D-браны и симметрии
D-браны являются частным случаем бран. Их определяющее свойство — расположение на концах струн. Потребовалось много времени, чтобы понять, как эта простая идея может быть использована в описании движения и взаимодействия D-бран. D-браны имеют определённую массу, которая может быть вычислена на основании всего лишь одного предположения — о том, что D-брана может располагаться на конце струны. Чем слабее взаимодействуют друг с другом струны, тем больше становятся массы D-бран. Стандартная рабочая предпосылка в теории струн на мировом листе состоит в том, что взаимодействия струн очень слабы. В этом случае D-браны становятся настолько массивными, что заставить их двигаться крайне трудно, и это вводит в заблуждение при рассмотрении D-бран в роли динамических объектов. Я подозреваю, что распространённость до начала второй суперструнной революции предположения о слабом взаимодействии струн была ещё одной причиной, по которой потребовалось столько времени, чтобы реабилитировать D-браны в их праве быть динамическими объектами.
В предыдущей главе я упоминал о D0-бранах, представляющих собой точечные частицы. D1-браны похожи на струны, протяжённые в одном измерении. Они могут замыкаться на себя, образуя петли, и способны, подобно струнам, перемещаться в любом направлении. Как и струны, D1-браны способны вибрировать и подвержены квантовым флуктуациям. Dp-браны имеют протяжённость в p пространственных измерениях, они существуют как в 26-мерной теории струн, так и в 10-мерной теории суперструн. Как я объяснял в главе 4, 26-мерная теория струн страдает ужасным недугом: струнными тахионами, вносящими в теорию нестабильность. Аналогичная нестабильность присуща в 26-мерной теории струн и D-бранам, а вот 10-мерная теория суперструн подобной нестабильностью не страдает. В оставшейся части книги я буду говорить преимущественно о теории суперструн.
Многое можно понять о D-бранах, изучая их симметрию. До сих пор я весьма вольно обращался со словом «симметрия», и, по-видимому, настало время объяснить, что конкретно физики понимают под симметрией. Круг является симметричной фигурой. Квадрат тоже. Но круг более симметричен, чем квадрат, — сейчас объясню почему. Если повернуть квадрат на 90°, то он совпадёт сам с собой. Круг же совпадает сам с собой при повороте его на любой произвольный угол. Выходит, что существует гораздо больше различных способов повернуть круг, которые отображают его самого на себя. Вот это и означает, что круг более симметричен, чем квадрат. Когда что-то выглядит одинаково, если смотреть на него с разных сторон, это и означает, что это что-то обладает симметрией.
Физики, а особенно математики, оперируют более абстрактным определением симметрии. Они используют понятие группы симметрии. Поворот окружности, скажем, на 90° вправо соответствует «элементу» группы. Таким элементом является поворот на 90° по часовой стрелке. Необязательно оперировать окружностью, чтобы ухватить идею поворота на 90°. Предположим, что мы просто идём пешком. Любой человек понимает, что значит «повернуть направо», — обычно под этим подразумевается изменение направления движения на 90° по часовой стрелке. Мы можем говорить о повороте направо безотносительно к конкретному перекрёстку. Точно так же любой понимает, что поворот налево — это действие, противоположное повороту направо. Если вы пойдёте на север по 8-й авеню, повернёте направо на 26-ю стрит, а затем повернёте налево на 6-ю авеню, то направление вашего движения после этого будет таким же, как и в начале пути: на север.
Поворот круга на любой угол переводит его самого в себя. Поворот квадрата на 90° также переводит его самого в себя, а перевод на произвольный угол — нет
Соглашусь, что не всё будет как раньше. Раньше вы шли по 8-й авеню, а теперь идёте по 6-й. Но предположим, что вы отслеживаете только направление движения, тогда действительно поворот налево является действием, обратным повороту направо, и будет отменять его подобно тому как прибавление −1 к 1 даёт 0.
Есть ещё одна особенность правых и левых поворотов, соответствующих вращению на 90°. Три последовательных правых поворота эквивалентны одному левому повороту, а после четырёх правых поворотов вы возвращаетесь к первоначальному направлению движения. Сложение поворотов радикально отличается от сложения чисел. Обозначим правый поворот числом 1, а левый — числом −1. Два правых поворота дадут 1 + 1 = 2. Два правых и один левый поворот дадут 1 + 1 − 1 = 1, что соответствует одному правому повороту. Пока всё хорошо, но четыре правых поворота эквивалентны отсутствию поворота, и мы должны записать их как 1 + 1 + 1+1 = 0. Это уже не очень хорошо. Приведённый пример иллюстрирует отличие арифметики поворотов от обычной арифметики. Всё, что следует знать о группе, — это как правильно складывать её элементы. Ну, не совсем всё. Помимо операции сложения нам понадобится ещё операция взятия обратного элемента. Обратным элементом правого поворота является левый поворот. Обратный элемент отменяет все действия элемента группы, к которому он является обратным.
Существует определённое сходство между тем, о чём я только что рассказал, и тем, что говорилось в предыдущей главе о порождении струнами пространства-времени. Тогда я начал с представления мирового листа струны в виде абстрактной поверхности и показал, что его можно рассматривать как движение струны в пространстве-времени. Здесь же я представляю группу в виде абстрактного набора элементов, а затем определяю, как эти элементы действуют на конкретный объект: квадрат, круг или движущийся автомобиль.
Я утверждаю, что группа симметрий квадрата (точнее, группа вращательных симметрий квадрата) — это та же самая группа, что и только что описанная группа, элементы которой соответствуют правым и левым поворотам. Правый поворот соответствует вращению на 90° по часовой стрелке. Когда, управляя автомобилем, вы поворачиваете направо, вы объезжаете угол, то есть одновременно продолжаете двигаться поступательно, но, как я уже сказал, мы пытаемся отслеживать только направление движения безотносительно к его скорости, и в нашей абстрактной модели автомобиль выезжает на центр перекрёстка, останавливается, затем волшебным образом поворачивается на 90° и возобновляет движение в новом направлении. Суть в том, что эти повороты на 90° в точности те же, что описывают вращательную симметрию квадрата. А вот круг более симметричен, поскольку он переходит сам в себя при повороте на любой угол.
Существует ли что-либо более симметричное, чем круг? Да: шар. Если мы повернём круг в пространстве вокруг одного из его диаметров, то он не перейдёт сам в себя, а вот шар отобразится на себя при любом повороте вокруг любого из его диаметров, что означает, что группа симметрий шара больше группы симметрий круга.
Вернёмся к нашим D-бранам. Поскольку очень трудно оперировать двадцатью шестью измерениями, и даже десятью, предположим, что нам каким-то образом удалось избавиться от всех лишних измерений, кроме обычных четырёх. D0-брана имеет сферическую симметрию, как и любая точечная частица, — по крайней мере, на том уровне популяризации, которого я пытаюсь придерживаться. Действительно, если точку повернуть на произвольный угол в любом направлении, она останется точкой, так же как и сфера или шар. D1-брана может принимать различные формы, но простейшая из них — это отрезок прямой, который в трёхмерном пространстве имеет ту же симметрию, что и круг или окружность. Если это непонятно, то представьте себе флагшток, торчащий вертикально вверх посредине тротуара. Я согласен, что флагшток, торчащий посреди тротуара, смотрится не на месте, но поставим его там для популяризации науки. Вы можете повернуть флагшток; если это тяжело, то просто посмотрите на него с разных сторон — он выглядит одинаково, откуда бы вы на него ни посмотрели, и то же самое справедливо для окружности, нарисованной на асфальте. Вы не можете её повернуть, но можете сами встать от неё с любой стороны и убедиться, что она выглядит одинаково, откуда бы вы на неё ни посмотрели.
Симметрия — это расширение понятия «одинаковость». Чтобы не наскучить вам хождением вокруг флагштока, я приведу более интересный пример. Предположим, что у нас есть проигрыватель грампластинок — для читателей младше меня поясню, что это устройство, снабжённое вращающимся диском, на который сверху кладётся грампластинка типа тех, что вы видели у ди-джеев на дискотеках. Если диск проигрывателя ровный, без вмятин и царапин, хорошо сбалансирован, то на взгляд практически невозможно определить, вращается он или нет. И всё потому, что он имеет круговую симметрию. А теперь положим на диск проигрывателя пластинку. Глядя на неё, сразу же можно сказать, вращается она или нет, потому что на центральной наклейке обычно присутствует несимметричная надпись. Но предположим, что наклейки нет, а пластинка не имеет видимых дефектов, останется ли что-нибудь, что указывает на вращение пластинки? Да. Звуковая дорожка на пластинке образует спиральный узор, и если внимательно присмотреться, то можно увидеть, как дорожки как будто бы сбегаются к центру, а если мы опустим на пластинку иглу звукоснимателя, то она, следуя по звуковой дорожке, будет медленно перемещаться к центру пластинки. Закрутив диск проигрывателя в обратную сторону, мы увидели бы, что игла звукоснимателя стала перемещаться от центра пластинки к краю. Этот пример служит иллюстрацией того факта, что совершенно необязательно наблюдать движение какой-либо несимметричной метки, чтобы установить факт вращения, — вращение можно обнаружить и другими, зачастую совершенно неожиданными методами.
Элементарные частицы, в частности электроны и фотоны, тоже постоянно вращаются. Физики употребляют для характеристики вращения частицы термин спин. Направление спина совпадает с направлением оси вращения. Спин электрона может быть направлен в любом направлении, отличном от направления движения самого электрона, подобно тому как теннисный мяч может быть при ударе закручен мастерским ударом в любую сторону. В отсутствие внешних воздействий направление оси вращения (или спина) электрона не меняется. Оно может измениться только под действием внешних электромагнитных сил. Атомные ядра, как и электроны, имеют спины. Это свойство атомных ядер используется в магнитно-резонансной томографии (МРТ). Под действием сильного магнитного поля спины протонов — ядер атомов водорода, которые входят в состав практически любых тканей организма пациента, — выстраиваются в одном направлении. Затем тело пациента облучается радиоволнами, которые изменяют направление спинов части атомов. Возвращаясь в исходное, выстроенное состояние, атомы излучают радиоволны, являющиеся своего рода эхом той волны, которой до этого облучили атомы. При помощи сложных математических алгоритмов MPT-аппарат, анализируя это эхо, строит трёхмерное изображение внутренних органов пациента.
Фотоны тоже имеют спины, но спины фотонов не могут иметь произвольную ориентацию. Ось «вращения» фотона всегда направлена в направлении его движения. Это ограничение сидит как заноза в сердце современной физики элементарных частиц и приводит нас к новому типу симметрии, называемому калибровочной симметрией. Термин «калибровка» отсылает нас к метрологии и к измерительным приборам. Например, для калибровки давления в шинах используется измерительный прибор — манометр, а калибр орудия — это характеристика диаметра ствола. В физике, когда объект может быть описан несколькими различными способами и не видно оснований предпочесть один способ другому, калибровка как раз и является механизмом выбора конкретного варианта описания. Калибровочная симметрия отражает эквивалентность различных способов калибровки. Поскольку калибровка и калибровочная симметрия являются весьма абстрактными понятиями, позвольте мне снова отвлечься на житейскую аналогию, прежде чем продолжить повествование. Помните, я говорил о том, как сложно на глаз определить, вращается или нет идеальный симметричный диск проигрывателя? Удобный способ разрешить проблему — поставить маркером точку на краю диска. Не важно, на каком краю вы её поставите — на ближайшем к вам или на дальнем, вместо точки можно провести линию от центра диска к краю, — важно лишь, чтобы ваша метка не обладала круговой симметрией относительно оси вращения диска. После этого сразу станет видно, вращается диск или нет. Выбор места, куда вы поставите метку, — это выбор калибровки, а независимость результата от места, в котором поставлена метка, — это и есть калибровочная симметрия.
Калибровочная симметрия приводит к двум важным следствиям в квантово-механическом описании фотона. Первое — это безмассовость фотона, в результате чего фотон всегда движется со скоростью света. Второе — это ограничение на направление спина фотона, который всегда ориентирован в направлении движения. Мне трудно объяснить, каким образом эти два следствия вытекают из калибровочной симметрии, без углубления в дебри квантовой теории поля, но я попробую объяснить связь между ними. Рассмотрим сначала электрон, который имеет как массу, так и спин. Если электрон покоится, мы не можем утверждать, что его спин как-то ориентирован относительно направления его движения, хотя бы потому что электрон никуда не движется. С другой стороны, фотон, будучи безмассовым, не может покоиться. Он всегда движется, причём со скоростью света. Специальная теория относительности утверждает, что движущиеся тела сокращаются в направлении движения, причём при движении со скоростью света продольный размер движущегося тела стремится к нулю. Представим себе летящее вращающееся кольцо, ориентированное произвольным образом. По мере приближения к скорости света кольцо будет сплющиваться, стремясь стать перпендикулярным к направлению движения, а значит, ось его вращения будет стремиться к этому направлению. Таким образом, фотон, двигающийся со скоростью света, не может иметь спин, ориентированный иначе чем по направлению движения. Иначе говоря, безмассовость частицы приводит к ограничению на возможное направление её спина.
Следствия калибровочной симметрии делают её совершенно непохожей на те симметрии, которые мы обсуждали ранее. Она выглядит скорее как набор правил. Фотон не может покоиться из-за калибровочной симметрии. Спин фотона не может иметь произвольное направление из-за калибровочной симметрии. Есть ещё одно важное следствие: электрон имеет электрический заряд из-за калибровочной симметрии. Последнее лучше всего проиллюстрировать аналогией между калибровочной и вращательной симметрией. Калибровочная симметрия электрона настолько похожа на вращательную симметрию, что иногда даже говорят о калибровочном «вращении». Но калибровочное вращение — это не вращение в пространстве, а более абстрактное понятие, имеющее отношение к одному из способов квантово-механического описания электрона. В отличие от вращения диска проигрывателя, «вращение» электрона имеет квантово-механический смысл, оно соответствует определённой калибровочной симметрии. И вот это абстрактное квантово-механическое «вращение» электрона и есть, по сути, его электрический заряд. Заряд электрона отрицателен, а заряд позитрона положителен, — это означает, что они в абстрактном калибровочно-симметричном смысле «вращаются» в разные стороны.
Оказывается, что введение дополнительных измерений позволяет сделать предыдущий разговор более предметным. Допустим, что дополнительное измерение имеет форму кольца, и представим, что частица движется в этом измерении по окружности. Она может двигаться как по часовой стрелке, так и против. Если это кольцо очень-очень мало, мы не сможем обнаружить движение в этом измерении, но тем не менее частица будет вращаться в этом измерении либо в одну, либо в другую сторону. Двигаясь в одном направлении, частица будет иметь положительный заряд, двигаясь в другом — отрицательный. Представляя дополнительные измерения в виде миниатюрных колец, или, как принято говорить, свёрнутых измерений, мы не должны удивляться тому, что их калибровочная симметрия настолько похожа на вращательную. Калибровочная симметрия электрического заряда — фактически то же самое, что и симметрия окружности. Частица может двигаться в этом измерении только в двух возможных направлениях — условно говоря, по часовой стрелке и против. Соответственно в природе существуют только два электрических заряда: положительный и отрицательный.
В корпускулярном описании спины фотонов ориентированы в одном направлении — в направлении движения. В волновом описании электрическое поле имеет форму штопора. Если спины всех фотонов ориентированы так, как я нарисовал, то такой свет называется циркулярно поляризованным
Идея представить электрический заряд в виде движения в свёрнутом измерении была предтечей теории струн. Ей почти сто лет, но за это время никому не удалось что-нибудь реально посчитать на её основе. Часть великого замысла теории струн как раз и состоит в том, чтобы заставить упомянутую идею работать, но у нас есть много дополнительных измерений, чтобы поиграть с ними, и это вселяет некоторую надежду. То есть независимо от того, правилен наш подход или нет, следует признать, что электрический заряд и электромагнитные взаимодействия фундаментально связаны с вращательной симметрией и с движением по окружности.
Может показаться, что мы слишком далеко ушли от D-бран, но это не так. D-браны как раз служат примером тому, о чём мы только что говорили. Как мы видели, D-браны обладают вращательной симметрией. Вспомним хотя бы сравнение D1-браны с флагштоком посреди тротуара, имеющим ту же симметрию, что и окружность. Вращательная симметрия помогает объяснить многие свойства D-бран, но и калибровочная симметрия играет огромную роль. Вот первый намёк на связь D-бран и калибровочной симметрии: если мы возьмём D1-брану, представляющую собой прямую, и «стукнем» по ней в определённом месте, то от места удара в разные стороны побегут два небольших возмущения. Эти возмущения будут двигаться со скоростью света, ведя себя как безмассовые частицы, и ничто не заставит их остановиться. Мы уже знаем, что безмассовые частицы, такие как фотоны, обладают калибровочной симметрией, и калибровочная симметрия заставляет их быть безмассовыми. То же самое происходит и с возмущениями на D1-бране. Я, конечно, сильно всё упрощаю, потому что возмущения на D1-бране, конечно же, совсем не похожи на фотоны. Например, они не имеют спина, но если мы рассмотрим такие же возмущения на D3-бране, то некоторые из них будут иметь спин и с математической точки зрения ничем не будут отличаться от фотонов. Как только этот факт был установлен, физики тут же кинулись строить модели мира, в которых он представляет собой D3-брану. Правда, всё ещё остаются дополнительные измерения, но мы не можем их наблюдать, поскольку мы застряли на бране. Кажется, что достаточно оснастить эту брану фотонами, и идея будет вполне жизнеспособной. Всё, что нам нужно для полного удовлетворения, это ещё пятнадцать или около того элементарных частиц. К сожалению, D3-брана сама по себе не обеспечивает их существования. В настоящее время в этом направлении ведутся интенсивные исследования, цель которых состоит в том, чтобы выяснить, какие ещё ингредиенты нам нужны для построения мира на D3-бране.
D-браны в теории суперструн также имеют заряд, похожий на электрический. В случае D0-бран такая аналогия оказывается вполне точной: у них есть заряд, который мы могли бы обозначить как +1. Существует ещё один объект — анти-D0-брана, несущий заряд −1. А теперь вспомним наш разговор о почти столетней идее о том, что заряд связан с дополнительным свёрнутым измерением. Она отлично работает для D0-бран. Одним из прорывов второй суперструнной революции стало открытие, что теория суперструн содержит дополнительное скрытое измерение за пределами тех десяти, что к тому времени уже были задействованы. D0-брана, которая, как вы помните, выглядит точкой, может быть описана как частица, движущаяся по окружности в этом одиннадцатом измерении. Если частица движется в одиннадцатом измерении в противоположном направлении, то это анти-D0-брана. Осознание этого достижения заставило рассматривать одиннадцатимерную супергравитацию всерьёз. В каком-то смысле струнные теоретики уже давно изучали её, сами того не осознавая! И получается, что одиннадцатое измерение не должно быть свёрнуто в крохотную окружность. По мере того как мы увеличиваем радиус окружности, возрастает сила взаимодействия между суперструнами. Они делятся и соединяются столь быстро, что попытки уследить кажутся безнадёжными. Но по мере усложнения динамики струнной картины новое измерение буквально раскрывается. Одиннадцатимерная супергравитация становится простейшим инструментом описания сильно взаимодействующих суперструн. Мы не знаем точно, как объединить квантовую механику с одиннадцатимерной супергравитацией, но мы убеждены, что должен существовать какой-то способ это сделать, потому что теория струн является полностью квантово-механической теорией и она, безусловно, включает одиннадцатимерную супергравитацию, когда взаимодействия суперструн становятся сильными. Этот круг идей вскоре получил название M-теории.
Струнные теоретики возлагают большие надежды на то, что все наши представления о заряде и калибровочной симметрии могут просто вытекать из скрытой многомерной природы мира. В главе 7 мы подробно обсудим, как это может работать. В главах 6 и 8 я расскажу, как дополнительные измерения могут быть использованы для описания сильных взаимодействий типа взаимодействия между кварками и глюонами внутри протона. Чтобы дать вам общее представление, сообщу, что при некоторых обстоятельствах или в некотором приближении эти взаимодействия могут быть описаны в терминах пятого измерения. Это пятое измерение «раскрывается» подобно одиннадцатому измерению M-теории, когда взаимодействия становятся слишком сильными, чтобы отслеживать их в обычных четырёх измерениях.
Как я уже говорил ранее, D0-браны несут некий заряд, и существует ещё один объект, называемый анти-D0-браной, который несёт противоположный заряд. Что произойдёт, если D0-брана столкнётся с анти-D0-браной? Ответ, очевидно, состоит в том, что они взаимоуничтожатся, исчезнув во вспышке излучения. Сейчас я более подробно расскажу, как взаимодействуют между собой D0-браны и анти-D0-браны.
Для начала давайте вернёмся к обсуждавшимся в четвёртой главе растянутым между D0-бранами струнам. Моей целью было рассказать о трёх составляющих массы струны: это масса покоя, возникающая из энергии натяжения струны между бранами; энергия колебаний, аналогичных колебаниям фортепианной струны; и последняя составляющая — вклад квантовых флуктуаций, которых отрицателен и от которого очень трудно избавиться. Последний компонент доставил массу хлопот, потому что приводил к таким вещам, как тахионы с мнимой массой. Я упомянул тогда, что одним из способов избавления от тахионов является помещение D0-бран достаточно далеко друг от друга, чтобы вклад энергии натяжения стал больше отрицательного вклада квантовых флуктуаций. Но давайте перевернём задачу. Что произойдёт, если мы возьмём две D0-браны, расположенные далеко друг от друга, и начнём их постепенно сближать? Ответ зависит от многих допущений. Чтобы рассуждать строго, мы должны чётко определить, чем отличаются D0-браны от анти-D0-бран. Единственное различие между ними заключается в их заряде. Рассмотрим сначала случай двух D0-бран, приближающихся друг к другу. Они имеют одинаковый заряд. Это означает, что они отталкиваются друг от друга так, как это делают электроны. Но они также имеют массу, поэтому они испытывают гравитационное притяжение друг друга. Оказывается, что сила притяжения полностью компенсирует отталкивание. Получается, что браны почти не замечают друг друга. А следовательно, суперструна, натянутая между двумя D0-бранами, никогда не превратится в тахион. Это скромный пример чудесного решения проблемы тахионов в теории суперструн.
Всё меняется, когда мы располагаем рядом D0-брану и анти-D0-брану. Они имеют противоположные заряды, следовательно, они притягиваются друг к другу, как электрон и протон. Гравитационное притяжение никуда не исчезает, потому что D0-брана и анти-D0-брана имеют одинаковую массу, а гравитация реагирует на массу. Значит, теперь мы имеем сильное притяжение между D0-браной и анти-D0-браной. Струна, натянутая между ними, «знает» об этой особенности. Это «знание» проявляется в том, что струна становится тахионом, когда D0-брана и анти-D0-брана оказываются слишком близко. Я отметил в предыдущей главе, что в современном представлении о тахионе последний является неустойчивым, и привёл пример карандаша, стоящего на острие. В конце концов он упадёт. D0-брана, находящаяся в непосредственной близости от анти-D0-браны, также нестабильна. Как я уже сказал, они взаимно уничтожаются. Процесс уничтожения аналогичен падению карандаша. Можно посмотреть на этот процесс с другой стороны, представив одиннадцатое измерение в форме окружности. D0-брана, являясь частицей, движется по этой окружности. Анти-D0-брана движется по ней в противоположном направлении. В конце концов они столкнутся. Когда это произойдёт, обе браны исчезнут во вспышке излучения. Детали этого процесса должны дать нам какое-то представление о M-теории, но, к сожалению, никто этого достаточно хорошо не понимает. Беда в том, что процесс аннигиляции происходит очень быстро и очень трудно рассчитать, каким образом большое количество энергии высвобождается в течение короткого времени. Единственное, в чём можно быть уверенным, основываясь на формуле E = mc2, так это в том, что выделяемая энергия складывается из удвоенной энергии покоя D0-браны и кинетической энергии, которую D0-брана и анти-D0-брана, возможно, имели перед уничтожением.
Слева: D0-брана и анти-D0-брана сближаются и аннигилируют в струны. Натянутая между ними струна становится тахионом, когда браны оказываются слишком близко. Тахионы считаются неустойчивыми. Справа: Когда D0-брана далеко от анти-D0-браны, будущий тахион практически стабилен. Когда D0-брана и анти-D0-брана оказываются слишком близко, тахион «скатывается вниз», что эквивалентно взаимоуничтожению D0-браны и анти-D0-браны