После того как в 2016 году AlphaGo победила Ли Седоля в го, это вызвало новую волну опасений, что ИИ потенциально опасен для человечества. Программисты подписали обязательство не использовать ИИ в военных целях. Стивен Хокинг и Билл Гейтс сделали публичное заявление о реальной угрозе, которую может представлять ИИ. Илон Маск и другие предприниматели Кремниевой долины создали компанию OpenAI с капиталом в один миллиард долларов и наняли Илью Суцкевера, бывшего студента Джеффри Хинтона, на пост генерального директора. Основная цель этого проекта – убедить людей, что будущие открытия станут доступны каждому. Еще одной целью было предотвратить злоупотребление новейшими технологиями со стороны частных компаний. ИИ практически в одночасье перестал быть угрозой. Обе цели, конечно, преувеличены, но результат был достигнут.
Должны ли мы бояться ИИ? Не в первый раз инновации воспринимаются как угроза. Мы научились жить с ядерным оружием и не развязали ядерную войну. Когда технология рекомбинантных ДНК была открыта, люди боялись, что смертельно опасные организмы будут выпущены на свободу. Генная инженерия стала серьезной наукой, а мы живы до сих пор. Точно так же мы привыкнем и к искусственному интеллекту.
Одним из последствий дальнейшего развития DeepStack может стать то, что он превратится в обманщика мирового класса. То, что может сделать сеть, ограничивается только вашим воображением. Если сеть можно обучить самостоятельно водить автомобиль, ее также можно обучить участвовать в гонках «Формула-1», и кто-нибудь наверняка захочет в это вложиться. Сегодня для создания сетей, использующих глубокое обучение, требуются особые знания и навыки, но со временем, когда для разработки программ с ИИ нужны будут компьютеры с меньшей мощностью, а программное обеспечение станет автоматизированным, даже школьникам будет доступно создание приложений с ИИ. Кто знает, что они сделают?
Otto, один из самых популярных интернет-магазинов по продаже одежды, мебели и товаров для спорта в Германии, использует глубокое обучение для того, чтобы, опираясь на предыдущие заказы клиента, предугадать, что он закажет на этот раз, и оформить для него предзаказ. С точностью до 90 процентов покупатели получают заказ едва ли не раньше, чем сделали его. Предварительный заказ делается автоматически без участия человека и экономит компании миллионы евро в год, так как избавляет ее от излишне больших закупок и возвратов. К тому же такой уровень обслуживания нравится покупателям. Глубокое обучение не только не оставило сотрудников компании без работы, но, наоборот, усилило их работоспособность. И действительно, ИИ может сделать вас эффективнее.
Хотя крупнейшие высокотехнологичные компании первыми внедрили приложения для глубокого обучения, инструменты машинного обучения уже широко доступны, и многие другие компании начинают получать от них выгоду. Алекса, голосовой помощник в устройстве Amazon Echo, отвечает на устные запросы благодаря глубокому обучению. Платформа Amazon Web Service (AWS) представила панель инструментов Lex and Polly, которая способствует разработке «естественного» языка на основе автоматического распознавания речи для определения намерений говорящего и преобразования письменного текста в устную речь. Приложения с диалоговым взаимодействием сейчас можно встретить только на малых предприятиях, которые не могут позволить себе нанять экспертов по машинному обучению. Искусственный интеллект помогает удовлетворять покупателей.
Когда компьютер обыграл в шахматы лучших игроков, разве люди перестали в них играть? Наоборот, это только повысило их уровень! Также это популяризировало шахматы. Когда-то лучшие игроки были жителями больших городов, таких как Москва, где были шахматные клубы и много гроссмейстеров, обучающих молодое поколение. Шахматные программы дали возможность Магнусу Карлсену, выросшему в маленьком городке в Норвегии, стать гроссмейстером всего в 13 лет, и сейчас он чемпион мира. Этот процесс не ограничится играми, он повлияет на все аспекты нашей жизни, от искусства до науки. ИИ может сделать нас умнее.
Различные формы обучения позволяют работать всем вышеупомянутым приложениям. Кроме того, глубокое обучение – основа и для человеческого интеллекта. Эта книга посвящена двум взаимосвязанным темам – эволюции человеческого мозга и эволюции ИИ. Самое заметное различие: природа потратила миллионы лет на развитие человеческого интеллекта, в то время как ИИ на это понадобилось всего несколько десятилетий – слишком короткий срок даже для культурной эволюции.
Последние достижения глубокого обучения были сделаны не в одночасье, как может показаться по сообщениям в СМИ. История перехода ИИ, основывавшегося на символах, логике и системе правил, к глубокому обучению малоизвестна. Эта книга о появлении и развитии глубокого обучения с моей точки зрения как того, кто стоял у истоков разработки алгоритмов обучения нейронных сетей в 1980-х годах и в качестве президента Фонда Neural Information Processing Systems (NIPS) курировал открытия в области машинного и глубокого обучения в течение последних 30 лет. Долгие годы нас преследовали неудачи, но в конце концов наши настойчивость и терпение были вознаграждены.
Марвин Минский – блестящий математик и основатель Лаборатории искусственного интеллекта в МТИ в США. Основатели задают направление всей отрасли, и в 1960-х годах эта лаборатория стала цитаделью разума. У Минского за минуты рождалось огромное количество идей, и он мог убедить любого, что его мнение является верным, даже если здравый смысл говорил об обратном. Я восхищался его умом и смелостью, но был не согласен с его взглядами на ИИ.