Более 75 процентов торговых сделок на Нью-йоркской фондовой бирже автоматизированы (рис. 1.6) и проводятся благодаря высокоскоростным алгоритмам, которые реагируют гораздо быстрее человека. Более того, алгоритмы начинают зарабатывать деньги все лучше и лучше, а глубокое обучение позволяет систематически увеличивать прибыль. В 1980-х я работал в компании Morgan Stanley консультантом по использованию нейросетей на фондовых биржах и встретил там Дэвида Шоу, программиста из Колумбийского университета, который специализировался на параллельных вычислениях. На заре автоматической торговли он работал в отделе количественного анализа данных даже во время отпуска. Когда вам не нужно платить за каждую транзакцию, даже незначительное преимущество может превратиться в крупную прибыль. Шоу ушел из Morgan Stanley, чтобы создать свою компанию по управлению инвестициями на Уолл-стрит – The D. E. Shaw Group. Сейчас он мультимиллиардер.
Компания Шоу достигла значительного успеха, однако ей далеко до страхового фонда Renaissance Technologies, основанного Джеймсом Саймонсом, выдающимся математиком и бывшим заведующим кафедрой математики Университета штата Нью-Йорк в Стоуни-Брук. В 2016 году Саймонс в одиночку заработал 1,6 миллиарда долларов, и это далеко не самая большая его прибыль. Фонд Renaissance был назван «компанией с лучшими физиками и математиками в мире», которая «избегает нанимать любого, кто связан с Уолл-стрит».
Дэвид Шоу больше не занимается повседневной работой в D. E. Shaw, сейчас он поглощен проектом D. E. Shaw Research по созданию компьютера для параллельных вычислений под названием Anton, который выполняет расчет сворачивания белка гораздо быстрее, чем любой другой компьютер на планете. Саймонс ушел из Renaissance и вместе со своей женой основал благотворительный фонд, который поддерживает исследование аутизма и другие проекты по физике и биологии. Фонд спонсирует работу Института теории вычислений Саймонса в Беркли в Калифорнии, Центра социального мозга Саймонса при Массачусетском технологическом институте, а также Института Флэтайрон в Нью-Йорке.
Рис. 1.6. Машинное обучение управляет высокоскоростной торговлей на фондовых рынках. Для достижения наилучшего результата совмещают несколько моделей машинного обучения
Глубокое обучение только начинает влиять на труд юристов. Большая часть рутинной работы в юридических организациях, стоящая сотни долларов в час, будет автоматизирована, особенно в крупных компаниях. В частности, ИИ, не чувствуя усталости, может выполнять анализ тысяч документов в поисках доказательств. Еще одно преимущество автоматизированной системы – полное соблюдение постоянно усложняющихся нормативных требований. Юридическая консультация станет доступна любому, кто не может себе позволить нанять адвоката. Работа юристов станет не только дешевле, но и гораздо быстрее, а этой порой важнее стоимости. Правовой мир станет юридически глубоким.
Безлимитный техасский холдем «один на один» входит в число самых популярных разновидностей покера. В нее обычно играют в казино, а также на главном состязании – Мировой серии покера. Покер сложен, потому что, в отличие от шахмат, где оба игрока владеют одинаковым объемом информации, у игроков в покер информация неполная. Поэтому при игре на высоком уровне умение блефовать и вводить в заблуждение не менее важно, чем сами карты.
Рис. 1.7. Безлимитный техасский холдем «один на один». Пара тузов на руках. Блеф на высоких ставках был освоен системой DeepStack, которая победила профессиональных игроков с большим отрывом
Джон фон Нейман, математик, создавший математическую теорию игр и заложивший основы архитектуры вычислительных машин, был очарован покером, так как «реальная жизнь вся состоит из блефа, маленьких хитростей и размышлений, что другой человек думает о том, что собираюсь сделать я. Игры в моей теории как раз такие». Покер отражает ту часть человеческого интеллекта, которая была усовершенствована в процессе эволюции. К величайшему удивлению экспертов в покере, сеть глубокого обучения DeepStack сыграла 44 852 игры против 33 профессиональных игроков в покер и победила их на четыре стандартных отклонения. Невероятный успех. Победу над лучшими игроками при использовании даже одной стратегии уже можно было бы назвать прорывом. Если это достижение применить и в других сферах человеческой деятельности, где решения принимаются при отсутствии полной информации, например в политике и международных отношениях, последствия могут быть далеко идущими.
В марте 2016 года кореец Ли Седоль, чемпион мира по го, сыграл матч против AlphaGo – программы, обученной этой игре (рис. 1.8). AlphaGo использовала нейросеть глубокого обучения, чтобы оценить расположение камней на доске и возможные ходы. Го сложнее шахмат, как шахматы сложнее шашек. Если шахматы – одно сражение, то го – война. Доска для игры в го размером 19 на 19, что значительно больше, чем шахматная доска 8 на 8 клеток. В го возможно одновременно вести несколько битв на разных частях доски. В игре есть множество нюансов, поэтому судить ее порой сложно даже экспертам. Существуют 10170 возможных позиций, что больше, чем количество атомов в наблюдаемой Вселенной.
AlphaGo применяла несколько нейросетей глубокого обучения для оценки ситуации на доске и выбора наилучшего хода. Кроме того, у нее совершенно другая система обучения, использовавшаяся для решения задач, в которых необходимо вычислить, какие действия приведут к успеху, а какие – к неудаче. Если я выигрываю в го, какие мои действия способствовали этому? А если проигрываю, какой шаг был неверным? Часть человеческого мозга, которая отвечает за решение таких задач, – базальные ганглии. Они получают проекции сигналов с коры головного мозга и передают их обратно. AlphaGo использует алгоритмы, которые применяются базальными ганглиями для вычисления наиболее успешной последовательности действий. Об этом подробно будет рассказано в главе 10. Таким образом, AlphaGo училась, играя с собой раз за разом.
Рис. 1.8. Матч между Ли Седолем и AlphaGo. Доска во время матча из пяти игр между корейским чемпионом и нейросетью, которая научилась играть сама
Результат матча в го, когда AlphaGo обыграла Ли Седоля, сильно повлиял на население Азии, где чемпионы по го – едва ли не национальные герои, подобно рок-звездам. Ранее AlphaGo обыграла чемпиона Европы, но сама по себе игра была не очень высокого уровня, поэтому Ли Седоль не ожидал столкнуться с серьезным соперником. Даже DeepMind, компания, создавшая AlphaGo, не ожидала такой сильной игры. С момента последнего матча AlphaGo сыграла сотни миллионов игр с разными своими модификациями, и едва ли можно выразить словами, насколько хороши были эти партии.
Для многих стало потрясением, когда AlphaGo выиграла первые три игры из пяти, продемонстрировав высокий уровень игры (рис. 1.9). Это было захватывающее зрелище в Южной Корее, которое обозревали комментаторы самых известных телеканалов. Некоторые ходы AlphaGo были поистине революционными. Ее 37-й ход во второй партии был настолько потрясающим, что Ли Седолю понадобилось десять минут для ответного хода. AlphaGo проиграла четвертую партию, и этим человеческий интеллект хоть немного отстоял свою честь. Тем не менее матч закончился со счетом 4:1 в пользу AlphaGo. Я наблюдал за ним в предрассветные часы в Сан-Диего, словно загипнотизированный. Это напомнило мне события 2 июня 1966 года, когда я смотрел по телевизору, как роботизированный космический корабль Surveyor приземлился на Луну и прислал первую фотографию ее поверхности. Я стал свидетелем исторического события. AlphaGo совершила то, что было для нас за гранью возможного.
Рис. 1.9. Ли Седоль после проигрыша в матче с AlphaGo: «Я не знаю, что сказать и с чего начать, но мне кажется, я должен извиниться. Я должен был показать лучший результат, и я прошу прощения, что не удовлетворил ожидания людей. Я чувствую себя бессильным. Если бы я мог повернуть время вспять и вернуться к самой первой игре, я бы все равно не выиграл, потому что недооценил возможности AlphaGo»
4 января 2017 года в онлайн-версии игры го был разоблачен один из игроков под псевдонимом Master. Им оказалась AlphaGo 2.0. Ее раскрыли после 60 побед в 60 играх против лучших мировых игроков, среди которых был чемпион мира девятнадцатилетний Кэ Цзе из Китая. AlphaGo показала новый стиль игры, который идет вразрез с вековой стратегией. 27 мая 2017 года Кэ Цзе проиграл AlphaGo три игры на саммите «Будущее го» в Вузхене в Китае (см. рис. 1.8). Это были одни из лучших игр в го, и сотни миллионов китайцев следили за матчем. Кэ Цзе сказал: «В прошлом году я думал, что стиль игры AlphaGo близок к человеческому. Но сегодня я понял, что она играет как бог игры го». AlphaGo также обыграла команду из пяти лучших игроков в ходе недельной серии матчей. Участники проанализировали ходы AlphaGo и изменили свою стратегию. Чемпионат был организован правительством Китая, что стало новым вариантом «пинг-понговой дипломатии». Китай делает большие инвестиции в развитие машинного обучения, а главная цель – обучение ИИ новым алгоритмам.
После проигрыша с отставанием всего в 0,5 очка Цзе сказал, что был близок к выигрышу в середине игры: «Я чувствовал, как бьется мое сердце. Возможно, именно из-за волнения я и совершил несколько ошибок. Возможно, это самое слабое место в человеке». То, что испытал Кэ Цзе, было эмоциональной перегрузкой, но в то же время эмоции необходимы для достижения максимальной производительности. При низком эмоциональном возбуждении умственные способности не максимальны. Актеры театра знают: если у них не летают бабочки в животе перед выступлением, их игра будет не особо хорошей. Их эмоции можно представить в форме перевернутой буквы U, а лучший результат достигается между низким и высоким уровнем возбуждения. Спортсмены называют это «быть в потоке».
Рис. 1.10. Встреча Демиса Хассабиса (слева) и Кэ Цзе после легендарной игры в го в Китае. В руках у Хассабиса доска с автографом Цзе
В 2010 году соучредителем компании DeepMind стал Демис Хассабис (рис. 1.10), нейробиолог, научный сотрудник Университетского колледжа Лондона, а также моей лаборатории. В 2017 году он совместно с Рэймондом Доланом и Вольфрамом Шульцем выиграл престижную премию Brain Prize за исследование системы вознаграждения мозга. В 2014 году корпорация Google приобрела компанию DeepMind за 600 миллионов долларов. В компании работают более четырехсот инженеров и нейробиологов, которые совмещают академические знания с инновациями. Союз нейробиологии и ИИ становится все крепче и крепче.