Книга: Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет
Назад: Мозг – это компьютер?
Дальше: Нейроморфная инженерия

Глава 14. Привет, мистер Чип

Мы видим рождение новой архитектуры в индустрии компьютерных микросхем. Идет гонка за разработку и создание нового поколения чипов, чтобы глубокое обучение, обучение с подкреплением и другие обучающие алгоритмы работали в тысячи раз быстрее и эффективнее, чем сейчас моделируют на компьютерах общего назначения. Новые сверхбольшие интегральные схемы (СБИС) имеют архитектуру параллельной обработки и память, разделенную между процессорами, чтобы снизить нагрузку на узкое место между памятью и центральным процессором в последовательной архитектуре фон Неймана, которая преобладала в работе компьютерных систем последние 50 лет. В том, что касается технических средств, мы все еще находимся на этапе исследований, и у каждого типа специализированной СБИС есть свои сильные и слабые стороны. Для запуска крупномасштабных сетей, которые разрабатываются для приложений с ИИ, потребуются огромные компьютерные мощности, и создание эффективной системы принесет гигантские прибыли.

И крупные компании, производящие микросхемы, и мелкие стартапы много вкладывают в эту цель. В 2016 году, например, компания Intel приобрела Nervana – небольшую свежесозданную компанию в Сан-Диего, которая разработала специальные СБИС для глубокого обучения, а бывший генеральный директор Nervana Навин Рао теперь возглавляет их новую группу продуктов ИИ, которая напрямую подчиняется генеральному директору Intel. В 2017 году Intel за 15,3 миллиарда долларов купила Mobileye – компанию, которая специализируется на датчиках и компьютерном зрении для беспилотных автомобилей. Компания Nvidia, разработавшая специальные цифровые чипы, оптимизированные для графических приложений и игр, называемые графическими процессорами (graphics processing unit; GPU), теперь продает больше микросхем, предназначенных для глубокого обучения и облачных вычислениях. Google разработала особый чип – тензорный процессор (tensor processing unit; TPU), – чтобы обеспечить глубокое обучение своих интернет-сервисов с гораздо меньшим энергопотреблением.

Программное обеспечение для глубокого обучения также важно для разработки приложений. TensorFlow – программа для запуска сетей глубокого обучения, которую Google выложила в открытый доступ. Возможно, все не так альтруистично, как кажется: когда Google сделала систему Android бесплатной, это дало компании контроль над операционной системой, которую сейчас используют на большинстве смартфонов по всему миру. Но есть альтернатива: у CNTK компании Microsoft также открытый исходный код; MVNet поддерживается Amazon и другими крупными интернет-компаниями, такие среды для глубокого обучения, как Caffe, Theano и PyTorch, составляют им конкуренцию.

Горячие чипы

В 2011 году в городе Тромсё в Норвегии я организовал спонсируемый Фондом Кавли семинар «Развитие высокопроизводительных вычислений в экологически чистой среде». Мы подсчитали, что при нынешних микропроцессорных технологиях для экзафлопсных вычислений, которые в тысячу раз быстрее петафлопсных, потребуется 50-мегаваттная электростанция – больше, чем мощность, потребляемая метро в Нью-Йорке. Значит, следующему поколению суперкомпьютеров для работы нужны микросхемы с низким энергопотреблением, таких как чипы, созданные компанией ARM, которые были оптимизированы для смартфонов. Вскоре станет нецелесообразно использовать цифровые компьютеры общего назначения для наиболее ресурсоемких приложений, и будут доминировать чипы специального назначения, как это уже произошло в мобильных телефонах.

В человеческом мозге около ста миллиардов нейронов, каждый из которых соединен с несколькими тысячами других, что в сумме доходит до квадрильона синаптических связей. Энергетический бюджет мозга – около 20 ватт, около 20 процентов от энергопотребления всего тела, хотя мозг весит лишь три процента от общей массы. Напротив, суперкомпьютер с производительностью, исчисляемой в петафлопсах, потребляет 5 мегаватт и даже близко не приближается к мощности вашего мозга. Природа добилась этого, уменьшив части нейронов, необходимые для связи и передачи сигнала, до молекулярного уровня. Еще одно отличие – плотность размещения компонентов: транзисторы на микросхеме расположены на двумерной поверхности, а в мозге соединения находятся в трехмерном пространстве, что позволяет минимизировать объем. Природа давно открыла эти технологии, и нам еще предстоит наверстать упущенное.



Рис. 14.1. Карвер Мид примерно в то время, когда он создал в Калтехе первый кремниевый компилятор. Мид был провидцем, чьи идеи и технологические достижения оказали значительное влияние как на цифровые, так и на аналоговые вычисления. Телефон на снимке указывает на время, когда была сделана фотография





Глубокое обучение требует больших вычислительных ресурсов и сейчас выполняется на централизованных серверах, а результаты передаются на периферийные устройства, такие как мобильные телефоны. В конечном счете, периферийные устройства должны стать автономными. Это потребует принципиально иного оборудования, намного легче и потребляющего меньше энергии, чем облачные вычисления. Интересно, что такое оборудование уже существует – нейроморфные чипы, созданные по подобию мозга.

Холодные чипы

Я впервые встретил Карвера Мида (рис. 14.1) в 1983 году на семинаре, проводившемся на курорте неподалеку от Питтсбурга. Джеффри Хинтон собрал небольшую группу, чтобы исследовать, куда движутся нейронные сети. Мид известен своим крупным вкладом в компьютерные науки. Он первым осознал, что по мере того, как транзисторы на СБИС становятся все меньше и меньше, чипы становятся все эффективнее, и поэтому вычислительная мощность должна продолжать расти в течение длительного времени. Карвер Мид ввел в обращение термин «закон Мура», основанный на наблюдении Гордона Мура, что количество транзисторов на чипах удваивалось каждые 18 месяцев. Он уже прославился изобретением кремниевого компилятора – программы, которая автоматически размещала схемы проводников и функциональные модули системного уровня на чипе. До кремниевого компилятора каждый чип инженеры изготавливали вручную на основе опыта и интуиции. По сути, Мид предложил программировать компьютеры, чтобы те сами разрабатывали чипы. Это были первые шаги в наноинженерии.

Мид – провидец. В то же время когда мы сидели за столом в маленькой комнате на семинаре, наверху проходила конференция по суперкомпьютерам. Крупные суперкомпьютерные компании, такие как Cray Inc. и Control Data Corporation, проектировали оборудование специального назначения, которое было в сотни раз быстрее, чем компьютеры в наших лабораториях, и стоило сто миллионов долларов. Компьютеры Crays были настолько быстрыми, что их приходилось охлаждать жидким фреоном. Мид сказал мне, что они еще не знают, но микропроцессоры захватят их долю рынка и суперкомпьютерные компании скоро исчезнут. Микропроцессоры в персональных компьютерах в ту эпоху были значительно медленнее, чем чипы специального назначения в суперкомпьютерах. Но микропроцессоры развивались быстрее, чем суперкомпьютеры, из-за неуклонного сокращения затрат и повышения производительности, которое стало возможным благодаря уменьшению основных размеров устройства. Вычислительная мощность микропроцессора в вашем смартфоне равна мощности десяти суперкомпьютеров Cray X-MP в 1980-х годах, а высокопроизводительные суперкомпьютеры с сотнями тысяч микропроцессорных ядер достигли петафлопсной производительности, что в миллион раз быстрее, чем у вымерших компьютеров Cray, при их одинаковой стоимости с учетом инфляции.

На семинаре Мид показал нам кремниевую сетчатку, которая была создана по той же технологии, что и чипы СБИС, но с использованием аналоговых, а не цифровых схем. В аналоговой схеме напряжение на затворах может непрерывно изменяться, тогда как у напряжения на затворах в цифровой схеме может быть только одно из двух значений: «включено» или «выключено». В нашей сетчатке свыше ста миллионов фоторецепторов, но в отличие от камеры, которая просто передает фотонные импульсы в память, сетчатка имеет несколько уровней нейронной обработки, которая преобразует входящие визуальные данные в эффективные нейронные коды. Все стадии обработки аналоговые, пока не доходят до ганглиозных клеток, которые несут в мозг по миллиону аксонов, закодированные сигналы в виде двоичных импульсов. Обозначение импульсов как «да» или «нет» похоже на цифровую логику, но время прохождения импульса является аналоговой переменной, и нет часов, что превратят последовательность импульсов в гибридный год.

В чипе сетчатки, разработанном Мидом, ступенчатая часть обработки выполнялась с напряжением, немного не доходящим до порогового значения «выключено», тогда как работающий в цифровом режиме транзистор быстро переходит в полностью «включенное» состояние, которое потребляет гораздо больше энергии. Как следствие, аналоговому чипу СБИС требуется лишь малая доля мощности цифровых микросхем – от нановатт до микроватт, а не от милливатт до ватт, – что делает их в миллионы раз энергоэффективнее. В своей книге «Аналоговые СБИС и нейронные системы», вышедшей в 1989 году, Мид показал, что нейронные алгоритмы, встроенные в нейронные цепи глаз насекомых и млекопитающих, можно эффективно воспроизвести в кремнии. Карвер Мид – основатель нейроморфной инженерии, цель которой – создание чипов на основе алгоритмов мозга.

Чип сетчатки – изобретение Миши Маховальд, звездной аспирантки Мида (рис. 14.2). В своих идеях она объединила опыт бакалавра биологии Калтехе и дипломную работу в области электротехники. Это привело ее к получению четырех патентов. В 1992 году Маховальд вручили премию Милтона и Фрэнсиса Клаузеров за диссертацию, посвященную чипу, который выполнял сопоставление бинокулярных изображений в реальном времени, первому чипу, который использовал естественное коллективное поведение для сложной задачи. В 1996 году она была занесена в зал славы международного союза «Женщины в технологии» (Women in Technology International; WITI).





Рис. 14.2. Миша Маховальд из Калтеха в то время, когда она, будучи ученицей Карвера Мида, создала первую кремниевую сетчатку. Маховальд внесла выдающийся вклад в нейроморфную инженерию





Физика транзисторов в околопороговом режиме весьма схожа с биофизикой ионных каналов в биологических мембранах. Миша работала с нейробиологами Кеваном Мартином и Родни Дугласом из Оксфордского университета над кремниевыми нейронами (рис. 14.3) и переехала с коллегами в Цюрих, чтобы помочь основать Институт нейроинформатики при Цюрихском университете и Швейцарском федеральном технологическом институте. Ее сияющая звезда трагически закатилась в 33 года, когда страдающая от депрессии Маховальд бросилась под поезд.

Карвер Мид покинул Калтех в 1999 году и переехал в Сиэтл. Я посещал его в 2010 году. С его заднего двора можно видеть самолеты, которые, пролетая над водой, заходят на посадку в аэропорт Сиэтл-Такома. Его отец был инженером на гидроэлектростанции Биг-Крик – целом комплексе электростанций в Калифорнии на реке Сан-Хоакин, берущей исток в горах Сьерра-Невады.





Рис. 14.3. Кремниевые нейроны. Каналы в этом аналоговом чипе СБИС действуют как ионные каналы в нейронах и могут имитировать нейронные сети в реальном времени, что показано на рисунке поверх чипа





Скачок всего за одно поколение от ранней гидроэлектрической технологии к микроэлектронике захватывает дух. Хобби Карвепа – коллекционирование старинных изоляторов для подвешивания линий электропередач. Они валяются буквально под ногами, как наконечники индейских стрел, если вы знаете, где их искать. У Мида также был лазерный гироскоп, который он использовал для тестирования нового разработанного им подхода для объяснения квантовой физики. Карвер Мид – провидец, но таким успешным его сделала привычка создавать вещи, которые работают и которые вы можете подержать в руках.

Назад: Мозг – это компьютер?
Дальше: Нейроморфная инженерия

ThomasBap
панно }
adjunty
4 azithromycin pills where to buy zithromax over the counter azithromycin capsules 250mg