Anderson, J. M., Clegg, T. M., Véras, L. V., & Holland, K. N. (2017). ‘Insight into shark magnetic field perception from empirical observations’, Scientific Reports, 7 (1). P. 11042.
Horton, T. W., Hauser, N., Zerbini, A. N., Francis, M. P., Domeier, M. L., Andriolo, A., … & Holdaway, R. N. (2017). ‘Route Fidelity During Marine Megafauna Migration’, Frontiers in Marine Science, 4. P. 422.
Ссылку на описание системы магнитных обмоток можно найти по адресу http://www.unc.edu/depts/oceanweb/turtles/.
Lohmann, K. J., & Lohmann, C. M. (1994). ‘Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitude’, Journal of Experimental Biology, 194 (1). P. 23–32.
Lohmann, K. J., Lohmann, C. M. F., Ehrhart, L. M., Bagley, D. A. and Swing, T. (2004). ‘Geomagnetic map used in sea-turtle navigation’, Nature, 428. P. 909, 910.
Система Гольфстрима вместе с Северо-Атлантическим течением образует соответственно западную и северную периферии; холодное Канарское течение – восточную, а теплые Северные пассатные течения – южную периферии северного антициклонического круговорота. (См.: АТЛАНТИЧЕСКИЙ ОКЕАН // Географический энциклопедический словарь. М.: Советская энциклопедия, 1989. С. 44.) – Прим. ред.
Putman, N. F., & Mansfield, K. L. (2015). ‘Direct evidence of swimming demonstrates active dispersal in the sea turtle “lost years”’, Current Biology, 25 (9). P. 1221–1227.
Lohmann, K. J., & Lohmann, C. M. (1996). ‘Detection of magnetic field intensity by sea turtles’, Nature, 380 (6569). P. 59.
При «перемещении» далеко за пределы круговорота черепашата теряли ориентацию: Fuxjager, M. J., Eastwood, B. S., & Lohmann, K. J. (2011). ‘Orientation of hatchling loggerhead sea turtles to regional magnetic fields along a transoceanic migratory pathway’, Journal of Experimental Biology, 214 (15). P. 2504–2508.
Lohmann, K. J., Cain, S. D., Dodge, S. A., & Lohmann, C. M. (2001). ‘Regional magnetic fields as navigational markers for sea turtles’, Science, 294 (5541). P. 364–366.
Putman, N. F., Verley, P., Endres, C. S., & Lohmann, K. J. (2015). ‘Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles’, Journal of Experimental Biology, 218 (7). P. 1044–1050.
Сводное описание этих работ приведено в Lohmann, K. J., Putman, N. F., & Lohmann, C. M. (2012). ‘The magnetic map of hatchling loggerhead sea turtles’, Current Opinion in Neurobiology, 22 (2). P. 336–342.
Putman, N. F., Endres, C. S., Lohmann, C. M., & Lohmann, K. J. (2011). ‘Longitude perception and bicoordinate magnetic maps in sea turtles’, Current Biology, 21 (6). P. 463–466.
Putman, N. F., & Lohmann, K. J. (2008). ‘Compatibility of magnetic imprinting and secular variation’, Current Biology, 18 (14), R 596–R 597.
Brothers, J. R., & Lohmann, K. J. (2015). ‘Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles’, Current Biology, 25 (3). P. 392–396.
Brothers, J. R., & Lohmann, K. J. (2018). ‘Evidence that Magnetic Navigation and Geomagnetic Imprinting Shape Spatial Genetic Variation in Sea Turtles’, Current Biology, 28 (8). P. 1325–1329.
Endres, C. S., and Lohmann, K. J. (2013). ‘Detection of coastal mud odors by loggerhead sea turtles: a possible mechanism for sensing nearby land’, Marine Biology, 160 (11). P. 2951–2956.
Endres, C. S., Putman, N. F., Ernst, D. A., Kurth, J. A., Lohmann, C. M., & Lohmann, K. J. (2016). ‘Multi-modal homing in sea turtles: modeling dual use of geomagnetic and chemical cues in island-finding’, Frontiers in Behavioral Neuroscience, 10. P. 19.
Lohmann, K. J., Lohmann, C. M., & Endres, C. S. (2008). ‘The sensory ecology of ocean navigation’, Journal of Experimental Biology, 211 (11). P. 1719–1728.
То есть омарам.
Английское название SQUID – аббревиатура от слов Superconducting Quantum Interference Device, совпадающая со словом squid, то есть «кальмар».
Lohmann, K., Pentcheff, N., Nevitt, G., Stetten, G., Zimmer-Faust, R., Jarrard, H., & Boles, L. C. (1995). ‘Magnetic orientation of spiny lobsters in the ocean: experiments with undersea coil systems’, Journal of Experimental Biology, 198 (10). P. 2041–2048.
Boles, L. C., & Lohmann, K. J. (2003). ‘True navigation and magnetic maps in spiny lobsters’, Nature, 421 (6918). P. 60–63.
Baker, R. R. (1980). ‘Goal orientation by blindfolded humans after long-distance displacement: Possible involvement of a magnetic sense’, Science, 210 (4469). P. 555–557.
Fildes, B. N., O’Loughlin, B. J., Bradshaw, J. L., & Ewens, W. J. (1984). ‘Human orientation with restricted sensory information: no evidence for magnetic sensitivity’, Perception, 13 (3). P. 229–248.
В июле 2018 года.
Речной, или обыкновенный, угорь (Anguilla anguilla).
Naisbett-Jones, L. C., Putman, N. F., Stephenson, J. F., Ladak, S., & Young, K. A. (2017). ‘A magnetic map leads juvenile European eels to the Gulf Stream’, Current Biology, 27 (8). P. 1236–1240.
Durif, C. M., Bonhommeau, S., Briand, C., Browman, H. I., Castonguay, M., Daverat, F., … & Moore, A. (2017). ‘Whether European eel leptocephali use the earth’s magnetic field to guide their migration remains an open question’, Current Biology, 27 (18), R 998–R 1000.
Kobayashi, A., & Kirschvink, J. L. (1995). ‘Magnetoreception and electromagnetic field effects: sensory perception of the geomagnetic field in animals and humans’.
Taylor, B. K., Johnsen, S., & Lohmann, K. J. (2017). ‘Detection of magnetic field properties using distributed sensing: a computational neuroscience approach’, Bioinspiration & Biomimetics, 12 (3), 036013.
Gould & Gould, Nature’s Compass, op. cit. P. 111–114.
Anderson, J. M., Clegg, T. M., Véras, L. V., & Holland, K. N. (2017). ‘Insight into shark magnetic field perception from empirical observations’, Scientific Reports, 7 (1). P. 11042.
Fleissner, G., Stahl, B., Thalau, P., Falkenberg, G., & Fleissner, G. (2007). ‘A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons’, Naturwissenschaften, 94 (8). P. 631–642.
Mora, C. V., Davison, M., Wild, J. M., & Walker, M. M. (2004). ‘Magnetoreception and its trigeminal mediation in the homing pigeon’, Nature, 432 (7016). P. 508.
Treiber, C. D., Salzer, M. C., Riegler, J., Edelman, N., Sugar, C., Breuss, M., … & Shaw, J. (2012). ‘Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons’, Nature, 484 (7394). P. 367.
Zapka, M., Heyers, D., Hein, C. M., Engels, S., Schneider, N. L., Hans, J., … & Mouritsen, H. (2009). ‘Visual but not trigeminal mediation of magnetic compass information in a migratory bird’, Nature, 461 (7268). P. 1274.
Gagliardo, A., Ioalè, P., Savini, M., & Wild, J. M. (2006). ‘Having the nerve to home: trigeminal magnetoreceptor versus olfactory mediation of homing in pigeons’, Journal of Experimental Biology, 209 (15). P. 2888–2892.
Kishkinev, D., Chernetsov, N., Heyers, D., & Mouritsen, H. (2013). ‘Migratory reed warblers need intact trigeminal nerves to correct for a 1,000 km eastward displacement’, PLoS One, 8 (6), e65847.
Holland, R. A., & Helm, B. (2013). ‘A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds’, Journal of The Royal Society Interface, 10 (81), 20121047.
Подробный обзор этой темы см.: Mouritsen, H. (2015). ‘Magnetoreception in birds and its use for long-distance migration’, Sturkie’s Avian Physiology. P. 113–133.
Wu, L. Q., & Dickman, J. D. (2012). ‘Neural correlates of a magnetic sense’, Science, 336 (6084). P. 1054–1057.
Schulten, K., Swenberg, C. E., & Weller, A. (1978). ‘A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion’, Zeitschrift für Physikalische Chemie, 111 (1). P. 1–5.
Подробный обзор данных по радикальным парам см.: Hore, P. J., and Henrik Mouritsen (2016). ‘The radical-pair mechanism of magnetoreception’, Annual Review of Biophysics, 45. P. 299–344.
Zapka, M., Heyers, D., Hein, C. M., Engels, S., Schneider, N. L., Hans, J., … & Mouritsen, H. (2009). ‘Visual but not trigeminal mediation of magnetic compass information in a migratory bird’, Nature, 461 (7268). P. 1274.
Gegear, R. J., Casselman, A., Waddell, S., & Reppert, S. M. (2008). ‘Cryptochrome mediates light-dependent magnetosensitivity in Drosophila’, Nature, 454 (7207). P. 1014; Gegear, R. J., Foley, L. E., Casselman, A., & Reppert, S. M. (2010). ‘Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism’, Nature, 463 (7282). P. 804.
Bazalova, O., Kvicalova, M., Valkova, T., Slaby, P., Bartos, P., Netusil, R., … & Damulewicz, M. (2016). ‘Cryptochrome 2 mediates directional magnetoreception in cockroaches’, Proceedings of the National Academy of Sciences, 113 (6). P. 1660–1665.
В большинстве случаев, но не всегда: например, солнечная электроэнергетика основана на другом принципе.
Стефано Лоренцини (р. ок. 1652).
Jungerman, R. L., & Rosenblum, B. (1980). ‘Magnetic induction for the sensing of magnetic fields by animals – an analysis’, Journal of Theoretical Biology, 87 (1). P. 25–32.
Lauwers, M., Pichler, P., Edelman, N. B., Resch, G. P., Ushakova, L., Salzer, M. C., … & Keays, D. A. (2013). ‘An iron-rich organelle in the cuticular plate of avian hair cells’, Current Biology, 23 (10). P. 924–929.
Nordmann, G. C., Hochstoeger, T., & Keays, D. A. (2017). ‘Magnetoreception – a sense without a receptor’, PLoS Biology, 15 (10), e2003234.
Речь идет о нескольких видах тунца – обыкновенном, или синем, тунце (Thunnus thynnus), тихоокеанском голубом тунце (Thunnus orientalis) и австралийском тунце (Thunnus maccoyii).
Tawa, A., Ishihara, T., Uematsu, Y., Ono, T., & Ohshimo, S. (2017). ‘Evidence of westward transoceanic migration of Pacific bluefin tuna in the Sea of Japan based on stable isotope analysis’, Marine Biology, 164 (4). P. 94; Block, B. A., et al. (2005). ‘Electronic tagging and population structure of Atlantic bluefin tuna’, Nature 434. P. 1121–1127.
Willis, J., Phillips, J., Muheim, R., Diego-Rasilla, F. J., & Hobday, A. J. (2009). ‘Spike dives of juvenile southern bluefin tuna (Thunnus maccoyii): a navigational role?’, Behavioral Ecology and Sociobiology, 64 (1). P. 57.
Walker, M. M. (1984). ‘Learned magnetic field discrimination in yellowfin tuna, Thunnus albacares’, Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 155 (5). P. 673–679.
De Waal, F., Are We Smart Enough to Know How Smart Animals Are? (Granta, 2016). P. 55.
Цит по изд.: Де Вааль Ф. Достаточно ли мы умны, чтобы судить об уме животных? / Пер. Н. Майсуряна. М.: Альпина нон-фикшен, 2017.
Tolman, E. C. (1948). ‘Cognitive maps in rats and men’, Psychological Review, 55 (4). P. 189.
Цит. по: Толмен Э. Когнитивные карты у крыс и у человека // История психологии (10–30-е гг. Период открытого кризиса): Тексты. М.: Изд-во Моск. ун-та. 1992. С. 124–143.
Кёлер Вольфганг (1887–1967) – один из основателей гештальтпсихологии. С 1913 по 1920 г. работал директором станции исследования человекообразных обезьян Прусской академии наук на о. Тенерифе.
См. краткое изложение: Gould & Gould, Nature’s Compass. P. 155–157.
Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R., Cognitive Neuroscience (W. W. Norton, 2002). P. 18.
См., например, Hubel, D. H., & Wiesel, T. N. (1963). ‘Shape and arrangement of columns in cat’s striate cortex’, The Journal of Physiology, 165 (3). P. 559–568.
Подобные операции на височных долях с удалением тканей, которые считаются источником эпилепсии, широко проводятся до сих пор, но гораздо более осторожно и точно.
Ίππόκαμπος – от греч. ἵππος (лошадь) и κάμπος (морское чудовище).
Scoville, W. B., & Milner, B. (1957). ‘Loss of recent memory after bilateral hippocampal lesions’, Journal of Neurology, Neurosurgery, and Psychiatry, 20 (1). P. 11.
O’Keefe, J., & Dostrovsky, J. (1971). ‘The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat’, Brain Research, 34 (1). P. 171–175.
O’Keefe, J., & Nadel, L., The Hippocampus as a Cognitive Map (Oxford University Press, 1978).
Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., & Moser, M. B. (2004). ‘Spatial representation in the entorhinal cortex’, Science, 305 (5688). P. 1258–1264; Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). ‘Microstructure of a spatial map in the entorhinal cortex’, Nature, 436 (7052). P. 801.
Авторы изображения: Kate Jeffery, Giulio Casali (2018), https://doi.org/10.6084/m9.figshare.7264589 (по лицензии CC-BY 4.0).
Полный на сегодня перечень см.: Grieves, R. M., & Jeffery, K. J. (2017). ‘The representation of space in the brain’, Behavioural Processes, 135. P. 113–131.
По существующим правилам число лауреатов одной и той же Нобелевской премии не может быть больше трех.
Sherry, D. F., Grella, S. L., Guigueno, M. F., White, D. J., & Marrone, D. F. (2017). ‘Are There Place Cells in the Avian Hippocampus?’, Brain, Behavior and Evolution, 90 (1). P. 73–80.
Geva-Sagiv, M., Las, L., Yovel, Y., & Ulanovsky, N. (2015). ‘Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation’, Nature Reviews Neuroscience, 16 (2). P. 94.
Finkelstein, A., Las, L., & Ulanovsky, N. (2016). ‘3-D maps and compasses in the brain’, Annual Review of Neuroscience, 39. P. 171–196; Grieves, R. M., & Jeffery, K. J. (2017). ‘The representation of space in the brain’, Behavioural Processes, 135. P. 113–131.
Ulanovsky, N., & Moss, C. F. (2007). ‘Hippocampal cellular and network activity in freely moving echolocating bats’, Nature Neuroscience, 10 (2). P. 224–233.
Eichenbaum, H., & Cohen, N. J. (2014). ‘Can we reconcile the declarative memory and spatial navigation views on hippocampal function?’, Neuron, 83 (4). P. 764–770.
Moser, E. I., Moser, M. B., & McNaughton, B. L. (2017). ‘Spatial representation in the hippocampal formation: a history’, Nature Neuroscience, 20 (11). P. 1448–1464.
Buzsáki, G., & Llinás, R. (2017). ‘Space and time in the brain’, Science, 358 (6362). P. 482–485.
Речь идет о трехполосом древолазе (Ameerega trivittata).
Pašukonis, A., Loretto, M. C., & Hödl, W. (2017). ‘Map-like navigation from distances exceeding routine movements in the three-striped poison frog (Ameerega trivittata)’, Journal of Experimental Biology, jeb-169714.
Hort, J., Laczó, J., Vyhnálek, M., Bojar, M., Bureš, J., & Vlcek, K. (2007). ‘Spatial navigation deficit in amnestic mild cognitive impairment’, Proceedings of the National Academy of Sciences, 104 (10). P. 4042–4047.
См., например, http://www.niallmclaughlin.com/projects/alzheimers-respite-centre-dublin/.
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). ‘Navigation-related structural change in the hippocampi of taxi drivers’, Proceedings of the National Academy of Sciences, 97 (8). P. 4398–4403.
Интересно отметить, что за эти изменения, по-видимому, приходилось платить. Передняя часть гиппокампа у испытуемых из контрольной группы оказывалась крупнее, чем у водителей такси, что, возможно, означает, что у таксистов может быть понижена способность вспоминать некоторые виды визуальной информации.
Maguire, E. A., Woollett, K., & Spiers, H. J. (2006). ‘London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis’, Hippocampus, 16 (12). P. 1091–1101.
Konishi, K., & Bohbot, V. D. (2013). ‘Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze’, Frontiers in Aging Neuroscience, 5.
Stern, Y. (2006). ‘Cognitive reserve and Alzheimer disease’, Alzheimer Disease & Associated Disorders, 20, S 69–74. Также: Xu, W., Yu, J. T., Tan, M. S., & Tan, L. (2015). ‘Cognitive reserve and Alzheimer’s disease’, Molecular Neurobiology, 51 (1). P. 187–208.
Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017). ‘The cognitive map in humans: spatial navigation and beyond’, Nature Neuroscience, 20 (11). P. 1504.
Rubin, R. D., Watson, P. D., Duff, M. C., & Cohen, N. J. (2014). ‘The role of the hippocampus in flexible cognition and social behavior’, Frontiers in Human Neuroscience, 8. P. 742.
Kuehn, E., Chen, X., Geise, P., Oltmer, J., & Wolbers, T. (2018). ‘Social targets improve body-based and environment-based strategies during spatial navigation’, Experimental Brain Research. P. 1–10.
Omer, D. B., Maimon, S. R., Las, L., & Ulanovsky, N. (2018). ‘Social place-cells in the bat hippocampus’, Science, 359 (6372). P. 218–224; Danjo, T., Toyoizumi, T., & Fujisawa, S. (2018). ‘Spatial representations of self and other in the hippocampus’, Science, 359 (6372). P. 213–218; Okuyama, T., Kitamura, T., Roy, D. S., Itohara, S., & Tonegawa, S. (2016). ‘Ventral CA1 neurons store social memory’, Science, 353 (6307). P. 1536–1541.
Beadle, J. N., Tranel, D., Cohen, N. J., & Duff, M. (2013). ‘Empathy in hippocampal amnesia’, Frontiers in Psychology, 4. P. 69.
Tavares, R. M., Mendelsohn, A., Grossman, Y., Williams, C. H., Shapiro, M., Trope, Y., & Schiller, D. (2015). ‘A map for social navigation in the human brain’, Neuron, 87 (1). P. 231–243.
Vashro, L., & Cashdan, E. (2015). ‘Spatial cognition, mobility, and reproductive success in northwestern Namibia’, Evolution and Human Behavior, 36 (2). P. 123–129.
Duff, M. C., Kurczek, J., Rubin, R., Cohen, N. J., & Tranel, D. (2013). ‘Hippocampal amnesia disrupts creative thinking’, Hippocampus, 23 (12). P. 1143–1149.
В английском языке слово ice (лед) входит в устойчивые сочетания со всеми тремя перечисленными словами: ice cream (мороженое), ice skate (коньки), ice water (ледяная вода).
Warren, D. E., Kurczek, J., & Duff, M. C. (2016). ‘What relates newspaper, definite, and clothing? An article describing deficits in convergent problem solving and creativity following hippocampal damage’, Hippocampus, 26 (7). P. 835–840.
Constantinescu, A. O., O’Reilly, J. X., & Behrens, T. E. (2016). ‘Organizing conceptual knowledge in humans with a gridlike code’, Science, 352 (6292). P. 1464–1468.
«Миссия морского героя».
Coutrot, A., Silva, R., Manley, E., de Cothi, W., Sami, S., Bohbot, V., … & Spiers, H. (2017). Global determinants of navigation ability. Current Biology, 28 (17). P. 2861–2866. Приложение можно скачать по адресу http://www.seaheroquest.com/site/en/.
Loxodonta africana.
Polansky, L., Kilian, W., & Wittemyer, G. (April 2015). ‘Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state—space models’, in Proc. R. Soc. B., vol. 282, no. 1805. P. 20143042, The Royal Society.
Schmitt, M. H., Shuttleworth, A., Ward, D., & Shrader, A. M. (2018). ‘African elephants use plant odours to make foraging decisions across multiple spatial scales’, Animal Behaviour, 141. P. 17–27.
Levi, P. (trans. Wolf, S.), The Truce (Abacus, 1987). P. 349–351.
Здесь и далее цит. по изд.: Леви П. Передышка / Пер. с итал. Е. И. Дмитриевой. М.: Текст, 2002.
Solnit, R., A Field Guide to Getting Lost (Canongate, 2006). P. 10.
От англ. spoofing – пародия, имитация, подмена.
Carr, N. (2013). ‘All can be lost: The risk of putting our knowledge in the hands of machines’, The Atlantic, 11. P. 1–12.
Parasuraman, R., & Manzey, D. H. (2010). ‘Complacency and bias in human use of automation: An attentional integration’, Human Factors, 52 (3). P. 381–410.
https://www.telegraph.co.uk/news/earth/countryside/9090729/ Warning-over-decline-in-map-skills-as-ramblers-rely-on-sat-navs.html.
В русском языке нет устоявшегося перевода английского термина developmental topographical disorientation, но его также можно перевести как «связанная с развитием топографическая дезориентация» или «связанная с развитием топографическая агнозия», чтобы подчеркнуть отличие от приобретенной топографической дезориентации (связанной с повреждениями мозга). – Прим. ред.
Iaria, G., & Barton, J. J. (2010). ‘Developmental topographical disorientation: a newly discovered cognitive disorder’, Experimental Brain Research, 206 (2). P. 189–196.
Aporta, C., et al. (2005). Current Anthropology, 46 (5). P. 729–753.
Carr, N. (2013). The Atlantic, 11. P. 1–12.
Hemingway, Ernest, The Sun Also Rises (Scribner’s, 1926), ch. 13. P. 136.
Цит. по изд.: Хемингуэй Э. Фиеста (И восходит солнце). М.: Азбука-классика, 2005.
Balbuena, M. S., Tison, L., Hahn, M.-L., Greggers, U., Menzel, R. & Farina, W. M. (2015). ‘Effects of sublethal doses of glyphosate on honeybee navigation’, The Journal of Experimental Biology, 218. P. 2799–2805. doi:10.1242/jeb.117291.
Более подробную информацию можно найти на сайте «Ассоциации темного неба» (Dark Sky Association, http://darksky.org).
Быт. 1: 27.
Быт. 1: 28.
См.: Мф. 8: 28–34, Лк. 8: 26–39, Мк. 5: 1–20.
Цит. в Singer, Peter, Animal Liberation (Random House, 1990). P. 192.
St Thomas Aquinas, Summa Contra Gentiles, bk 3, pt 2, ch. 112.
Aristotle, Politics, bk 1, ch. 8.
См., например, https://www.newyorker.com/news/daily-comment/are-evangelical-leaders-saving-scott-pruitts-job.
Wilson, E. O., Biophilia: The Human Bond with Other Species (Harvard, 1984). P. 85.
https://aeon.co/essays/why-forests-and-rivers-are-the-most-potent-health-tonic-around.
Kuo, M. (2015). ‘How might contact with nature promote human health? Promising mechanisms and a possible central pathway’, Frontiers in Psychology, 6. P. 1093.
Piff, P. K., Dietze, P., Feinberg, M., Stancato, D. M., & Keltner, D. (2015). ‘Awe, the small self, and prosocial behavior’, Journal of Personality and Social Psychology, 108 (6). P. 883.
Более ранняя редакция этой книги выходила в русском переводе: Карр А. В океане без компаса / Пер. с англ. И. Гуровой. М.: Мир, 1971.
См. ссылку на русское издание в главе 2.
Де Вааль Ф. Достаточно ли мы умны, чтобы судить об уме животных? / Пер. с англ. Н. Майсуряна. М.: Альпина нон-фикшен, 2017.
См. ссылку на русское издание в начале главы 11.
Леви П. Человек ли это? / Пер. с итал. Е. И. Дмитриевой. М.: Текст; Дружба народов, 2001; Леви П. Передышка / Пер. с итал. Е. И. Дмитриевой. М.: Текст, 2002 (цитируется в начале главы 26).
Уилсон Э. О. Биофилия: Врожденная тяга к живому как связь человека с другими биологическими видами / Пер. с англ. С. Г. Пилецкого, И. В. Бородина. М.: URSS, 2017.