Книга: Шесть невозможностей. Загадки квантового мира
Назад: Утешение 5 Ансамблевая неинтерпретация
Дальше: Заключение Без поправки на безумие

Утешение 6
Безвременная транзакционная интерпретация

Корни транзакционной интерпретации (ТИ) квантовой механики кроются в загадке о природе света, интересовавшей еще Альберта Эйнштейна. Именно размышления о природе света привели Эйнштейна к созданию специальной теории относительности, и одного этого достаточно, чтобы воспринимать вопрос серьезно. К специальной теории великого физика привело осознание того, что из уравнений, описывающих поведение света и всего остального электромагнитного излучения, следует: скорость света одинакова для всех и постоянна (сейчас эту константу записывают как c). Если вы направите на меня луч фонарика, а я буду просто стоять рядом с вами, то при измерении скорости света от фонарика я получу c. Но даже если я буду нестись к вам или от вас с высокой скоростью, я все равно получу при измерении скорости света фонарика величину c. Из этого простого факта Эйнштейн и вывел теорию относительности.
Уравнения, которые, помимо прочего, гласят, что скорость света одинакова для любого наблюдателя, известны как уравнения Максвелла и названы в честь открывшего их физика XIX столетия. Но уравнения Джеймса Кларка Максвелла обладают еще одним любопытным свойством. Они симметричны во времени. В любой задаче с участием электромагнитного излучения – например, излучения, связанного с движущимся электроном, – у этих уравнений всегда имеется два решения. Одно описывает так называемую запаздывающую волну, которая исходит от источника и движется вперед во времени, чтобы быть поглощенной где-то далеко во внешнем мире. Другое описывает «опережающую» волну, которая исходит от поглотителей где-то там, во внешнем мире, и сходится из будущего к тому, что мы воспринимаем как источник излучения (в данном случае движущийся электрон). Большинство физиков просто не обращает внимания на это «опережающее» решение. Но в 1909 г. Эйнштейн сказал:
В первом случае электрическое поле вычисляют по совокупности процессов испускания, во втором – по совокупности процессов поглощения… Всегда можно воспользоваться любым из двух равенств, так же как можно мысленно удалять поглощающее тело. Значит, нельзя сделать вывод, что [запаздывающее решение] является более специальным, чем решение [, являющееся линейной комбинацией запаздывающей и опережающей волн].
Можно мысленно удалять тело, поглощающее излучение, причем на любое расстояние. Это относится не только к электронам, взаимодействующим со своими соседями, но и, к примеру, к телевизионным сигналам, распространяющимся от Земли по Вселенной. Уравнения, описывающие этот процесс, всегда включают решение, описывающее опережающие волны, сходящиеся из глубин Вселенной к антеннам, с которых эти сигналы были переданы. Здесь содержится намек на тип нелокальности, отличающийся от того, что мы встречали ранее (или тот же самый?), но, конечно, Эйнштейн в 1909 г. об этом не думал.
Одним из очень немногих людей, кто воспринял эту идею всерьез, был Ричард Фейнман, в 1940-х обучавшийся в аспирантуре в Принстоне. По совету своего научного руководителя Джона Уилера он разработал идею о том, что, взаимодействуя с другой заряженной частицей, электрон как бы по половинке волны испускается в будущее и в прошлое. Там, где эта волна встречается с другой заряженной частицей, последняя испускает вперед и назад во времени собственные половинки волны. Согласно фейнмановской версии, две полуволны, интерферируя, компенсируют друг друга всюду, кроме пространства между этими двумя частицами, где они усиливаются и образуют полную волну. Когда Фейнман делал в Принстоне доклад на эту тему, среди слушателей были Эйнштейн и Вольфганг Паули. Паули сказал, что, по его мнению, идея не заработает, и спросил Эйнштейна, согласен ли он с этим. «Нет, – сказал Эйнштейн, – мне только кажется, что было бы очень трудно создать соответствующую теорию для гравитационного взаимодействия».
Несмотря на такую поддержку, идея долгое время оставалась невостребованной, потому что никто просто не верил в волны, приходящие из будущего. Но в конце 1970-х гг. Джона Крамера, преподавателя Вашингтонского университета в Сиэтле, которого идея Фейнмана захватила еще во времена учебы в аспирантуре, вдруг осенило, как ее можно включить в квантовую механику. Как это часто бывает, мысль Крамера кажется очевидной – но лишь с того момента, когда кто-нибудь ее выскажет.
Крамера подтолкнула мысль о том, что происходит с «волной вероятности» в квантовой системе, когда частица, с которой она связана, регистрируется в определенной локации. Откуда волна во всех остальных местах «узнает», что в это мгновение надо исчезнуть? Крамер провел аналогию с бутылкой, которую с флоридского пляжа бросают в Атлантический океан. Представьте, что это квантовая бутылка и что она исчезает в волне, которая распространяется на весь океан и доходит до Европы. Бутылка оказывается где-нибудь на пляже в Англии, и в это самое мгновение волны, разошедшиеся по всему океану, исчезают. Крамер понял, что должны существовать опережающие и запаздывающие волны и что эти волны повсюду производят «квантовые рукопожатия». Он понял, что только те запаздывающие волны, которые производят «эхо» в виде опережающих волн, могут влиять на положение частиц – их загадочный квантово-механический перенос из точки A в точку B (или переход с одного энергетического уровня на другой) без перемещения через разделяющее их пространство. Волны от бутылки в Англии прошли назад во времени до Флориды через океан, чтобы установить уникальное соединение и погасить все остальные волны. Крамер видел здесь сходство с моделью волны-пилота, в которой волны показывают частицам, куда двигаться, но в которой, что принципиально, нет обращенного назад во времени подтверждения «рукопожатия».
Это объясняет также загадку ЭПР. Две частицы, однажды взаимодействовавшие между собой, впоследствии остаются соединенными «рукопожатием», то есть подтвержденным контактом между ними и местом их взаимодействия. Все это увязывается с верным (по мнению Крамера) описанием знаменитого уравнения Шрёдингера.
Чтобы применить теорию поглотителя к квантовой механике, нам потребуется некое квантовое уравнение, которое, подобно уравнениям Максвелла, имеет два решения. Одно из них соответствует волне положительной энергии, текущей в будущее, второе описывает волну отрицательной энергии, текущую в прошлое. На первый взгляд уравнение Шрёдингера не соответствует этому описанию, поскольку описывает поток только в одном направлении, которое мы интерпретируем как направление из прошлого в будущее. Однако любому физику в университете рассказывают, что широко используемая версия уравнения неполна (большинство это быстро забывает). Еще квантовые пионеры квантовой науки поняли, что уравнение Шрёдингера не учитывает требования теории относительности. В большинстве случаев это не имеет значения – вот почему студенты-физики и даже большинство специалистов по квантовой механике пользуются простым вариантом уравнения и ни о чем не беспокоятся. Однако полная версия волнового уравнения, должным образом учитывающая релятивистские эффекты, гораздо больше напоминает уравнения Максвелла. В частности, она имеет два набора решений, один из них соответствует общеизвестному простому уравнению Шрёдингера, второй – своего рода зеркальному отображению уравнения Шрёдингера, описывающего поток отрицательной энергии в прошлое.
Эта двойственность отчетливо проявляется при расчете вероятностей в области квантовой механики. Свойства квантовой системы описываются математическим выражением, которое называется вектором состояния и, в свою очередь, описывается волновым уравнением Шрёдингера. В общем случае это комплексное число, то есть число, в которое входит корень квадратный из минус единицы (i). Если a и b – обычные числа, то (a + ib), как и (aib), будет комплексным числом. Расчет вероятности, необходимый для определения шанса обнаружить, например, электрон в определенном месте в определенное время, сводится к вычислению квадрата вектора состояния, соответствующего данному конкретному состоянию электрона.
Но вычисление квадрата комплексной переменной не означает просто умножение ее на саму себя. Вместо этого вы должны создать еще одну переменную – зеркальное отражение первой, называемое комплексно-сопряженной величиной, – поменяв знак перед мнимой частью: + станет –, и наоборот. Таким образом, (aib) и (a + ib) – комплексно-сопряженные величины. Для расчета вероятности эти два комплексных числа перемножаются между собой. Но для уравнений, которые описывают изменение системы во времени, акт изменения знака мнимой части и нахождения комплексно-сопряженного числа эквивалентен смене направления течения времени на противоположное! Базовое уравнение вероятности, предложенное Максом Борном еще в 1926 г., содержит явную отсылку к природе времени и к возможности существования двух типов уравнений Шрёдингера, одно из которых описывает опережающие волны, а другое – запаздывающие.
Из этого следует тот замечательный факт, что начиная аж с 1926 г. всякий раз, когда какой-нибудь физик берет комплексно-сопряженное к простому уравнению Шрёдингера и использует его для расчета квантовой вероятности, он, сам того не сознавая, учитывает решение этих уравнений с опережающей волной и влияние волн, движущихся назад во времени. С точки зрения математики у предложенной Крамером интерпретации квантовой механики не возникает никаких проблем, потому что вся математика, вплоть до уравнения Шрёдингера, там в точности такая же, как в копенгагенской интерпретации. Разница здесь, в буквальном смысле слова, только в интерпретации.
Крамер описывает типичную квантовую транзакцию как «рукопожатие» частицы с другой частицей, находящейся в другой точке пространства и времени. Он начинает с идеи электрона, испускающего электромагнитное излучение, которое поглощается другим электроном. Но это описание столь же хорошо работает и для вектора состояния квантового объекта, который начинает в одном состоянии и заканчивает в другом в результате некоего взаимодействия, – к примеру, для вектора состояния частицы, испущенной источником с одной стороны установки эксперимента с двумя отверстиями и поглощенной детектором с другой ее стороны.
Одна из трудностей подобного описания на обычном языке заключается в том, как мы должны трактовать взаимодействия, идущие одновременно в обоих направлениях во времени и потому происходящие мгновенно с точки зрения обычных часов в повседневном мире. Крамер делает это, оставаясь, по существу, вне времени и используя семантическое средство – описание в терминах своего рода псевдовремени. Это не более чем семантическое средство, но оно, безусловно, помогает большинству людей выстроить в своем сознании вразумительную картину.
Работает это примерно так. Когда квантовый объект (излучатель) взаимодействует с окружающим миром, он пытается делать это, порождая поле, которое представляет собой симметричную во времени смесь запаздывающей волны, уходящей в будущее, и опережающей волны, уходящей в прошлое. Ради получения понятной картины мы игнорируем опережающую волну и следим только за запаздывающей волной. Она движется в будущее, пока не встретит другой объект (поглотитель), с которым может вступить во взаимодействие. В ходе взаимодействия второй объект порождает новое запаздывающее поле, которое в точности компенсирует первое запаздывающее поле. В результате в будущем поглотителя никакого запаздывающего поля нет.
Но поглотитель порождает также отрицательную опережающую волну, идущую назад во времени к излучателю по траектории первоначальной запаздывающей волны. У излучателя эта опережающая волна поглощается, вызывая у первого объекта отклик, при котором тот излучает вторую опережающую волну назад в прошлое. Эта «новая» опережающая волна полностью компенсирует «первоначальную» опережающую волну, так что до начала всего этого процесса никакого эффективного излучения, идущего назад в прошлое, также нет. Остается только двойная волна, связывающая излучатель и поглотитель и наполовину состоящая из запаздывающей волны, несущей положительную энергию в будущее, а на другую половину – из опережающей волны, несущей отрицательную энергию в прошлое (по ходу отрицательного времени).
Поскольку минус на минус дает плюс, эта опережающая волна прибавляется к первоначальной запаздывающей волне, как если бы она тоже была запаздывающей волной, идущей от излучателя к поглотителю. Отрицательная энергия и отрицательное время в сумме дают положительную энергию, идущую вперед во времени. Как пишет Крамер:
Можно считать, что излучатель порождает «запросную» волну, которая движется к поглотителю. Затем поглотитель возвращает излучателю «подтверждающую» волну, и транзакция завершается «рукопожатием» через пространство-время.
Но это всего лишь цепочка событий с точки зрения псевдовремени. В реальности это вневременной процесс: все, что происходит, происходит сразу.
Если в этой цепочке событий и присутствует особое звено, – пишет Крамер, – это не то звено, которое завершает цепочку. Это звено в начале цепочки, когда излучатель, получив в ответ на свою запросную волну различные подтверждающие волны, усиливает одну из них, выбранную случайным образом в соответствии с правилами вероятности, причем так, что данная подтверждающая волна воплощается в реальности в виде завершенной транзакции. В конце вневременной транзакции нет слова «когда».
Как это разрешает главную загадку эксперимента с двумя отверстиями? Согласно ТИ, запаздывающая «запросная» волна распространяется через оба отверстия в установке и инициирует опережающую «подтверждающую» волну от детекторного экрана, которая проходит через оба отверстия в установке назад к источнику. Каждая частица случайным образом выбирает, которое из предложений принять, порождая интерференционную картину. Но если в хитроумном варианте эксперимента с отложенным выбором одно из отверстий закрывается после того, как частица отправилась в путь, частица уже «знает» об этом, потому что у подтверждающей волны осталось только одно отверстие, через которое она может пройти обратно для «рукопожатия». Крамер пишет:
Вопрос о том, когда наблюдатель решает, какой вариант эксперимента провести, больше не имеет значения. Наблюдатель определил конфигурацию экспериментальной установки и граничные условия, и транзакция сформовалась соответственно. Более того, тот факт, что событие регистрации предусматривает измерение (в отличие от любого другого взаимодействия), также не имеет более значения, так что наблюдатель не играет в процессе никакой особой роли.
Успех в разрешении загадок квантовой физики достигнут за счет принятия всего лишь одной идеи, которая, казалось бы, противоречит здравому смыслу, – идеи о том, что часть квантовой волны реально может двигаться назад во времени. На первый взгляд это резко противоречит нашим интуитивным представлениям о том, что причина всегда предшествует событиям, которые вызывает. Но при ближайшем рассмотрении оказывается, что в конце концов путешествия во времени, которые необходимы в транзакционной интерпретации, не нарушают повседневных представлений о причинности. Хотя вневременное «рукопожатие» происходит при помощи опережающей квантовой волны, движущейся назад во времени, это никак не влияет на логическую структуру причинности в повседневном мире.
Нас не должно удивлять, что способ обращения со временем в транзакционной интерпретации отличается от того, что подсказывает здравый смысл, потому что в ТИ явным образом включены эффекты теории относительности. Копенгагенская интерпретация, напротив, рассматривает время в классическом ньютоновском ключе, и именно это лежит в основе противоречий, возникающих при попытке объяснить результаты квантовых экспериментов по измерению неравенства Белла с позиций КИ. Если бы скорость света была бесконечна, проблемы исчезли бы: тогда не было бы разницы между локальным и нелокальным описаниями процессов с участием неравенства Белла, а обычное уравнение Шрёдингера точно описывало происходящее – ведь обычное уравнение Шрёдингера, по сути, представляет собой корректное релятивистское уравнение, если скорость света бесконечна.
Как вневременное «рукопожатие» влияет на возможность свободы воли? На первый взгляд может показаться, что все закреплено этими связями между прошлым и будущим. Каждый излученный фотон уже «знает», когда и где он будет поглощен; каждая волна квантовой вероятности, проскальзывающая со скоростью света сквозь щели в эксперименте с двумя отверстиями, уже «знает», какого рода детектор ожидает ее на другой стороне. Мы оказываемся лицом к лицу с образом застывшей Вселенной, в которой ни время, ни пространство не имеют смысла, а все, что когда-либо было или когда-либо будет, просто существует.
Но в наших временны́х рамках решения принимаются на основании подлинной свободы воли без определенного знания об их исходе. Принятие решений (как человеческих, так и квантовых «выборов» вроде тех, что связаны с распадом атома), образующих вневременную реальность микроскопического мира, требует времени (в макроскопическом мире).
Крамер настойчиво подчеркивает, что его интерпретация не делает никаких предсказаний, отличных от предсказаний традиционной квантовой механики, и предлагается в качестве концептуальной модели, которая могла бы, в принципе, помочь людям ясно понять, что происходит в квантовом мире. Это инструмент, который, скорее всего, будет особенно полезен для формирования интуитивных представлений и понимания загадочных без этого квантовых явлений. Но не нужно считать, что транзакционная интерпретация в этом отношении слабее других интерпретаций, поскольку ни одна из них не является чем-то бо́льшим, нежели концептуальной моделью, помогающей нам разобраться в квантовых явлениях, и все они делают совершенно одинаковые предсказания.
В этом и заключается суть. Все Утешения равно хороши, и все они равно плохи. Это, по крайней мере, означает, что вы вольны самостоятельно выбрать, которое из них самое комфортное для вас, и не обращать внимания на остальные.
Назад: Утешение 5 Ансамблевая неинтерпретация
Дальше: Заключение Без поправки на безумие

SEO-LOGIC
Здравствуйте! Вы в поисках исполнителя на продвижение сайта? Команда с 10-летним опытом продвинет Ваш сайт по целевым продающим фразам в Яндекс и Google. Используем актуальные технологии СЕО, которые гарантированно дают эффект. Через 1 месяц работы над сайтом вы уже увидите результат и поймете, что с нами можно и нужно сотрудничать! Присылайте адрес сайта с комментариями, дадим оценку и прогнозы по выводу запросов в ТОП. В ответ просьба писать на почту inetpr(собачка)mail.ru С уважением, Web-студия SEO-LOGIC Дорожим каждым клиентом!