Книга: Удивительная эволюция. Биологическая история Земли в невероятных превращениях и мутациях организмов
Назад: Глава одиннадцатая Мельчайшие частицы и пьяные плодовые мушки
Дальше: Заключение Судьба, случай и неизбежность появления человека

Глава двенадцатая
Человеческая среда

Pseudomonas aeruginosa – это пронырливая бактерия, широко распространенная в окружающей среде и обладающая высокой степенью адаптивности: она способна выживать в нефтяных пятнах и внутри космического корабля. Она заражает растения, нематод, плодовых мушек, рыбу и большинство млекопитающих. У людей она ответственна за заражение ожогов, ран, мочевыводящих путей и глаз.
Особенно данная бактерия любит влажность, и это делает человеческие легкие привлекательным для нее местом. Для большинства людей это не проблема: мы просто выкашливаем их и выплевываем. Но совсем иначе обстоит дело у тех, кто страдает от муковисцидоза. У людей с этим заболеванием очень густая слизь, что затрудняет очищение легких. P.aeruginosa и другие бактерии используют сгустки слизи, образуя так называемую «биопленку», которая проникает в самые укромные уголки и складочки, и ее потом трудно вывести. Результатом этого становятся инфекции, пневмония, поражение легких и часто летальный исход – P.aeruginosa является причиной смерти восьмидесяти процентов больных муковисцидозом.
Примерно в 2000 году врачи пришли к выводу, что в этом процессе участвует не только P.aeruginosa, колонизирующая организмы больных и окапывающаяся в легочных путях.
На самом деле летальный исход частично обусловлен эволюцией бактерии, начавшейся уже после ее колонизации организма, когда она адаптируется к своей новой воздухоносной среде таким образом, что ее сложно уничтожить. И это увеличивает ее губительное воздействие на организм.
Данное открытие изменило способ лечения больных муко-висцидозом. В прошлые времена людей с таким заболеванием собирали вместе, часто отправляя в специально выделенные для этой цели летние лагеря и больничные палаты. Теперь мы понимаем, что это самый худший из возможных вариантов, так как подобные скопления людей способствовали передаче заметно эволюционировавших, смертельно опасных штаммов Р. aeruginosa от одного человека к другому. В наши дни контакт между людьми с муковисцидозом максимально ограничен, особенно в больницах.
А потому сегодня большинство людей с муковисцидозом заражаются P.aeruginosa не от других больных, а из окружающей среды. С точки зрения микроба, каждый человек с этим заболеванием – это возможность, а каждая колонизация P.Aeruginosa – это эволюционно независимое событие. Что, конечно, приводит к теперь уже знакомому нам вопросу: эволюционируют ли штаммы P.aeruginosa похожим образом, когда адаптируются к одинаковым, но не идентичным средам, в данном случае к человеческим легким?
Теоретически ответ на этот вопрос можно получить в лаборатории, подобно многим экспериментальным эволюционным исследованиям в области микробиологии, которые мы обсуждали в последних трех главах. На самом деле такой эксперимент был проведен[111]. Несколько предприимчивых канадских ученых создали искусственные человеческие легкие, изготовив вязкую липкую субстанцию, похожую на слизь в легких у больного муковисцидозом. Затем они поместили P.aeruginosa в чашки Петри, наполненные этой вязкой массой, и стали наблюдать за тем, как бактерии станут адаптироваться.
Как и в большинстве эволюционных экспериментов с микробами, копии популяций P.aeruginosa продемонстрировали схожесть в адаптации к новому окружению. Но все популяции были получены из микробов одинаковой культурной среды в чашках Петри – все они изначально были генетически похожи. А штаммы P.aeruginosa у пациентов с муковисцидозом, вероятно, существенно отличаются друг от друга.
В большинстве случаев возникновения инфекции муковисцидоза мы не знаем природного источника P.aeruginosa.
Очень возможно, что путь колонизации случаен: к примеру, один человек заражается через воду из водопроводного крана, а другой – во время охоты на болотах. Эти штаммы Р. aeruginosa теоретически могут быть адаптированы к самым разным средам и, вероятней всего, различаются генетически. И как мы знаем по предыдущим исследованиям, когда эксперимент начинается с популяций с неоднородной эволюционной и экологической историей, популяции могут адаптироваться своими особенными способами. Так что не стоит ждать того, что разнородные штаммы будут приспосабливаться к разным людям одинаково.
Но одно очевидно: бактерия, заселяющая дыхательные пути больного муковисцидозом, встретит там условия, отличные от условий внешнего мира. Там ей будут противостоять активная иммунная система, борющаяся с захватчиками, и антибиотики, пытающиеся обезвредить ее. Но P.aeruginosa также должна отразить нападки других соперничающих с нею видов бактерий и справиться с липким слоем слизи. Давление естественного отбора в данном случае будет очень сильным.
Кроме того, в дыхательной системе человека много разных сред, от придаточной пазухи носа до бронхиол и альвеол. Как следствие, доступно множество разных ниш, отличающихся друг от друга воздушным потоком, влажностью, содержанием кислорода, поверхностной структурой, обилием слизи и концентрацией антибиотиков. Такое варьирование, а также индивидуальные различия людей могут привести к тому, что разные штаммы P.aeruginosa адаптируются по-разному не только у разных людей, но и внутри отдельного организма.
Как – это, конечно, не теоретический вопрос. Большинство тестирований эволюционной повторяемости в лабораторных условиях проводится из чистого любопытства. Станут ли грибок, взятый с дуба, и вагинальный грибок адаптироваться похожим образом, живя в чашке Петри, наполненной глюкозой, – это может вызвать интерес эволюционных биологов. А вот ответ на вопрос, будут ли бактерии адаптироваться одинаково в легких у людей с муковисцидозом, актуален и имеет важные последствия для нашего мира. Чем более повторяема эволюция бактерий, тем, возможно, легче будет разработать новые препараты и методы терапевтического лечения.
В мире, где отсутствует понятие об этике, ученые намеренно бы стали заражать людей муковисцидозом разными штаммами P.aeruginosa и внимательно отслеживали бы эволюцию бактерии. В реальном мире, конечно же, даже мысль о том, чтобы задумать подобный эксперимент, была бы противоестественной. Но по сути тот же самый цикл происходит, когда больных муковисцидозом атакует P.aeruginosa.
Именно такой природный эксперимент изучали ученые в копенгагенском центре исследования муковисцидоза в начале этого века. В рамках протокола лечения больные приходят в центр ежемесячно, чтобы сдать образцы мокроты, которые затем исследуются на наличие в ней P.aeruginosa. Тем, у кого результат положительный, немедленно назначают курс лечения, который иногда эффективно помогает избавиться от бактерий.
И хотя данные процедуры созданы специально с терапевтическими целями, они также помогли провести плодотворное эволюционное исследование. Работающие в центре врачи-клиницисты определяли инфекцию P.aeruginosa почти сразу после ее возникновения, а затем наблюдали и повторно брали у пациентов образцы на протяжении продолжительного времени вплоть до десяти лет. Сравнивая образцы, взятые у одного пациента в разное время, персонал мог проследить эволюционное развитие бактерии.
Датские исследователи[112] секвенировали полный геном из более чем четырехсот образцов P.aeruginosa, взятых у тридцати четырех детей и подростков. В нескольких случаях штаммы у разных людей были очень похожими, и это говорило о том, что бактерия переходила от одного пациента к другому, несмотря на максимальные усилия врачей предотвратить подобную передачу .
Однако огромное количество геномов бактерий очень сильно отличались друг от друга, указывая на то, что пациенты заразились P.aeruginosa от разных природных штаммов.
И тогда возник вопрос, насколько похожими были эволюционные пути развития разных бактерий.
Сравнивая ДНК P.aeruginosa у определенного пациента в разные периоды времени, исследователи получили хронологию генетических изменений, произошедших после того, как бактерия колонизировала организм этого человека. Всего они обнаружили свыше двенадцати тысяч мутаций, что составляет в среднем более трех сотен на колонизирующий штамм.
Проблема заключалась в том, как разобраться в этом объеме информации. Какие изменения представляли адаптацию к новому окружению – человеческим легким, – а какие были случайными, не имеющими адаптивной значимости? Геном P.aeruginosa содержит более пяти тысяч генов и шести миллионов участков ДНК. И хотя прогресс в изучении бактерии значительный, у нас все равно очень ограниченное понимание того, как работает геном бактерии. Следовательно, у датских ученых было смутное представление о последствиях практически всех обнаруженных ими двенадцати тысяч генетических изменений.
Столкнувшись с этой дилеммой, исследователи испытали приступ вдохновения. Они сделали вывод, что конвергентная эволюция популяций, обитающих в похожем окружении, является ярким свидетельством адаптивной эволюции. Более того, известно, что микробы конвергентно используют одни и те же гены, чтобы адаптироваться к похожим условиям. И если мы хотим определить гены, участвующие в адаптации P.aeruginosa к жизни внутри организма человека, почему бы не попробовать поискать те, которые повторно мутируют у разных больных муковисцидозом?
Ученые составили список всех мутаций, сведя воедино количество штаммов, у которых наблюдались мутации в одном и том же гене. Всего мутации возникли почти в четырех тысячах генов, в трети они происходили во множестве штаммов.
Конечно, два штамма могут приобрести мутации в одном и том же гене совершенно случайно.
Статистический анализ устанавливает порог на пяти: крайне маловероятно, что мутации в одном и том же гене в столь многих штаммах происходили случайно.
Пятьдесят два гена приобрели мутации в пяти и более штаммах. Рекорд поставил один ген, в котором двадцать штаммов – более половины от общего количества – претерпели генетическое изменение. Ученые рассматривали эти пятьдесят два гена в качестве возможных генов-кандидатов на конвергентную адаптацию – «кандидатные патоадаптивные гены, в которых мутации оптимизируют патогенную активность», говоря их языком.
Один из способов проверить эффективность данного метода – посмотреть, поможет ли он определить гены, уже участвовавшие в процессе адаптации P.aeruginosa. И действительно, половина обнаруженных ими генов были теми, которые уже определялись, в особенности гены, участвовавшие в эволюции сопротивляемости антибиотикам и формировании биопленки. Опираясь на конвергенцию, действительно можно установить гены, задействованные в патогенной адаптации.
Многообещающий итог данного исследования в том, что оно помогло определить ряд генов, которые, как считалось ранее, не участвовали в процессе адаптации к муковисцидозу. Биохимическое функционирование[113] семи этих генов уже известно, так что теперь исследование сконцентрировано на том, как изменение данных функций путем мутации может позволить P.aeruginosa адаптироваться к организмам больных муковис-цидозом. Кроме того, девятнадцать конвергентных генов были «терра инкогнита», их функционирование оставалось тайной (что неудивительно, ведь мы не знаем, как работает почти половина генов P.aeruginosa). Понятно, что если мы не в курсе, что делает ген, мы не имеем представления о том, каким образом изменения в этом гене приведут к адаптации к окружению в виде человеческих легких. Выяснить, как работают эти гены, несомненно, является главным приоритетом.
Как бы я хотел завершить этот рассказ заголовком «Конвергентная эволюция спасает пациентов с муковисцидозом»… Но говорить об этом пока еще рано. Тем не менее ясно, что изучение конвергентной эволюции – предмет интереса не одной только науки: эти знания могут помочь нам разобраться, как патогенные (вызывающие заболевания) организмы атакуют людей, и, возможно, понять, какие терапевтические меры нам предпринять, чтобы бороться с ними.
В то же время результаты данного исследования касаются вопроса эволюционной предсказуемости и контингентности. Большинство идентифицированных генов претерпели мутации меньше, чем у половины из тридцати четырех пациентов. Более того, делая анализ на основе конвергенции, не смогли определить адаптивные мутации, произошедшие только у одного или нескольких пациентов. Общая повторяемость, с помощью которой P.aeruginosa адаптируется к организмам больных муковисцидозом, сравнительно низкая. Предстоит выяснить, является ли эта неповторяемость результатом случайного характера мутаций, различного генетического состава разных инфицирующих штаммов, биологических различий среди пациентов или адаптации к разным частям легких.
Еще одно исследование дало[114] очень похожие результаты. Burkholderia dolosa был неизвестным для науки микробом, когда он поразил пациентов с диагнозом муковисцидоз из бостонской больницы в начале 1990-х, заразив в конечном итоге тридцать девять человек. Точно так же, как в случае с исследованием P.aeruginosa в Дании, повторные взятия образцов у одних и тех же пациентов позволили исследователям проследить генетические изменения микроба внутри каждого организма.
И так же как в исследовании P.aeruginosa, там было большое количество мутаций. Учитывая то, что бактерия плохо изучена, вычислить последствия большинства изменений было сложно. А потому команда, возглавляемая Тами Либерман из Гарвардской медицинской школы, стала искать гены, повторно мутировавшие у большинства пациентов с муковисцидозом. Те семнадцать генов, которые они определили, включали одиннадцать генов, которые связаны с сопротивляемостью антибиотикам и развитием заболевания. Но о действии трех из множества мутировавших генов ничего не было известно, а другие три гена никогда прежде не ассоциировались с развитием легочных болезней.
Если бы не было этой информации, то никто бы и не подумал о том, что они причастны к заражению Burkholderia. В настоящее время исследуются несколько мутаций с целью понять, как они становятся патологическими.
И так же как в исследовании P.aeruginosa, даже у половины пациентов мутировало относительно мало генов, и, следовательно, в целом процент предсказуемости был снова низким. Исследование концентрировалось на генах, конвергентно мутировавших у множества пациентов, и оно не смогло определить адаптивные изменения, которые произошли только у одного или нескольких пациентов.
Оба этих исследования проводились на пациентах с диагнозом муковисцидоз, потому что они более подвержены инфекциям. Стандартный мониторинг обеспечивает исследователей образцами на ранних стадиях заражения, что позволяет им изучать, как бактерия адаптируется со временем. Однако получить множественные образцы от каждого пациента для большинства заболеваний невозможно. В большинстве случаев такие образцы даже не пригодятся, так как многие бактерии поступают в организм своей самой последней жертвы с уже эволюционировавшими ранее патогенными адаптациями.
Альтернативный метод определения конвергентных генетических изменений заключается в том, чтобы следовать примеру эволюционных биологов и выстраивать филогенез с целью изучить эволюцию признака. Сравнивая опасные штаммы с их безвредными родственниками, врачи-микробиологи ищут похожие изменения, эволюционировавшие множество раз в патогенных штаммах.
Наиболее часто ученые применяли данный подход, чтобы изучить генетическую основу сопротивляемости лекарственным препаратам. К примеру, Mycobacterium tuberculosis, бактерия, ответственная за туберкулез, много раз вырабатывала устойчивость к антибиотикам. Международной команде ученых[115] удалось секвенировать геном из ста двадцати трех штаммов М. tuberculosis, сорок семь из которых демонстрировали сопротивляемость антибиотикам, используемым для лечения туберкулеза. Как и ожидалось, филогенез подтвердил, что не все антибиотикорезистентные штаммы были близкородственными. Скорее сопротивляемость антибиотикам эволюционировала конвергентно много раз.
В одном лишь образце исследователи определили почти двадцать пять тысяч позиций ДНК, в которых происходила мутация как минимум одного штамма. Далее ученые сконцентрировали свое внимание на мутациях, которые эволюционировали множество раз, причем исключительно в тех штаммах, которые были резистентны. Крайним проявлением была мутация, которая эволюционировала независимо в восьми резистентных и ни в одном нерезистентном штаммах.
Исследование имело бешеный успех. Было обнаружено, что в одиннадцати областях генома M.tuberculosis – либо в генах, либо в ДНК между генами – ранее происходили мутации, породившие сопротивляемость антибиотикам. В процессе исследования были установлены все одиннадцать областей. Но, кроме того, обнаружилось еще тридцать девять областей, которые прежде не ассоциировались с возникновением туберкулеза. Одиннадцать находились в тех генах, чья функция уже известна. Несколько этих генов участвуют в определении проницаемости стенок клеток бактерии. Это говорит о том, что подобные изменения могут каким-то образом иметь отношение к резистентности антибиотикам: возможно, они затрудняют антибиотику вход в клетку бактерии. Остальные двадцать восемь изменений происходили в генах с неизвестным функционированием. В настоящее время данное исследование продолжается: его цель – лучше разобраться в том, как эти изменения приводят к сопротивляемости антибиотикам и, в конечном итоге, как можно предотвратить или противодействовать подобной эволюции.

 

СТЕПЕНЬ КОНВЕРГЕНЦИИ в этих исследованиях была далеко не всеохватной. Даже в самых исключительных случаях конвергенции было задействовано едва ли более половины штаммов; большинство конвергентно мутировавших генов встречались лишь у явного меньшинства штаммов. На самом деле большинство генов мутировали только в одном штамме. В споре конвергенция против контингентности эти данные, похоже, безоговорочно в пользу Гулда. Для практикующих врачей биомедицинского направления в данном споре упускается главное: доля предсказуемости все-таки лучше ее полного отсутствия. Даже если не все микробы адаптируются с помощью изменений к одному и тому же гену, тот факт, что часть микробов все же эволюционирует одинаково, является важной информацией.
Изучив механизм адаптации, мы разработаем медицинские контрмеры, чтобы применить их в тех случаях, когда задействован центральный ген. Беря образцы у пациента, мы сможем быстро секвенировать геном микроба и выяснить, присутствует ли в инфицирующем штамме конкретное генетическое изменение. Если да, тогда спускайте терапевтических «борзых». Если нет, ищите другие возможные причины. Рой Кишони, чья работа в этом смысле имела главное значение, высказался по существу, написав (совместно со студентом-магистрантом Адамом Палмером) следующее: «Даже скромная степень предсказуемости[116] может помочь улучшить терапевтические результаты, обеспечив возможность выбора препаратов, выбора между монотерапией или комбинаторной терапией и режима дозировки для определения основанных на генотипе методов лечения, которые наиболее действенны в случае эволюции резистентности».
Это один аспект разрекламированной «персонифицированной медицины», в которой терапевты способны определять конкретную причину болезни пациента, а затем лечить ее соответственно. И факт того, что некоторые микробные патогены эволюционировали конвергентно, делает данный подход гораздо более обоснованным.

 

СРАВНИТЕЛЬНЫЕ ИССЛЕДОВАНИЯ патогенных штаммов – не единственный метод, с помощью которого ученые пытаются понять эволюцию микробов и ее влияние на здоровье человека. Эволюционные эксперименты, столь ценные для улучшения нашего понимания эволюции микробов, также используются для поиска предсказуемых способов, с помощью которых микробы адаптируются к нападению на нас и отражают наши контрмеры.
В большинстве этих исследований эволюция резистентности к антибиотикам изучается на основе общего подхода, впервые предложенного Ленски, Рейни, Травизано и другими учеными: противостоять микробам с помощью различных средств и наблюдать за тем, как они адаптируются. На самом базовом уровне данные исследования ищут повторяемые эволюционные модели. Если у микробов раз за разом будет развиваться схожая резистентность, тогда исследователи смогут сконцентрировать свои усилия на том, чтобы воспрепятствовать этой конкретной эволюционной реакции.
Очень ценным примером подобной работы является эксперимент, осуществленный в лаборатории Кишони в Гарвардской медицинской школе, в том же самом месте, где проводилось исследование Burkholderia dolosa. В этом эксперименте нашего старого знакомого[117] E.coli поместили в специально сконструированные камеры для выращивания и подвергли воздействию одного из трех антибиотиков – хлорамфеникола, доксициклина и триметоприма, и эволюционная реакция длилась на протяжении двадцати дней (около трехсот пятидесяти генераций E.coli). Каждое воздействие повторялось по пять раз.
Целью исследования было проследить эволюцию резистентности к антибиотикам. Изначально бактерии, которые все получены от одного предка, не были резистентными и очень плохо росли в присутствии антибиотиков. Но очень скоро у них стала развиваться резистентность, и скорость роста увеличилась.
Популяции микробов продемонстрировали очень похожие модели адаптации к препаратам. Пять реплицированных популяций стабильно увеличивали свою резистентность ко всем трем антибиотикам – почти 1600-кратное увеличение роста в популяциях, подвергаемых воздействию хлорамфеникола. В конце эксперимента ученые секвенировали геномы клеток каждой из пятнадцати популяций и сравнили их с геномом предковой популяции.
Как и в случае с большинством предыдущих экспериментальных исследований микробной адаптации, инициированной идентичными штаммами, пять популяций, подвергшихся воздействию триметоприма, эволюционировали очень похоже. Принцип действия триметоприма – в обезвреживании фермента дигидрофолатредуктазы (DHFR) в E.coli. Таким образом, неудивительно, что контрстратегия E.coli заключается в том, чтобы видоизменить DHFR так, чтобы препарату было сложно распознать ген и усилить выработку в нем фермента. Почти все изменения, происходившие в пяти популяциях, наблюдались в DHFR.
Всего в этом гене было обнаружено семь различных мутаций: одна из них происходила во всех пяти популяциях, другая – в четырех, и все, за исключением одной, случились, как минимум, в двух популяциях. Если не считать мутаций в гене DHFR, случились лишь три дополнительные, каждая в разном гене и только в одной популяции.
Учитывая высокий уровень повторяемой эволюции определенных мутаций, исследователи секвенировали образцы DHFR из каждой популяции в каждый день эксперимента и обнаружили устойчивый порядок возникновения мутаций. Причем мутации одинаковые или похожего действия неизбежно предшествовали другим. Иными словами, эволюция резистентности триметоприма в E.coli крайне повторяема. Что касается популяций, подвергнутых воздействию двух других антибиотиков, то здесь результаты были совершенно другими. Даже несмотря на то что степень резистентности, возникшей среди пяти репликатов к каждому препарату, к концу эксперимента была схожей, изучение генетических изменений выявило преимущественно разные мутации, возникшие в каждой популяции.
Почему E.coli эволюционирует повторно похожим образом: реагирует на один препарат, но ведет себя непредсказуемо в отношении двух других, неясно. Тем не менее результаты указывают на то, что разработать общие решения проблемы резистентности к антибиотикам будет легче для триметоприма, чем для двух других препаратов.

 

РАНЕЕ Я УПОМИНАЛ о том, что некоторым ученым не нравится покидать стерильные стены лаборатории, когда дело касается проведения эксперимента. Полевые исследования – это слишком много шума и неконтролируемых, сбивающих с толку переменчивых факторов. Данная тревога особенно обоснована в отношении конвергентной эволюции: если среды неодинаковы, тогда отсутствие конвергенции может быть просто результатом разного давления отбора. В ходе недавно проведенного исследования на речной колюшке было обнаружено именно это. Поначалу ученые из Техасского университета были озадачены отсутствием конвергенции среди популяций, которые независимо друг от друга колонизировали разные протоки.
Но когда они изучили их лучше, причина стала ясна: разница в качестве воды и растительности в реках могла определять фенотипические различия и отсутствие конвергенции[118] среди популяций рыб. Конечно, похожее объяснение – небольшая разница в среде обитания – могло оправдывать отсутствие конвергенции в штаммах M.tuberculosis P.aeruginosa, населяющих организмы разных людей, или, кстати, любой случай неконвергенции. Некоторые ученые с недоверием относятся[119] к отсутствию конвергентных реакций в контролируемых лабораторных исследованиях. Возможно, даже самого легкого отличия одной пробирки от другой – доли градуса температуры или чуть большего количества солнечного света, поступающего из ближайшего окна, – может быть достаточно для того, чтобы привести к разному давлению отбора и, следовательно, к неконвергентной адаптации.
Но эти лабораторные скептики высказывают более глубокую критику подхода к изучению эволюционной предсказуемости с помощью конвергентной эволюции, поднимая тем самым важный вопрос, который я до этого момента обходил. До настоящего времени я употреблял термины «повторяемость» и «предсказуемость» по большей части взаимозаменяемо. Но действительно ли это одно и то же? И если быть точнее, правильно ли изучать эволюционную предсказуемость на том лишь основании, что конвергентная эволюция это явление повторяемой эволюции?
Кто-то считает, что нет. Так, к примеру, пара европейских ученых написали, что повторяемость – это «слабая форма[120] предсказуемости, так как в детерминистской природе данного процесса можно убедиться только по прошествии времени».
Другими словами, верный прогноз происходит априори, он основывается на детальном понимании изучаемой системы, а не просто на наблюдении за тем, что происходит повторно, и предсказании, что это случится снова.
Этих ученых не удовлетворило бы наблюдение за тем, как у слонов, чья среда обитания ограничена островом, повторно эволюционирует маленький размер туловища. Они бы предпочли иметь возможность предсказывать эволюционное уменьшение размеров на основе понимания того, как островная среда влияет на эволюцию размера тела.
Даже в лабораторных эволюционных экспериментах одних лишь собранных данных о том, что размер клетки всегда увеличивается или что один и тот же ген включает мутации, когда популяции сталкиваются с одинаковыми условиями, недостаточно. Они хотят иметь возможность формулировать ожидаемый итог еще до начала эксперимента.
На макроскопическом уровне ученые делают такие прогнозы постоянно. Данный подход на основе первопричины это именно то, что проделывал Дейл Расселл, рассуждая о гипотетическом динозавроиде. Исходя из своего понимания анатомии, он смог предсказать, как процесс отбора более крупных мозгов у теропода приведет к другим анатомическим изменениям, породив в конечном итоге организм, внешне очень похожий на человеческий.
Исследователи в области физиологии и биомеханики уже давно применяют гораздо более изощренные методы для изучения взаимосвязи между анатомическим строением и функционированием организма. Какова оптимальная форма крыла птицы, которой нужно резко маневрировать? Короткая и срезанная, как у реактивного истребителя. А каковы оптимальные пропорции тела для жизни в холодном климате? Приземистая фигура с короткими конечностями, чтобы минимизировать площадь поверхности тела и, следовательно, уменьшить потерю тепла.
Такие прогнозы строятся независимо от того, что в действительности эволюционировало. Впоследствии они могут быть перепроверены природой. В отдельных случаях – как в тех двух, что я перечислил, – прогнозы оправданы: естественный отбор, похоже, и вправду поощряет оптимальные решения. В других случаях теория и природа не согласуются друг с другом: либо теория подводит, либо какое-то ограничение не позволяет естественному отбору выработать оптимальное решение. Что это за ограничения – вопрос интересный сам по себе. Возможно, не возникает подходящих мутаций или вмешиваются какие-то негативные побочные факторы (невозможно одновременно оптимизировать все). А может быть, решения просто нет: так, к примеру, ни один организм не использует ядерного деления в качестве источника энергии, а биологические структуры, напоминающие колеса, крайне редки.
Сложнее делать прогнозы на основе первопричины, когда имеешь дело с микробами, потому что биохимическое и молекулярное функционирование этих клеток еще не до конца изучено. И эта трудность лишь усугубляется, когда работаешь на генетическом уровне, как делает сейчас большинство микробиологов, потому что функция большинства генов остается тайной. Если взять все гены, которые были определены при изучении бактерий, вызывающих туберкулез и муковисцидоз, чье функционирование совершенно неизвестно, то в данном случае было бы весьма сложно сделать предварительные прогнозы относительно того, как они могут участвовать в адаптивной эволюции микробных патогенов.
Конечно, существуют исключения. Одним из них является ген, ответственный за устойчивость к антибиотикам у E.coli. Этот ген регулирует синтез ферментов бета-лактамаз, которые со временем, эволюционируя, атакуют такие антибиотики, как пенициллин, ампициллин, цефотаксим и многие другие, делая их неэффективными. Именно поэтому данный ген и вырабатываемый им фермент тщательно изучались, и теперь ученые понимают их гораздо лучше, чем большинство микробных генов и их производные.
Недавно исследовалось многообразие мутаций[121], происходящих в гене. С помощью своих молекулярных приемов ученые заставили клетки E.coli произвести десять тысяч различных мутаций. Они продуманно выбрали из них тысячу и оценили их влияние на устойчивость к антибиотикам, просчитав, какое их количество требуется, чтобы убить клетку. Какие-то мутации никак не влияли, несколько имели катастрофические последствия, а большинство обладали средним негативным воздействием.
Благодаря тому что бета-лактамазы так хорошо изучены, исследователи смогли установить, как каждая мутация влияла на функционирование фермента в плане характера изменения формы молекулы, уровня ее активности и степени стабильности. Затем они смогли сопоставить эти изменения с влиянием на устойчивость к антибиотикам и обнаружили здесь сильную взаимосвязь: более заметные изменения этих свойств совпадали с более существенными изменениями в степени устойчивости к антибиотикам. Другими словами, исследователи смогли начать с мутации, вычислить, как она видоизменяла фермент, а на основе этих изменений точно подсчитать, как это повлияет на устойчивость к антибиотикам.
Именно такой подход позволяет ученым предсказать, как микроб типа E.coli станет эволюционировать, столкнувшись с новыми условиями обитания.
Но примеры подобного рода – чаще всего исключения, чем правило. В большинстве случаев мы не знаем, какие гены ответственны за адаптацию. И даже зная, какие гены задействованы, мы зачастую слабо себе представляем, как они работают, не говоря уже о влиянии конкретных мутаций. Возможно, однажды мы сможем рутинно предсказывать, какие мутации будут эволюционировать адаптивно, но этот день наступит еще не скоро.
Не имея исчерпывающей информации, ученые иногда делают свои прогнозы на основе неполных данных. Например, исследователи из Гарварда отметили, что один штамм E.coli способен выдерживать дозы антибиотика цефотаксима в сто тысяч раз больше, чем требуется, чтобы нейтрализовать нерезистентные штаммы. Генетический анализ показал, что такой высокий уровень резистентности был результатом пяти приобретенных мутаций в гене, вырабатывающем бета-лактамазы.
Ученые сконцентрировали свое внимание на этих пяти мутациях и выяснили, приведет ли неизбежно естественный отбор к появлению пятикратно мутировавшего штамма, если изначально будет нерезистентный штамм с отсутствующими у него мутациями. Но вместо того, чтобы проводить эволюционные эксперименты, они создали штаммы E.coli со всеми возможными комбинациями пяти мутаций. Для каждого штамма они измерили устойчивость к цефотаксиму и задались вопросом: «Существует ли для каждого штамма такая мутация, которая способна усилить резистентность?» Так, к примеру, если взять штамм с двумя мутациями, то усилится ли его резистентность, если добавить еще одну? Для всех штаммов ответ был положительный. Все штаммы с одной мутацией в конечном итоге приобретали вторую, а все штаммы с двумя мутациями – третью и так далее. Вне зависимости от порядка возникновения мутаций неизбежным итогом становился штамм с пятью мутациями. Авторы исследования сделали вывод, что «пленка жизни[122] может быть в значительной степени воспроизводима и даже предсказуема».
Данное исследование – первоклассное и всеобъемлющее – привлекло к себе повышенное внимание как пример эволюционного детерминизма на генетическом уровне. Но была одна проблема: исследование ограничивалось только теми мутациями, которые были обнаружены в ультрарезистентном штамме. А как насчет других мутаций? Могли ли они помешать работе?
Чтобы выяснить это, группа датских ученых провела эволюционный эксперимент, который подразумевал, что сфера мутаций определяется любыми возникшими в ходе эксперимента явлениями, а не ограничивалась пятью центральными мутациями из предыдущего исследования. Если предоставить мутациям полную свободу[123], эволюционирует ли тогда суперштамм? Датская команда осуществила свой эксперимент теперь уже знакомым нам способом, подвергая двенадцать изначально похожих популяций воздействию препарата на протяжении нескольких генераций и высчитывая степень адаптивной эволюции.
Устойчивость к цефотаксиму возрастала по ходу эксперимента, но ее степень варьировалась: семь популяций стали заметно более резистентными, чем другие пять. Ученые секвенировали геномы каждой популяции и обнаружили, что одни и те же три мутации – три из пяти – эволюционировали преимущественно в одинаковом порядке в семи высокорезистентных популяциях. И наоборот, минимум одна из этих трех мутаций не смогла эволюционировать в оставшихся пяти популяциях.
Гарвардское исследование суперштамма продемонстрировало, что одна конкретная мутация – G238S – единственная наиболее действенная в плане передачи резистентности к цефотаксиму. В датском исследовании у всех семи «экстремистов» сразу же возникла G238S, так же как и у трех из отстающих популяций.
Датские исследователи внимательнейшим образом изучили две популяции, у которых не возникло G238S, и определили первые приобретенные ими мутации – R164S в одной из популяций и А237Т в другой. Ни одна из этих мутаций не возникла в остальных десяти популяциях. Более того, так как ни одной из этих мутаций не было среди пяти обнаруженных в суперрезистентном штамме, они не были включены в исследование гарвардской команды.
Тогда датчане начали эксперимент заново, но в этот раз с E.coli, которая включала одну из этих мутаций, пять популяций с R164S и пять с А237Т. И в очередной раз устойчивость к цефотаксиму со временем возрастала, но у всех десяти популяций в конечном итоге уровень резистентности был существенно ниже, чем у семи самых резистентных популяций из первого эксперимента. Примечательно, что ни у одной из этих популяций не возникла мутация G238S, но они действительно включали многие другие, не наблюдаемые у популяций с G238S.
Почему G238S несовместима с R164S и А237Т, не до конца ясно, но похоже, что эти мутации заставляют фермент сгибаться различными способами. Как только первая мутация меняет модель изгиба, вторая вызывает разрушающие перемены в новой конфигурации, и таким образом мутации, будучи поощряемыми по отдельности, не могут проявиться в комбинации. Это похоже на оригами: если ты начнешь делать слона, то уже не сможешь изменить направление по ходу и сделать рыбку.
Датское исследование – это прекрасный образец исторической контингентности, случайное событие, которое радикальным образом формирует последующий эволюционный исход. Популяции, у которых сначала случайно проявляются мутации G238S, могут пойти в одном направлении, и у них часто наблюдаются высокие уровни резистентности. Но те, у которых сначала возникают другие мутации, уже не идут по этому пути: как только они появились, мутация G238S уже невыгодна. И тогда адаптивная эволюция идет по другому пути, который приводит к менее ценному и менее резистентному пункту назначения.
Эксперимент гарвардской команды не предусматривал изначально поиск других генов, а потому исследователи не обнаружили то, насколько адаптация к цефотаксиму непредсказуема.
Разница в подходах и результатах гарвардского и датского исследований ярко демонстрирует, почему так сложно заранее прогнозировать ход эволюции, работая на генетическом уровне. Геном слишком крупная и сложная структура, чтобы выделить все относящиеся к нему мутации и предсказать, какие из них повлияют друг на друга и каким образом. Сам факт, что определенный набор мутаций ведет к высокоадаптивному результату, вовсе не означает, что эти мутации обязательно проявятся. Часто существует множество различных способов породить одинаковый генотип (вспомните шестнадцать разных генетических путей появления сморщенного заполнителя в P.fluorescence) и столько же различных решений одной и той же проблемы условий обитания. Вычислить заранее, какая из мутаций вероятней всего произойдет, а какая нет, почти во всех случаях будет за гранью наших возможностей.
Много очень умных людей работают сейчас над этой проблемой как на молекулярном, так и на теоретическом уровне, так что, возможно, наша способность давать завтрашний эволюционный прогноз, как и прогноз погоды, улучшится. Но сейчас наши возможности ограничены. А это, в свою очередь, означает, что лучший способ предсказать, что эволюционирует – посмотреть на то, что произошло в прошлом, либо в ходе эволюции, либо в результате эволюционных экспериментов.

 

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ микробной адаптации указывают на то, что определенная доля предсказуемости существует, и что эта повторяемость может стать основой для развития контрмер. Конечно, микробы не единственные современные организмы, эволюционирующие нам во вред.
Сорняки, заполоняющие наши лужайки и сельскохозяйственные угодья, насекомые и грызуны, поедающие наш урожай, комары, разносчики болезней – всех их объединяет одно: они переиграли нас в наших попытках контролировать их. И так же, как и в случае с микробами, это дается нам ценой миллиардов долларов и десятков тысяч жизней.
Эволюция резистентности к пестицидам (сюда же можно отнести инсектициды и гербициды) имеет множество параллелей с эволюцией устойчивости к антибиотикам. Подобно большинству микробов, у сельскохозяйственных вредителей появилось широкое разнообразие способов противостоять нашему химическому арсеналу, включая изменения в поведении, которые минимизируют контакт с пестицидами; вариации наружной поверхности шкуры, не позволяющие пестицидам проникнуть внутрь. А также они освоили приемы превращать пестицид во что-то еще, изолировать его внутри тела как ненужный орган или быстро выводить его из организма. Либо могут происходить модификации в молекулярной структуре, спровоцированные пестицидом. Из-за этой массы возможных вариантов популяции одного вида, оказываясь под воздействием определенного пестицида, часто адаптируются по-разному.
С другой стороны, многие пестициды являются коммерчески успешным продуктом, потому что воздействуют на одни и те же биохимические механизмы, которые есть у многих вредителей. В результате у многих видов развились одинаковые, зачастую идентичные, способы сорвать эти атаки. Так, к примеру, у некоторых видов комаров[124] наблюдается одинаковое изменение ДНК с целью адаптироваться к инсектициду диэльдрину. Точно так же более чем у тридцати различных видов насекомых[125], включая мух, блох, тараканов, мотыльков, трипсов, тли, жуков и поцелуйных клопов, возникло одинаковое изменение в ДНК с целью выработки устойчивости к пиретроидам.
И точно так же, как в случае с микробами, когда у вредителей возникают конвергентные механизмы резистентности к пестицидам, наша способность ответно воздействовать на них усиливается. И здесь хорошим примером являются пестициды, полученные из бактерии Bacillus thuringiensis (Bt).
По неизвестным причинам этот почвенный микроорганизм вырабатывает белки, которые смертельно опасны для насекомых. Ученые определили эти белки и применили их в качестве инсектицидов. Изначально эти инсектициды распыляли на зерновые культуры, но с конца 1990-х несколько видов зерновых стали генно-модифицированными и вырабатывают белки сами. Количество фермерских угодий[126], засеянных зерновыми культурами, произведенными по биотехнологиям, в настоящее время необычайно огромно: в 2013 году общая площадь во всем мире составляла двести миллионов акров, включая две трети всего зерна в Соединенных Штатах и свыше трех четвертей хлопка в основных странах-производителях.
В лабораторных экспериментах резистентность к токсинам Bt возникла сразу, в меньшей степени в полевых исследованиях. Эти токсины связывают белки в пищеводе насекомых. Резистентность развивается преимущественно за счет мутаций, которые участвуют в выработке этих связывающих белков. К примеру, устойчивость к одному типу токсина[127] эволюционировала во многих популяциях трех видов гусениц в результате мутаций в гене, который вырабатывает связывающий токсин белок под названием кадгерин. И точно так же семь видов гусениц[128] конвергентно эволюционировали, выработав резистентность за счет мутаций, разрушающих в пищеводе белок, который транспортирует молекулы через мембраны.
Вывод о том, что мутации в нескольких генах эволюционируют повторно, имеет важное значение для осуществления противодействия эволюции резистентности несколькими способами. Во-первых, популяции вредителей можно регулярно отсеивать, выискивая появление специфических резистентных мутаций. Эти фильтры включают методы определения мутаций, найденных у лабораторных или полевых популяций. Когда такие аллели удается определить рано, то можно предпринять специальные меры, чтобы не допустить широкого распространения мутации.
Если говорить в более широком смысле, то факт обнаружения того, что в популяциях повторно и одинаково эволюционирует резистентность, может подстегнуть попытки модифицировать ген Bt в зерновых культурах, чтобы обойти этот механизм. Так, когда ученые обнаружили, что у насекомых развивается резистентность за счет блокирования процесса связывания с кадгерином, они модифицировали токсин Bt таким образом, чтобы он связывался с другими белками, полностью обходя кадгерин.
Это вовсе не означает, что конвергенция – чудодейственное средство. Даже в случаях, подобных случаю с Bt-токсином, фильтры эффективны только для поиска ранее определенных конвергентных мутаций. Другие мутации в том же самом гене могут остаться необнаруженными, а тем более там, где задействованы другие гены и резистентные механизмы (на самом деле ранее сообщалось о фактах обнаружения неконвергентно возникших в других генах мутаций, так же как и о многих прочих механизмах Bt-резистентности). А в случае со многими другими пестицидами знание того, что резистентность эволюционировала конвергентно, не гарантирует появления новых методов изучения.

 

НАШЕ ВЛИЯНИЕ НА ОКРУЖАЮЩУЮ СРЕДУ выходит далеко за рамки применения антибиотиков и пестицидов. Мы меняем мир бесчисленными способами. Иногда проблемы, которые мы создаем, слишком велики, и тогда происходит сокращение и исчезновение разных видов. Но во многих других случаях в игру вступает естественный отбор, и виды начинают адаптироваться к новым условиям обитания.
В силу изменений, вызванных человеческой деятельностью, конвергентная эволюция была впервые описана как реакция на загрязнение нами окружающей среды. Адаптация растений к почве, зараженной тяжелыми металлами, и мотыльки с темным окрасом в загрязненной местности были самыми первыми примерами. И эти примеры постоянно накапливаются. Один хорошо изученный случай[129] связан с маленькой рыбкой, обитающей в морских лиманах вдоль атлантического побережья Северной Америки. Атлантическая гетерандрия, дальний родственник вида, изучаемого в Тринидаде Эндлером и Резником, способна выживать в местах с повышенным уровнем загрязнения, где могут жить лишь немногие другие виды. Команда, возглавляемая учеными из Калифорнийского университета, изучила четыре популяции, которые стойко переносили загрязнение (они обитали вдоль всего Восточного побережья) и установили, что у них независимо друг от друга видоизменилась схожая физиология, что сделало их нечувствительными даже к самым высоким уровням загрязняющих веществ, включая диоксин. Геномный анализ указывал на то, что мутации в одном и том же наборе генов играли важную роль в этой адаптации во всех четырех популяциях.
Люди также оказывают[130] сильное селективное давление, когда изымают животных из их популяций ради коммерческих или спортивных целей.
В большинстве случаев охотники выбирают себе жертву, исходя из определенных ее качеств. Результатом становится сильный естественный отбор, направленный против особей с этим качеством. И в большинстве случаев у популяций конвергентно эволюционируют похожие реакции. Так, трофейные охотники предпочитают самые крупные и роскошные экземпляры. А потому неудивительно, что у большинства видов со временем стало меньше украшающих элементов и защиты: у толсторогих баранов, черных антилоп и оленей уменьшились рога, а у слонов уменьшились бивни. В отдельных популяциях слонов присутствует множество особей, у которых полностью отсутствуют бивни.
То же самое явление наблюдается и в рыболовстве. В основном ловля рыбы определяется ее размером: в большинстве своем сети вылавливают крупную рыбу, а мелкая уходит. Итогом этого становится селективное предпочтение в пользу малышей. Как следствие, максимальный размер многих различных видов рыбы это всего лишь часть того, что было раньше. Так, к примеру, вес самой крупной атлантической трески[131] в канадском заливе Святого Лаврентия уменьшился с семидесяти фунтов в начале 1970-х до сегодняшних двенадцати фунтов. Треска, обитающая у побережья Массачусетса, примерно такого же маленького размера, а в конце XIX века там вылавливали рыбу весом более двухсот фунтов. Это серьезная экономическая проблема, потому что количество рыбы в популяции не увеличивается, а это компенсировало бы более мелкий размер особей. В итоге объемы вылова рыбы неизбежно падают.
Возникает важный вопрос: вернутся ли популяции к тем показателям, что демонстрировали их предки, если мы восстановим условия их обитания, доведя их до изначального состояния? В некоторых случаях это происходит, как, например, у пяденицы березовой, которая вернула свой прежний окрас, как только исчезло загрязнение воздуха.
Однако в других случаях реакции бывают менее последовательными. Как только сокращается объем вылова рыбы и охоты, которые основаны на принципе отбора по размеру, у рыб в целом повторно не эволюционирует более крупный размер тела, а у толсторогих баранов не эволюционируют более крупные рога. Существует ряд возможных объяснений этой эволюционной асимметрии. Вероятно, естественный отбор в пользу крупного размера в отсутствие вылова и отстрела гораздо слабее по сравнению с отбором мелкого размера в этом процессе.
Либо, как вариант, вылов и отстрел могли привести экосистему в новое состояние, при котором крупный размер уже не является предпочтительным. К примеру, другие виды могли расширить свои популяции с целью завладеть ресурсами, ранее использовавшимися пойманными видами. В этом случае давление отбора может постоянно меняться даже после полного прекращения вылова и отстрела.
Так же как и в случае с пестицидами и антибиотиками, конвергентная эволюция лишь частично объясняет, как будут реагировать виды на меняющееся окружение и что мы можем сделать, чтобы улучшить ситуацию. Тем не менее когда это происходит, конвергенция четко обозначает проблему и побуждает к разработке общих контрмер. На самом деле, чтобы предотвратить уменьшение размера рыбы, ученые придумали ряд методов, включая разработку новых сетей, когда очень крупная рыба выбрасывается обратно в море с целью сохранить ее генный материал в рамках популяции. Или создание зон, где запрещена ловля и крупная рыба может чувствовать себя вольготно и передавать свои гены в те зоны, где ведется ее лов.
Нет никаких сомнений в том, что по мере того, как ученые все более подробно изучают, как виды реагируют на глобально меняющийся мир, будут обнаруживаться новые случаи конвергентной эволюционной реакции. Самой болезненной темой, безусловно, является проблема глобального потепления. К настоящему времени лишь немногие исследования убедительно продемонстрировали эволюционную адаптацию в связи с изменением климата, но эта ситуация стремительно меняется. Я не слышал о примерах конвергенции в природных популяциях, но в одном семилетием экспериментальном исследовании, проводившемся на червях, были отмечены повторявшиеся генетические изменения, связанные с потеплением почвы.
Я уверен, что это всего лишь верхушка айсберга, и скоро мы обнаружим многочисленные физиологические, поведенческие и анатомические изменения, конвергентно эволюционировавшие у самых незащищенных видов.
И сложной задачей в данном случае будет применить данные, собранные по крупицам на основе случаев конвергенции, не с целью предотвратить эволюцию, а чтобы усилить ее эффективность. Заранее предсказать, какую форму примут подобные вмешательства, трудно, но они могут повлечь за собой включение особо эффективных генов в те популяции, которые в них нуждаются, меняя среду обитания так, чтобы усилить часто возникающие поведенческие и физиологические адаптации.
Если говорить в общем, то мы стоим на пороге новой эры, когда у нас появляется беспрецедентная способность направлять эволюционный процесс. Развитие новых молекулярных технологий (самая последняя и самая важная это – CRISPR) подняло генную инженерию, применяемую среди диких популяций, на новый уровень, и теперь мы способны направлять генетическую эволюцию в дикой природе. В планах уже генетическая модификация комаров, чтобы они перестали быть разносчиками разных болезней, таких как малярия. Это прекрасный новый мир, который ждет масса возражений как практического, так и этического характера. Эти опасения далеко не беспочвенны, но есть и положительные стороны. Мы можем не только сконструировать виды для нашей собственной выгоды, но и будем иметь возможность помочь им выживать, вводя гены, которые позволят адаптироваться к меняющемуся миру.
А как нам узнать, какие гены вводить виду, сталкивающемуся с конкретной проблемой? Ответ, конечно же, – конвергентная эволюция! Выбирая решения, которые неоднократно срабатывали в отношении других видов, мы, вероятно, сможем определить лучших кандидатов на генетическое спасение среди тех, кто подвергается опасности. Наступит ли такое будущее, нам еще предстоит узнать, но если это произойдет, конвергентная эволюция наверняка сыграет здесь важную роль.
Назад: Глава одиннадцатая Мельчайшие частицы и пьяные плодовые мушки
Дальше: Заключение Судьба, случай и неизбежность появления человека