следующей попытке. В ходе эксперимента участники повышали число удачных попыток, выявляя зону, где стоит ожидать скрытые цели, и используя это в будущих поисках. После десятка попыток зрительная фиксация участников сузилась до области, где с высокой вероятностью находилась цель. Описание результата для всех участников представлено на рис. 16.4 Г. Сначала зона поиска была широкой, но сужалась по мере продолжения сеанса. Удивительно, но многие испытуемые не смогли сформулировать свою стратегию поиска, хотя после нескольких попыток первое движение их взгляда неизменно оказывалось в центре невидимого целевого распределения.
Области мозга, участвующие в этой поисковой задаче, включают зрительную кору и верхнее двухолмие, которое контролирует топографическую карту поля зрения и направляет саккады к визуальным целям, тесно взаимодействуя с другими частями глазодвигательной системы. В обучении также участвуют базальные ганглии – древняя часть мозга позвоночных, которая усваивает последовательность действий через обучение с подкреплением. О разнице между ожидаемым и полученным вознаграждением свидетельствует кратковременное увеличение частоты импульсов дофаминовых нейронов в среднем мозге, что регулирует синаптическую пластичность и влияет на принятие решений на бессознательном уровне, как описано в главе 10.