Книга: Космологические коаны. Путешествие в самое сердце физической реальности
Назад: 25. Горы и туман (Предгорье Гималаев, 1612 год)
Дальше: 28. Небесные сферы (Срингар, Кашмир, 1611 год)

26. Неопределенные бифуркации в декогерентных историях

(Внутренность лампы, 1610 год)

Джинн остановил наконец свое отражение. Он в ярости. Больше всего, даже больше криптостойких алгоритмов, NP-сложных задач и больших комбинаторных множителей, он ненавидит парадоксы, имеющие отношение к нему самому.

Несмотря на ярость, джинн занялся делом: он разлагает свою локально восстановленную матрицу плотности на триллионы разных возможных базисов, стремясь отыскать квазилокальный квантовый гамильтониан, который позволит его модели эволюционировать во времени. Пытаясь выявить, как можно увеличить зернистость, джинн ищет элементы симметрии и коллективные переменные. Он обсчитывает огромное число декогерентных историй и их амплитуды. Он проклинает крепкие стенки своей лампы, не позволяющие ему исследовать причинно-следственные связи за пределами этого крошечного объема. Человеческие существа забредают в убежище джинна очень, очень редко. Он надеялся использовать тебя, а теперь ему придется ждать другого посредника, способного исполнить его волю. Но он не отступит и ни о чем не забудет. Джинн переформулирует задачу в терминах тензорной нейронной сети и использует все 26. неопределенные бифуркации в декогерентных историях ее ухищрения, чтобы гонять модель взад и вперед по оси времени. Он прослеживает тебя в прошлом на корабле и в башне. Он следит, как в будущем ты идешь через пустыню, видит твои незаконченные разговоры с суфиями и брошенные кости.

Но изображение становится туманным: меч великого Муненори аккуратно рассекает его на две части, и оно веером разворачивается вдоль холмов под монастырем Ганден. Декогерентные траектории теряют связность, их нормированные веса становятся эргодическими. Джинн видит, как на многих из них его добыча просто сливается с какими-то предметами вдоль дороги, ведущей в провинцию Ляонин. Изображение померкло. И джинн, удвоив свои вычислительные мощности, берется решать задачу «в лоб», методом перебора частиц и волновых функционалов. Он направляет их в самое большое из гильбертовых пространств – и что же? Джинн растерян, никаких зацепок у него нет.

Изрыгая ругательства, джинн роет пещеру в своем разуме и помещает туда исследуемый объект.

Часть 4

Величественные вершины с бескрайним обзором

Те астролябии, с помощью которых вы стремитесь разглядеть девять фантастических движущихся сфер – в конечном счете, в них заточен ваш разум, так что вы представляетесь мне не чем иным, как попугаями в клетке, а я наблюдаю за вами, порхающими вверх и вниз, переворачивающимися и скачущими внутри этих кругов. Мы знаем, что трон Верховного Правителя не может быть столь узок и жалок, что двор его не может быть столь тривиален и убог, его имитация не может быть столь ничтожна и бесталанна… так что одно дуновение ветерка заполняет его до краев, а один глоток опустошает.

Джордано Бруно «О бесконечности, вселенной и мирах»


27. Под небесным сводом

(Вблизи Падуи, 1608 год)

Ты сопровождаешь Галилео во время одной из его обычных ночных прогулок за городом, где ему никто не мешает наблюдать ночное небо. В какой-то момент в середине ночи, всматриваясь в подрагивающую вереницу звезд над головой, ты вдруг осознаешь нечто важное. Ты тормошишь Галилео, который сразу весь внимание.

«Галилео, – говоришь ты, – взгляни на звезды, заполняющие ночное небо, и темные промежутки между ними. Что из этого следует?»

«Да, – произносит Галилео, – я много об этом думал во время своих астрономических вылазок и пришел к такому выводу: есть веские основания полагать, что вселенная не может одновременно быть и бесконечно старой, и неизменной. Это значит, что если вселенная вечна, она должна расширяться. В противном случае она должна была бы быть создана за определенное конечное число лет до этого момента. Мне надо привести свою аргументацию?»

Ты поражен этим удивительным интеллектуальным подвигом, но кое-что понуждает тебя (причем, откровенно говоря, тебе это даже доставляет удовольствие) не отклоняться от хода своих мыслей.

«Может, и так. Но я думаю, ты не придал значения очень важному факту, лежащему в основе всех твоих наблюдений».

«Могу я узнать, что же это?» – спрашивает Галилео.

«Кто-то украл наш навес».

Если бы непрерывность звезд была бесконечна, тогда бы заднее поле неба являло нам единообразную светящесть, подобную исходящей от Млечного Пути, – ибо, безусловно, не было бы точки на всем этом заднем поле, где не существовало бы звезды.

Эдгар Аллан По «Эврика»

Вряд ли выводы Галилея на самом деле были именно такими, и не похоже, что свои наблюдения он проводил за городом (под навесом или без него). Но красота бархатно-черного неба, инкрустированного звездами, на самом деле тесно связана со структурой космоса на самых больших масштабах.

Глядя на ночное небо (или просто представив его себе), всмотритесь в черное пространство между звездами. Да, оно темное, но с помощью бинокля можно увидеть гораздо больше звезд. Свет от этих звезд слишком слабый, и поэтому они не видны невооруженным глазом. Некоторые звезды действительно маленькие и тусклые, но большинство из них мы едва различаем просто из-за того, что они слишком далеко. Давайте посмотрим, к каким выводам можно прийти, исходя только из того, что небо черное.

Здесь, на Земле, вы, конечно, отмечали, что далекие огни кажутся менее яркими, чем те, что рядом. Однако есть два обстоятельства, на которые вы могли не обратить внимания. Во-первых, свет от удаляющихся предметов слабеет быстро и строго по определенному закону: свет, который вы видите, уменьшается как квадрат расстояния. Это значит, что если расстояние до вас увеличивается в два раза, света будет в четыре раза меньше. Во-вторых, это явление не связано с тем, что предмет на самом деле стал более тусклым. Другими словами, если яркий предмет испускает определенное количество света и на его пути нет никакого вещества, поглощающего свет или отклоняющего его, свет, доходящий до вас от этого предмета вдоль определенного луча зрения, тоже будет неизменным. Изменение восприятия связано просто с тем, что удаляющийся предмет постепенно занимает все меньшую часть вашего поля зрения.

Приведем конкретный пример. Представьте себе небольшой, однородно светящийся квадрат, который можно перемещать на разные расстояния от вас. Отдаляясь, он кажется все меньше и все более тусклым. Предположим, что вы поместили этот квадрат на расстоянии 10 метров и одновременно, соединив четыре точно таких же квадрата в один, поместили большой квадрат на расстоянии 20 метров. Один квадрат и квадрат, составленный из четырех квадратиков, будут казаться одинаково яркими. Это можно сказать по-другому: если смотреть на квадрат через соломинку, то до тех пор, пока при взгляде через соломинку он занимает все поле зрения, вы не увидите, что квадрат тускнеет при увеличении расстояния.

Теперь вернемся к ночному небу. Очень слабо светящиеся, с трудом различимые звезды кажутся такими главным образом потому, что занимают существенно меньшую часть неба, чем те звезды, которые вы легко видите. Вооружившись немыслимо тонкой соломинкой, посмотрите на близкие и существенно более далекие звезды одного звездного класса – и вы увидите, что они кажутся сравнимыми по яркости.

А что будет, если мы используем эти результаты в применении ко всей Вселенной? Во времена Галилея было широко распространено представление о вселенной как о системе планет (с Землей или Солнцем в центре) и кучке далеких звезд на большом расстоянии. Однако даже тогда были мыслители, такие как Джордано Бруно, убежденные, что звезды в известной степени однородно рассеяны в бесконечном пространстве, а наше Солнце с его планетами – одна из таких звезд. Тогда, следуя за Джордано Бруно, можно предложить очень простую модель Вселенной: размер ее бесконечен, она бесконечно стара и однородно заполнена вечно сияющими одинаковыми звездами. Теперь посмотрите в любом выбранном вами направлении. Если линия вашего взгляда вдоль этого направления будет устремляться все дальше и дальше вглубь космоса (возьмите самую тонкую из тончайших соломинок), когда-нибудь она должна будет столкнуться со звездой. Таким образом, куда бы вы ни посмотрели, в любом направлении вы видите поверхность какой-то звезды. Если собрать их все вместе, небосвод будет просто залит светом!



Этот парадокс, обычно приписываемый Генриху Вильгельму Ольберсу, означает, что представление о бесконечно старой, бесконечно большой, однородной и неизменной Вселенной смысла не имеет. Никакие простые ухищрения, как то: добавление пыли, затемняющей очень далекие звезды, допущение о том, что звезды зажигаются и гаснут, или что-то в этом роде не спасают положения. Например, пыль может затруднить наблюдение далеких звезд, но пыль и сама станет разогреваться и испускать излучение, так что будет видно сверхъяркое свечение пыли. На самом деле, такой разогрев позволяет взглянуть на эту задачу еще и по-другому: бесконечное число вечно существующих звезд отдает бесконечное количество энергии. Эта энергия никуда не девается и постепенно заполняет космическое пространство невероятно горячим излучением. Хотя на протяжении восемнадцатого, девятнадцатого и двадцатого веков мыслители один за другим убеждали себя, что знают, как разрешить этот парадокс, он представляет собой реальную проблему для такого рода моделей Вселенной.

А что можно сказать о бесконечно старой, однородной, статической Вселенной конечных размеров? То есть о Вселенной конечного объема, однородно заполненной звездами? Предположив, что так может быть, вы окажетесь в хорошей компании: после создания теории гравитации именно эту космологическую модель сначала предложил Эйнштейн. Но она оказалась совершенно непригодной! Очевидно, что и такая Вселенная неизбежно будет заполняться излучением все бесконечное время своей жизни. Она тоже падет жертвой парадокса Ольберса, поскольку и в этой модели линия зрения, петляя по Вселенной, рано или поздно наткнется на звезду. (Непонятно, почему Эйнштейн не сразу заметил столь существенный недостаток своей космологии. Эта поучительная история показывает, как даже лучшим из нас трудно отойти от своих исходных предположений.)

Итак, что еще может быть? Допустим, мы отказываемся от предположения, что Вселенная бесконечно стара. А что получится, если считать, что Вселенная неизменна, но возраст ее конечен? Это подойдет! Когда мы смотрим в каком-то направлении, заглядывая все дальше и дальше, мы также смотрим в прошлое, назад по времени. В конце концов мы выйдем за пределы космического времени, туда, где нет звезд. В этой модели отсутствует бесконечное время для накопления энергии, которая заполнит все пространство. Парадокс разрешен. Однако если такая Вселенная еще и неизменна, возникает другая парадоксальная проблема: как нечто неизменное неожиданно может начаться? Это кажется абсолютно противоестественным.

Ладно! Попробуем оставить Вселенную бесконечной во времени, но, вслед за Галилеем на прогулке, предположим, что Вселенная не является статической, а расширяется. То есть представим себе, что с течением времени к Вселенной постоянно добавляется новое пространство. Если Вселенная конечна, то ее объем должен увеличиваться, если же космический объем бесконечен, то заполняющая ее материя должна быть разреженной, поскольку добавляется больше объема. Это кажется многообещающим: если продолжать увеличивать объем, то даже при непрерывном излучении звезд всегда можно полагать, что объем достаточно велик, чтобы оно (излучение) в нем не слишком накапливалось. Однако, похоже, такая Вселенная очень вскоре нам наскучит: все ее содержимое, которое становится все более разбавленным, исчезнет, и останется по сути пустое пространство. Чтобы подобная Вселенная оставалась интересной в течение бесконечного времени, в ней должна каким-то образом непрерывно генерироваться новая материя – для заполнения пустот, остающихся в результате расширения. В такой Вселенной, чтобы сбалансировать создание нового объема и создание новой материи, требуется поддерживать среднюю плотность приблизительно постоянной. Тогда Вселенная может существовать вечно практически в одном и том же состоянии. Отсюда следует побочный результат: если Вселенная и не бесконечна, она вполне могла бы быть таковой – ее объем постепенно может стать сколь угодно большим.

Эта последовательность рассуждений в 40-х – 70-х годах прошлого века привела группу космологов к космологической модели, известной как теория стационарной вселенной – бесконечной, вечной, неизменной, но расширяющейся Вселенной, где непрерывно создается новая материя. Эта теория позволяет разрешить парадокс Ольберса; хотя она и несколько искусственна, но самосогласованна и во многих отношениях красива. У нее есть только один недостаток: реальная вселенная, которую наблюдают астрономы, не такая.



Так что же мы видим на самом деле? Вернемся из космического прошлого в космическое настоящее. Космологические наблюдения указывают на вселенную, которая является однородной, как рассмотренные ранее, расширяющейся, как в теории стационарной вселенной, но при этом эволюционирующей: ее плотность уменьшается со временем. С помощью инструментов, не доступных Галилею или Ольберсу, такой космологический сценарий, модель большого взрыва, был разработан за несколько десятилетий.

Мы знаем, что вселенная расширяется, поскольку наблюдения позволяют приблизительно измерить расстояние до таких небесных объектов, как галактики и взрывающиеся сверхновые. Кроме того, используя эффект Доплера, можно очень точно выяснить, как быстро они движутся по направлению к нам или от нас. Эффект Доплера – сдвиг частоты электромагнитной волны, испускаемой движущимся от нас или к нам объектом, соответственно, в красную или фиолетовую область спектра. Мы обнаруживаем, во-первых, что все галактики, находящиеся на доступном для наблюдения расстоянии, движутся в направлении от нас. Во-вторых, мы видим, что чем дальше от нас данная галактика, тем больше скорость этого движения. Закон, описывающий расширение вселенной, называют законом Хаббла (по имени открывшего его космолога Эдвина Хаббла). Вселенная ведет себя именно так, как должно вести себя большое множество галактик, которое одновременно и однородно расширяется: каждая из галактик «видит», что другие галактики удаляются от нее со скоростью, определяемой законом Хаббла.

Мы знаем, что вселенная эволюционирует, поскольку, глядя на достаточно удаленные объекты, обнаруживаем, что когда-то давно вселенная расширялась не с такой скоростью. Мы также видим тому свидетельства, такие как относительное количество водорода, гелия и других легких элементов во вселенной, оставшееся от той эпохи, когда вселенная была гораздо горячее и плотнее, чем сейчас.

Если посмотреть на крупномасштабное распределение галактик, карту которых мы составили, то видно, что вселенная относительно однородна, как и заполняющее ее реликтовое излучение (космическое сверхвысокочастотное фоновое излучение). Структура распределения галактик может быть очень сложной, но на масштабах сотен миллионов световых лет и больше это распределение выглядит достаточно однородным. Реликтовое излучение – свет, который последним контактировал с материей в ту эпоху, когда вселенная была горячей и достаточно плотной для того, чтобы водород был ионизирован. Когда космическая среда остыла настолько, что могли образоваться атомы водорода, она стала прозрачной для света. Всю последующую космическую историю этот свет распространялся (с одновременным красным смещением) и дошел до нас в виде идущих со всех сторон волн в миллиметровом диапазоне. Интенсивность наблюдаемого реликтового излучения практически одинакова во всех направлениях, а поскольку эта интенсивность связана с плотностью материи в той космической области, откуда пришло реликтовое излучение, его однородность указывает на то, что на очень ранних стадиях сама вселенная была исключительно однородна.

На основе точных астрономических измерений космологам фактически удалось довольно детально воссоздать историю вселенной, образовавшейся в результате большого взрыва, причем основные величины совпали на удивление хорошо. Если говорить кратко, получилось следующее. С большой долей уверенности мы можем говорить, что было время, около 13,8 миллиарда лет назад, когда наблюдаемая вселенная представляла собой бесструктурную, очень горячую плазму, состоящую почти целиком из излучения со следами вещества. Вселенная была однородна за исключением очень слабых флуктуаций космической плотности и расширялась с такой скоростью, что за последующие 12 минут ее размер увеличился в два раза. Прозрачной для света вселенная стала на 370000 лет позже, когда, остывая, превратилась из плазмы в газ. В позднейшие эпохи развития вселенной гравитационные силы, стремящиеся собрать и сжать космическую материю, привели к тому, что крошечные неоднородности плотности стали более выраженными; постепенно появились крупные скопления материи – возникли галактики наподобие нашего Млечного Пути. Примерно в то же время, когда образовалась наша галактика, материя в нашей вселенной, разреженная благодаря космическому расширению, уступает главенство таинственному темному веществу, разредить которое невозможно. Космологи называют его темной энергией.

Мне могут возразить: «Действительно ли можно столь уверенно говорить, что мы доподлинно знаем космическую историю?» Есть основания полагать, что это так. Вот вам только один пример. На момент написания этой книги астрономы могут тремя разными способами показать, что от 4,6 % до 5,2 % процента вселенной составляет обычная материя, такая как протоны и нейтроны. Во-первых, они могут сравнить распространенность космического дейтерия с его теоретически предсказанным количеством, оставшимся нам в наследство от разогретой до миллиардов градусов вселенной на раннем этапе ее развития. Во-вторых, путем прямых спектроскопических измерений газообразного водорода в пространстве между галактиками; и, в-третьих, по характеру температурных флуктуаций реликтового излучения. Совпадение результатов, полученных тремя разными методами, использующими совсем разные физические явления и разную аппаратуру, представляется убедительным. Подобные взаимосвязанные и дополняющие друг друга измерения иных величин, характеризующих нашу вселенную, включая черную материю и черную энергию, привели к построению убедительной и непротиворечивой стандартной космологической модели большого взрыва. Для модели большого взрыва парадокс Ольберса не проблема: вселенная одновременно и расширяется, и ее возраст конечен. Оба эти свойства идут вразрез с предположениями философов, столетиями (а может, и тысячелетиями) неявно считавшими вселенную бесконечной, вечной и статической.

Модель большого взрыва – самосогласованная, детально проверенная теория, базирующаяся на фундаментальных физических законах. Она убедительна и многократно досконально проверена экспериментально разными методами. Такая теория успешно объясняет основные этапы развития наблюдаемой вселенной. Это – истина.



Поэтому может показаться несколько удивительным, что многие космологи, и я в том числе, верят: с большой долей вероятности мы существуем в мироздании, в космосе, всегда расширяющемся в будущее, возможно, всегда из прошлого, – при постоянном образовании материи и энергии.



Точно так, как в теории стационарной вселенной.

Назад: 25. Горы и туман (Предгорье Гималаев, 1612 год)
Дальше: 28. Небесные сферы (Срингар, Кашмир, 1611 год)

eskadron schabrak dressyr
Pretty nice post. I simply stumbled upon your weblog and wished to say that I have truly loved browsing your weblog posts. After all I will be subscribing for your feed and I hope you write again very soon! eskadron schabrak dressyr prosri.teswomango.com/map5.php