Глава 10. На все можно смотреть с разных сторон
Мерилом развитого интеллекта является способность одновременно удерживать в уме две противоположные идеи и при этом сохранять способность действовать.
Фрэнсис Скотт Фицджеральд
Ясно, что эта комплементарность опровергает схоластическую онтологию. Что есть истина? Мы задаем вопрос Пилата не в скептическом, антинаучном смысле, а, скорее, в уверенности, что дальнейшая работа над этой новой ситуацией приведет к более глубокому пониманию физического и ментального мира.
Арнольд Зоммерфельд
Дополнительность (или комплементарность) в самой фундаментальной форме — концепция, согласно которой одна и та же вещь, если рассматривать ее с разных точек зрения, обладает очень разными, даже взаимоисключающими свойствами. И такое отношение к опыту и проблемам я считаю чрезвычайно полезным. Оно открывает глаза. Оно изменило мое мировоззрение, помогло мне стать великодушнее и терпимее, а также развить воображение. Теперь я хотел бы вместе с вами проанализировать эту расширяющую кругозор идею, как я ее понимаю.
Мир прост и сложен, логичен и странен, закономерен и хаотичен. Фундаментальные законы не объясняют эту двойственность — на самом деле, как мы видели, они высвечивают ее и углубляют. Природа людей тоже двойственна: мы крошечные и огромные, эфемерные и долгоживущие, мудрые и невежественные. Невозможно судить о физической реальности, по-настоящему не прочувствовав принцип дополнительности. Невозможно и понять без него самих себя.
ПРИНЦИП КОМПЛЕМЕНТАРНОСТИ В НАУКЕ
Первым этот принцип сформулировал великий датский ученый Нильс Бор. По одной версии, Бор почерпнул его из опыта работы с квантовой физикой, а по другой — пришел к такому образу мыслей раньше, естественным образом, и как раз это сделало возможными его уникальные открытия. Некоторые биографы Бора объясняют все влиянием Сёрена Кьеркегора, датского мистика и философа, которым Бор восхищался.
Между первыми приблизительными представлениями о квантовом поведении, относящимися примерно к 1900 году, и созданием современной квантовой теории в конце 1920-х был период напряженных раздумий. Тогда казалось невозможным согласовать результаты различных экспериментов. Бор строил причудливые модели, которые объясняли одни наблюдения и игнорировали другие. Альберт Эйнштейн написал о его работе:
Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточно, чтобы позволить Бору — человеку с гениальной интуицией и тонким чутьем — найти главнейшие законы <…> атомов, включая их значение для химии. Это мне кажется чудом и теперь. Это наивысшая музыкальность в области мысли.
Исходя из этого опыта, Бор развил принцип дополнительности в мощный метод, позволяющий проникнуть в суть вещей. Из точных наук этот мудрый метод перекочевал и в философию.
ПРИНЦИП КОМПЛЕМЕНТАРНОСТИ В КВАНТОВОЙ МЕХАНИКЕ
В квантовой механике ключевой способ описания объекта, будь то электрон или слон, — его волновая функция. Волновая функция объекта — своего рода заготовка, которую мы можем превратить в прогнозы относительно его поведения. Мы можем совершать с волновой функцией разные манипуляции, получая ответы на разные вопросы. Если мы хотим предсказать, где будет находиться объект, мы должны обработать его волновую функцию одним способом, а если интересуемся скоростью — то другим.
Если не вдаваться в детали, эти два способа исследования волновой функции похожи на два способа анализа музыкального произведения: гармонический и мелодический. Гармонический анализ локален, только, в отличие от частицы, здесь отслеживается не точка в пространстве, а момент времени. Мелодический анализ исследует более общие свойства. Гармония — аналог местоположения, а мелодия — скорости.
Мы не можем провести эти два вида анализа одновременно. Они мешают друг другу. Если вы хотите узнать о местоположении, придется обработать информацию о волновой функции таким образом, что будут уничтожены данные о скорости, и наоборот.
Хотя точные детали сложны, я все же подчеркну: все сказанное основывается на прочном математическом фундаменте. В современной квантовой теории дополнительность — факт, а не голословное утверждение.
До сих пор я обсуждал принцип квантовой дополнительности, используя такие понятия, как волновые функции и обработка информации. Но мы можем рассмотреть ситуацию более конкретно, с другой — экспериментальной — точки зрения. Вместо того чтобы спросить, как исследовать волновую функцию частицы и сделать прогнозы о ее поведении, мы спросим, как нам взаимодействовать с частицей, чтобы измерить ее свойства.
В рамках математического аппарата квантовой механики комплементарность положения частицы и ее скорости формулируется как теорема. Но так можно описать природу, а не раскрыть истину. В действительности многие основатели квантовой теории, включая Эйнштейна, скептически относились к ее сложившейся математической форме. Из невозможности квантовой теории одновременно предсказать положение и скорость должна следовать наша неспособность одновременно измерять эти свойства в эксперименте. Иначе нам потребовался бы новый математический аппарат, пригодный для описания таких измерений.
Вскоре после того, как молодой Вернер Гейзенберг заложил основы современной квантовой теории, он осознал ее поразительный математический результат: положение и скорость не измерить одновременно. Он сформулировал этот вывод как «принцип неопределенности». И ключевой вопрос, который он ставит, таков: правильно ли описываются конкретные факты, то есть события, которые мы наблюдаем в физическом мире? Гейзенберг, а затем Эйнштейн и Бор — все они ломали голову над ответом.
На уровне физического поведения комплементарность отражает два ключевых момента. Первый заключается в том, что для измерения свойств чего-либо вы должны с этим чем-либо взаимодействовать. Другими словами, наши измерения не фиксируют реальность, а только «берут с нее пробу». Вот как это изложил Бор:
В квантовой теории <…> логическое осмысление ранее неизвестных фундаментальных закономерностей <…> потребовало осознания того, что невозможно провести четкое разделение между независимым поведением объектов и их взаимодействием с измерительными приборами.
Второй ключевой момент, усиливающий первый, таков: точные измерения требуют сильного взаимодействия с измерительными приборами.
Помня об этом, Гейзенберг рассмотрел множество способов измерить положение и скорость элементарных частиц и обнаружил, что все они согласуются с его принципом неопределенности. Этот анализ укрепил уверенность в том, что странный математический аппарат квантовой теории — отражение странных явлений в физическом мире.
Факт, что наблюдение — активный и «агрессивный» процесс — стал отправной точкой анализа Гейзенберга. Без него мы не можем использовать математический аппарат квантовой теории для описания физической реальности. Однако это разрушает модель мира, которую мы выстраиваем в детстве. Согласно ей, существует точная граница между нами самими и внешним миром, обладающим свойствами, которые мы открываем путем наблюдений. Осмыслив открытия Гейзенберга и Бора, мы понимаем: это не так. Наблюдая за миром, мы участвуем в его построении.
Гейзенберг работал над принципом неопределенности в Институте Нильса Бора в Копенгагене. У этих двух создателей квантовой теории были горячие дискуссии, и между ними возникли своего рода отношения наставничества. Ранние идеи Бора о дополнительности возникли как интерпретация работ Гейзенберга.
Эйнштейн не разделял мнения Бора и Гейзенберга. Ему не нравилась идея комплементарности — сама мысль, что могут быть правильные, но несовместимые точки зрения. Он надеялся, что возникнет более полное понимание, которое объединит их, — например, что найдется способ измерить одновременно и положение, и скорость (или импульс) частицы. Он уделял серьезное внимание этой проблеме. Его остроумные мысленные эксперименты были сложнее, чем те, которые предлагал Гейзенберг.
Свои знаменитые дебаты с Эйнштейном Бор описывает в обзорной статье «Дискуссии с Эйнштейном о проблемах теории познания в атомной физике». Там Эйнштейн использует серию мысленных экспериментов, оспаривающих некоторые аспекты квантово-механической комплементарности, особенно комплементарность энергии и времени. Отвечая на эти доводы, Бор смог найти тонкие изъяны в анализе Эйнштейна и отстоять физическую непротиворечивость квантовой теории.
Эти дебаты, как и дальнейшие, прояснили природу квантовой теории, и до настоящего времени ее правильность не оспаривалась всерьез. Люди использовали квантовую теорию для создания множества чудесных устройств, от лазеров до айфонов и GPS-навигаторов. Эти устройства вполне работоспособны. Если «то, что не убивает» правда «делает нас сильнее», то позиции квантовой теории и вытекающей из нее комплементарности теперь реально сильны.
Кстати, если вам интересно, что все это означает на примере упомянутого в начале раздела слона, ответ такой: хотя для слона квантовая неопределенность в принципе присутствует, о ней можно спокойно забыть. У нас не возникает проблем с измерением положений и скорости слона с точностью, достаточной для практических задач. Неопределенность этих параметров по сравнению с их реальными величинами ничтожно мала. Другое дело — электроны в атомах.
УРОВНИ ОПИСАНИЯ
Еще один источник комплементарности — разные уровни описания. Иногда описание системы, использующее одну модель, при работе с ней становится слишком сложным, чтобы ответить на важные вопросы. Тогда мы можем найти дополнительную модель, основанную на других идеях.
Простой пример объяснит эту значимую, полезную, практичную идею как нельзя лучше. Горячий газ, заполняющий воздушный шар, состоит из огромного количества атомов. Если бы мы хотели предсказать поведение газа, применяя ко всем этим атомам законы механики, то столкнулись бы с двумя большими проблемами.
• Даже если бы мы ограничились рамками классической механики, нам нужно было бы знать положение и скорость каждого атома в начальный момент времени. Сбор и хранение такого количества данных совершенно непрактичны. Использование квантовой механики только усугубило бы проблему.
• Даже если бы мы получили и сохранили данные, еще непрактичнее было бы при помощи вычислений отслеживать изменения в движениях частиц.
Несмотря на это, опытные экипажи уверенно управляют воздушными шарами. В некоторых отношениях поведение воздуха легко предсказуемо.
Используя совершенно другие концепции, мы можем найти простые законы, описывающие поведение воздуха в макромасштабах, — в терминах плотности, давления и температуры. Именно эти параметры помогают ответить на вопросы, возникающие у пилотов аэростатов. Да, описание на уровне атомов гораздо информативнее, но большая часть этой информации будет совершенно бесполезна для вас, если вы захотите полетать (и даже хуже: она отвлечет ваше внимание).
Рассмотрим, например, положение и скорость любого конкретного атома, которые в результате его движения быстро меняются. Фактическая траектория атома сильно зависит от точных начальных значений, а также от того, что делают другие атомы. Таким образом, информацию о положении и скорости конкретной частицы чрезвычайно сложно вычислить и она быстро устаревает. Плотность, давление и температура в этом отношении намного полезнее. Открытие и количественное определение этих простых, стабильных свойств, дающих ответы на важные вопросы, стало крупным научным достижением.
Большая часть деятельности ученых сводится к поиску как раз таких свойств. Иногда мы называем их эмерджентными. (Мы уже сталкивались с этой концепцией ранее, в , но под несколько другим углом.)
Найти полезные эмерджентные свойства и научиться их использовать — большая удача. За свою историю естественные науки обогатились множеством важных эмерджентных свойств (энтропия, химическая связь, жесткость и так далее), и на их основе удалось построить множество полезных моделей.
Подобные вопросы возникают и за пределами естественных наук. К примеру, нам хотелось бы составить более адекватное представление о поведении людей или о фондовом рынке. Анализ этих явлений на «атомарном» уровне, основанный на изучении поведения отдельных нейронов или отдельных инвесторов, не говоря уже о поведении кварков, глюонов, электронов и фотонов, которые их образуют, невероятно сложен. И если ваша цель — наладить отношения с людьми или заработать денег путем инвестирования, такой подход бессмыслен.
Вместо этого для ответов на наши масштабные вопросы мы обращаемся к различным концепциям из книг по психологии и экономике. Они предлагают нам модели людей и рынков, дополняющие «атомарные». В области психологии и экономики у нас пока не слишком много моделей, работающих так же надежно, как модели газов, созданные физиками. Но поиск продолжается.
Описание действительности в терминах ее самых элементарных строительных блоков — огромное удовольствие. Заманчиво было бы думать, что этот способ идеален, в то время как другие описания высокого уровня — лишь приближенные компромиссы, которые отражают слабость понимания. Такое отношение делает совершенное врагом хорошего. На первый взгляд оно выглядит глубоким, но на самом деле поверхностно.
Чтобы ответить на интересующие нас вопросы, часто нужно изменить точку зрения. Открытие новых концепций и изобретение способов работы с ними — нескончаемая творческая деятельность. Специалисты в области информатики и инженеры-программисты хорошо понимают, что при написании полезных алгоритмов важен способ представления данных. Он отличает полезную информацию от той, которая «в принципе» существует, но в реальности недоступна, поскольку на ее поиск и обработку уйдет слишком много времени и усилий. Это похоже на различие между обладанием золотыми слитками и знанием факта, что в океанской воде в принципе растворено огромное количество атомов золота.
По этой причине полное понимание фундаментальных законов, если бы мы когда-либо его достигли, не было бы ни «Теорией всего», ни «Концом науки». Нам по-прежнему будут нужны взаимодополняющие описания реальности. На многие серьезные вопросы ответов еще нет, впереди немало масштабной научной работы.
И так будет всегда.
ЗА ПРЕДЕЛАМИ НАУКИ: КОМПЛЕМЕНТАРНОСТЬ КАК ФИЛОСОФСКОЕ ПОНЯТИЕ
Примеры в искусстве
Моя подруга-музыкант Минна Пёлланен привела прекрасный пример комплементарности в своей области. Я кратко упомянул его ранее. В полифонической музыке две очень разные вещи происходят одновременно: каждый голос ведет свою мелодию, а в ансамбле все они создают гармонию. Мы можем прислушаться к мелодии или гармонии. И то и другое важно. Можно переключаться с одного на другое, но, вообще говоря, слышать все одновременно не получится.
Пикассо и кубисты создали визуальное искусство, которое тоже демонстрирует комплементарность. На одной картине они изображали сцену под разными углами зрения, привлекая внимание к тем деталям, которые считали важными. Маленькие дети на рисунках делают то же. Причудливые комбинации и расположение рядом предметов, увиденных под разными углами, подчеркивают различные точки зрения. Вроде бы они противоречат друг другу и в физическом мире не могут быть реализованы одновременно. Такая простодушная комплементарность в детских рисунках может выглядеть очаровательно, а в работах мастеров — гениально.
Модели людей — свобода и детерминизм
Мы конструируем мысленные модели людей, пытаясь ответить на вопросы об их поведении. Например, чтобы предсказать, как кто-то будет взаимодействовать с другими в определенной ситуации, мы рассмотрим его личность, эмоциональное состояние, историю жизни, культуру, в которой он родился, и так далее. Короче говоря, мы построим модель его сознания и мотивов. Концепция воли — выборов, которые делает сознание, — займет здесь центральное место.
С другой стороны, пытаясь предсказать, что произойдет с тем же человеком в эпицентре ядерного взрыва, мы используем совсем иную модель, основанную на физике. Здесь сознание и воля вообще не будут играть никакой роли.
Обе модели — одна основанная на работе сознания и психологии, другая на материи и физике — верны. Каждая успешно решает свою задачу, но ни одна не является полной и не может заменить другую. Люди действительно делают выбор, и их тела действительно подчиняются физическим законам. Это реалии повседневной жизни. В соответствии с принципом дополнительности мы принимаем и ту и другую модель, понимая, что они не конфликтуют. Факты не могут опровергнуть другие факты — лишь отражают разные способы обращения с реальностью.
Есть ли у людей свобода воли или они просто куклы, танцующие под дудку математической физики? Этот вопрос так же неправилен, как и другой: является ли музыка гармоничной или мелодичной.
Свобода воли — важное понятие в юриспруденции и морали, в то время как физика обходится без него.
Удаление свободы воли из законодательства или введение ее в физику повредило бы и тому и другому. Это совершенно не нужно! Свобода воли и физический детерминизм — комплементарные аспекты реальности.
Комплементарность, расширение сознания и терпимость
Давайте я переформулирую основные выводы из принципа комплементарности.
• Вопросы, на которые вы хотите получить ответы, определяют концепции, которые вы должны использовать.
• Различные (а иногда даже несовместимые) способы анализа одного и того же явления могут дать о нем достоверную информацию.
Таким образом, комплементарность — приглашение рассмотреть явление с разных точек зрения. Вдохновленные ею вопросы и подходы дают нам проверить новые точки зрения и извлечь из них уроки. Так мы открываем свежие факты и расширяем кругозор.
Почему бы не использовать эти идеи, разрешая предполагаемые конфликты между искусством и наукой, или философией и наукой, или религией А и религией Б, или религией и наукой?
Полезно взглянуть на мир под разными углами.
Лично меня раннее знакомство с католицизмом подтолкнуло к тому, чтобы мыслить глобально и искать скрытые смыслы за внешней оболочкой вещей.
Я продолжил делать это и после того, как отказался от строгих догм веры. Сегодня я часто обращаюсь к Платону, Аврелию Августину, Дэвиду Юму и «устаревшим» научным работам — Галилея, Ньютона, Дарвина, Максвелла, — чтобы пообщаться с великими мыслителями и порассуждать по-другому.
Конечно, попытка понять различные способы мышления не означает необходимость соглашаться с ними, а тем более перенимать их. Мы должны сохранять независимость. Идеологии или религии, претендующие на исключительное право диктовать однозначно «правильные» взгляды, противоречат духу комплементарности.
Тем не менее у науки — особый статус. Благодаря множеству впечатляющих успехов она заслужила огромное доверие как своим пониманием основ физической реальности, так и методами ее анализа. «Кабинетные» ученые узкого профиля теряют шанс обогатить свой ум, а люди, избегающие науку, — обедняют свой.
БУДУЩЕЕ КОМПЛЕМЕНТАРНОСТИ
Точность и постижимость
Развитие суперкомпьютеров и искусственного интеллекта меняет как вопросы, которые мы можем задавать, так и ответы, которые мы можем искать. Сам Бор полушутя говорил о комплементарности ясности и истинности. Это, конечно, гипербола: есть вещи, такие как основы арифметики, которые одновременно и ясны, и верны. Но успешные модели, требующие сверхчеловеческих вычислений, обнаруживают сходную, весьма серьезную комплементарность.
Чемпионами по шахматам и го, искусство игры в которые когда-то считалось признаком интеллекта, теперь стали компьютеры. В обширной литературе, посвященной этим играм, великие мастера делятся концепциями и секретами, благодаря которым добились успехов. Но современным чемпионам — компьютерам — это не нужно. Концепции людей приспособлены к мозгу, обладающему феноменальной способностью использовать образы и обрабатывать разную информацию параллельно, но имеющему относительно слабую память и работающему с относительно малой скоростью. Компьютер находит совершенно новые концепции, а также перенимает лучшие из человеческих, просто играя против самого себя одну партию за другой и отбирая наиболее результативные методы. Другими словами, искусственный интеллект следует научному методу обучения с помощью эксперимента.
В квантовой хромодинамике — нашей теории сильных взаимодействий — возникли концепции, призванные преодолеть разрыв между основными уравнениями для кварков и глюонов и более сложными объектами, которые в конечном счете появляются в природе. Эти концепции помогли людям разобраться в проблеме. Однако сегодня разумнее и эффективнее делегировать подобные вычисления суперкомпьютерам с минимальным количеством инструкций.
Эти примеры отличаются ясностью и правдивостью. Основной феномен, который они иллюстрируют и который, вероятно, получит широкое распространение, состоит в следующем: мыслящие машины могут открывать и использовать модели, которые «невооруженному» человеческому мозгу не подходят.
В двух словах можно сказать, что постижимость человеческим сознанием и точное представление комплементарны.
Смирение и самоуважение
Я считаю комплементарность смирения и самоуважения центральным выводом из наших основных принципов. Этот мотив повторяется как тема со многими вариациями. Безбрежность космоса подчеркивает нашу малость, но в нас самих — множество нейронов и еще гораздо больше атомов, из которых они состоят. Продолжительность космической истории намного превышает срок нашей жизни, но у нас есть время для огромного количества мыслей. Космические энергии несравнимы с тем, чем располагает человек, но все же у нас достаточно сил, чтобы жить, развиваться и активно участвовать в жизни других людей. Мир сложен и изобилует загадками, а наши возможности постичь его ограничены, но мы много знаем и узнаём все больше. Скромность необходима нам, но и самоуважение — тоже.
Могут пройти многие десятилетия, прежде чем автономный многофункциональный искусственный интеллект достигнет человеческого уровня. Но мотивация так сильна, а прогресс настолько неумолим, что, если отбросить вероятность катастрофических войн, эпидемий или изменений климата, этот процесс, вероятно, займет всего одно или два столетия. Учитывая преимущества машин в скорости мысли, возможностях восприятия и физической мощи, интеллектуальное первенство перейдет от слегка приодетых Homo sapiens к киборгам и сверхразуму.
Возможно также, что генная инженерия позволит создать существ со сверхчеловеческими способностями. Они будут умнее нас, сильнее и (я надеюсь и жду) будут обладать большей эмпатией.
Понятно, что эти яркие перспективы на самом деле добавляют современным мыслящим людям новые комплексы неполноценности. Тем не менее самоуважение по-прежнему необходимо. В трогательном отрывке из романа 1935 года «Странный Джон» Олафа Уильяма Стэплдона — выдающегося научного фантаста — его герой, сверхчеловек (мутант), описывает Homo sapiens как «археоптерикса духа». Он говорит это своему другу и биографу — обычному человеку.
Археоптерикс был благородным существом и, как я подозреваю, не несчастным. Летал, возможно плохо, но лучше, чем наши сородичи, и лучше, чем наши предки, и это был пьянящий опыт. Слава археоптерикса умножена, а не преуменьшена выдающимися способностями его потомков.