Книга: Супернавигаторы. О чудесах навигации в животном мире
Назад: Примечания
Дальше: Примечания

202

В поисках утраченного времени. Т. 1. В сторону Свана. Гл. I. Перевод А. А. Франковского.

203

Proust, M. (trans. Scott Moncrieff, C. K. & Gilmartin, T.), Remembrance of Things Past: Swann’s Way (Penguin, 1983). P. 48–50.

204

Shepherd, G. M., Neurogastronomy, op. cit. P. 111.

205

Pause, B. M. (2012). ‘Processing of body odor signals by the human brain’, Chemosens Percept, 5. P. 55–63. doi: 10.1007/ s12078–011–9108–2; pmid: 22448299.

206

McGann, J. P. (2017), op. cit.

207

Porter, J., Craven, B., Khan, R. M., Chang, S. J., Kang, I., Judkewitz, B., … & Sobel, N. (2007). ‘Mechanisms of scent-tracking in humans’, Nature Neuroscience, 10 (1). P. 27–29.

208

Jacobs, L. F., Arter, J., Cook, A., & Sulloway, F J. (2015). ‘Olfactory orientation and navigation in humans’, PloS One, 10 (6), e0129387.

209

Другое название – барибалы (Ursus americanus).

210

Rogers, L. L. (1987). ‘Navigation by adult black bears’, Journal of Mammalogy, 68 (1). P. 185–188.

211

Nature, 7, (20 February 1873). P. 303.

212

160 Papi, F., Fiore, L., Fiaschi, V., and Benvenuti, S. (1971). ‘The influence of olfactory nerve section on the homing capacity of carrier pigeons’, Monitore Zoologico Italiano, 5. P. 265–267.

213

Papi, F., Fiore, L., Fiaschi, V. and Benvenuti, S. (1972). ‘Olfaction and homing in pigeons’, Monitore Zoologico Italiano, 6. P. 85–95.

214

О гипотезе ольфакторной навигации см.: Чернецов Н. С. Ориентация и навигация мигрирующих птиц // Зоологический журнал. 2016. Т. 95. № 2. С. 128–146. – Прим. ред.

215

Перерезание (под общим наркозом) обонятельного нерва, который соединяет обонятельные рецепторы птицы с ее обонятельной луковицей, или применение местных обезболивающих или едких химикатов (например, сульфата цинка) для временного снижения чувствительности. По-видимому, птицы очень быстро оправляются от операции по пересечению обонятельного нерва, но обоняние у них уже не восстанавливается.

216

См., например, Benvenuti, S., Fiaschi, V., Fiore, L. and Papi, F. (1973). ‘Homing performances of inexperienced and directionally trained pigeons subjected to olfactory nerve section’, Journal of Comparative Physioliogy, 83. P. 81–92; и Biro, D., Meade, J. and Guilford, T. (2004). ‘Familiar route loyalty implies visual pilotage in the homing pigeon’, Proc. Natl. Acad. Sci. USA., 101. P. 17440–17443.

217

Baldaccini, N. E., Benvenuti, S., Fiaschi, V. and Papi, F. (1975). ‘Pigeon navigation: effects of wind deflection at home cage on homing behaviour’, J. Comp. Physiol., 99. P. 177–186.

218

См., например, Gagliardo, A., Ioalè, P., Odetti, F. and Bingman, V. P. (2001). ‘The ontogeny of the homing pigeon navigational map: evidence for a sensitive learning period’, Proc. Biol.Sci., 268. P. 197–202.

219

См., например, Phillips, J. B., & Waldvogel, J. A. (1988). ‘Celestial polarized light patterns as a calibration reference for sun compass of homing pigeons’, Journal of Theoretical Biology, 131 (1). P. 55–67.

220

Подробный обзор этой темы см.: Gagliardo, A. (2013). ‘Forty years of olfactory navigation in birds’, Journal of Experimental Biology, 216 (12). P. 2165–2171.

221

Wallraff, H. G. (2015). ‘An amazing discovery: bird navigation based on olfaction’, Journal of Experimental Biology, 218 (10). P. 1464–1466.

222

Benvenuti, S. and Wallraff, H. G. (1985). ‘Pigeon navigation: site simulation by means of atmospheric odours’, J. Comp. Physiol. A., 156. P. 737–746.

223

Jorge, P. E., Marques, A. E., & Phillips, J. B. (2009). ‘Activational rather than navigational effects of odors on homing of young pigeons’, Current Biology, 19 (8). P. 650–654.

224

Gagliardo, A., Pollonara, E., & Wikelski, M. (2018). ‘Only natural local odours allow homeward orientation in homing pigeons released at unfamiliar sites’, J. Comp. Physiol. A. P. 1–11.

225

Walcott, C., Wiltschko, W., Wiltschko, R., & Zupanc, G. K. (2018). ‘Olfactory navigation versus olfactory activation: a controversy revisited’.

226

Nevitt, G. A. (2008). ‘Sensory ecology on the high seas: the odor world of the procellariiform seabirds’, Journal of Experimental Biology, 211 (11). P. 1706–1713. Кроме того, обонятельная луковица почтового голубя крупнее, чем у других голубей (хотя и меньше, чем у буревестников): см.: Mehlhorn, J., & Rehkämper, G. (2009). ‘Neurobiology of the homing pigeon – a review’, Naturwissenschaften, 96 (9). P. 1011–1025.

227

Gagliardo, A., Bried, J., Lambardi, P., Luschi, P., Wikelski, M., & Bonadonna, F. (2013). ‘Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement’, Journal of Experimental Biology, 216 (15). P. 2798–2805.

228

Pollonara, E., Luschi, P., Guilford, T., Wikelski, M., Bonadonna, F., & Gagliardo, A. (2015). ‘Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: displacements with shearwaters in the Mediterranean Sea’, Scientific Reports, 5, srep16486.

229

Padget, O., Bond, S. L., Kavelaars, M. M., van Loon, E., Bolton, M., Fayet, A. L., … & Guilford, T. (2018). ‘In Situ Clock Shift Reveals that the Sun Compass Contributes to Orientation in a Pelagic Seabird’, Current Biology.

230

Padget, O., Dell’Ariccia, G., Gagliardo, A., González-Solís, J., & Guilford, T. (2017). ‘Anosmia impairs homing orientation but not foraging behaviour in free-ranging shearwaters’, Scientific Reports, 7.

231

Abolaffio, M., Reynolds, A. M., Cecere, J. G., Paiva, V. H., & Focardi, S. (2018). ‘Olfactory-cued navigation in shearwaters: linking movement patterns to mechanisms’, Scientific Reports, 8 (1). P. 11590.

232

Debose, J. L., & Nevitt, G. A. (2008). ‘The use of odors at different spatial scales: comparing birds with fish’, Journal of Chemical Ecology, 34 (7). P. 867–881. http://doi.org/10.1007/s10886–008–9493–4.

233

Nevitt, G. A., & Bonadonna, F. (2005). Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds’, Biology Letters, 1 (3). P. 303–305.

234

Pachyptila desolata.

235

Mouritsen, H. (2018). ‘Long-distance navigation and magnetoreception in migratory animals’, Nature, 558 (7708). P. 50.

236

Benhamou, S., Bried, J., Bonadonna, F., & Jouventin, P. (2003). ‘Homing in pelagic birds: a pilot experiment with white-chinned petrels released in the open sea’, Behavioural Processes, 61 (1–2). P. 95–100; Bonadonna, F., Bajzak, C., Benhamou, S., Igloi, K., Jouventin, P., Lipp, H. P., & Dell’Omo, G. (2005). ‘Orientation in the wandering albatross: interfering with magnetic perception does not affect orientation performance’, Proceedings of the Royal Society of London B: Biological Sciences, 272 (1562). P. 489–495.

237

Mora, C. V., Davison, M., Wild, J. M., & Walker, M. M. (2004).’Magnetoreception and its trigeminal mediation in the homing pigeon’, Nature, 432 (7016). P. 508.

238

Wallraff, H. G. (1980). ‘Does pigeon homing depend on stimuli perceived during displacement?’, Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 139 (3). P. 193–201.

239

См., например, Wiltschko, R., & Wiltschko, W. (2017). ‘Considerations on the role of olfactory input in avian navigation’, Journal of Experimental Biology, 220 (23). P. 4347–4350.

240

Fratercula arctica.

241

Guilford, T., Freeman, R., Boyle, D., Dean, B., Kirk, H., Phillips, R., & Perrins, C. (2011). ‘A dispersive migration in the Atlantic puffin and its implications for migratory navigation’, PLoS One, 6 (7), e21336.

242

Plectrophenax nivalis.

243

Gatty, H., Finding Your Way Without Map or Compass (Dover Books, 1983). P. 78, 79.

244

Konishi, M. (1993). ‘Listening with two ears’, Scientific American, 268 (4). P. 66–73.

245

Wilson, Clare, ‘Human bat uses echoes and sounds to see the world’, New Scientist, 6 May 2015.

246

См.: Flanagin, V. L., Schörnich, S., Schranner, M., Hummel, N., Wallmeier, L., Wahlberg, M., … & Wiegrebe, L. (2017). ‘Human exploration of enclosed spaces through echolocation’, Journal of Neuroscience, 37 (6). P. 1614–1627; и Thaler, L., Reich, G. M., Zhang, X., Wang, D., Smith, G. E., Tao, Z., et al. (2017). ‘Mouth-clicks used by blind expert human echolocators – signal description and model-based signal synthesis’, PLoS Comput Biol., 13 (8), e1005670.

247

См.: Balcombe, J., What a Fish Knows: The Inner Lives of our Underwater Cousins (Scientific American/Farrar, Straus and Giroux, 2016). P. 44.

248

Kemp, Christopher, ‘The original batman’, New Scientist, 15 November 2017.

249

Griffin, D. R., Webster, F. A., & Michael, C. R. (1960). The echolocation of flying insects by bats. Animal Behaviour, 8 (3–4). P. 141–154.

250

Сипухи также способны находить добычу в темноте, полагаясь только на слух. Они способны различать чрезвычайно слабый шум, который производят мыши и землеройки, пробирающиеся в траве, и определять их местоположение с поразительной точностью.

251

См.: Ulanovsky, N., & Moss, C. F. (2008). ‘What the bat’s voice tells the bat’s brain’, Proceedings of the National Academy of Sciences, 105 (25). P. 8491–8498.

252

Waterman, T. H., Animal Navigation (Scientific American Library, 1989). P. 131–133.

253

Verfuß, U. K., Miller, L. A., & Schnitzler, H. U. (2005). ‘Spatial orientation in echolocating harbour porpoises (Phocoena phocoena)’, Journal of Experimental Biology, 208 (17). P. 3385–3394.

254

Kreithen, M. L., & Quine, D. B. (1979). ‘Infrasound detection by the homing pigeon: a behavioral audiogram’, Journal of Comparative Physiology, 129 (1). P. 1–4.

255

Я сам часто слышал очень громкое двойное «бум-бум» «Конкорда», когда находился в море, посреди Ла-Манша.

256

Hagstrum, J. T. (2000). ‘Infrasound and the avian navigational map’, Journal of Experimental Biology, 203 (7). P. 1103–1111.

257

См.: Grant, U. S. (1895), Personal Memoirs of U. S. Grant. Sampson Low, ch. 28. Другие примеры: www.nellaware.com/blog/acoustic-shadow-in-the-civil-war.html.

258

Hagstrum, J. T. (2013). ‘Atmospheric propagation modeling indicates homing pigeons use loft-specific infrasonic ‘map’ cues’, Journal of Experimental Biology, 216 (4). P. 687–699.

259

Quine, D. B., & Kreithen, M. L. (1981). ‘Frequency shift discrimination: Can homing pigeons locate infrasounds by Doppler shifts?’, Journal of Comparative Physiology, 141 (2). P. 153–155.

260

Wallraff, H. G. (1972). ‘Homing of pigeons after extirpation of their cochleae and lagenae’, Nature, 236 (68). P. 223, 224.

261

Hagstrum, J. T., & Manley, G. A. (2015). ‘Releases of surgically deafened homing pigeons indicate that aural cues play a significant role in their navigational system’, Journal of Comparative Physiology A, 201 (10). P. 983–1001.

262

Hagstrum, J. T., McIsaac, H. P., & Drob, D. P. (2016). ‘Seasonal changes in atmospheric noise levels and the annual variation in pigeon homing performance’, Journal of Comparative Physiology A, 202 (6). P. 413–424.

263

Arctocephalus gazella.

264

Hoffman, J. I., & Forcada, J. (2012). ‘Extreme natal philopatry in female Antarctic fur seals (Arctocephalus gazella)’, Mammalian Biology-Zeitschrift für Säugetierkunde, 77 (1). P. 71–73.

265

Callorhinus ursinus.

266

Ibid.

267

Подробное обсуждение этой темы см.: Taylor, E.G.R., The Haven-Finding Art: A History of Navigation from Odysseus to Captain Cook (Hollis and Carter, 1956), ch. 5.

268

На самом деле геомагнитное поле возникает в результате взаимодействия жидкого внешнего ядра с загадочным первичным магнитным полем внутреннего ядра. Я благодарен Йону Хагструму, обратившему мое внимание на это обстоятельство.

269

Еще более запутывает ситуацию то обстоятельство, что северный магнитный полюс находится вблизи Южного географического и наоборот.

270

В морской терминологии в английском языке для обозначения магнитного склонения используется словосочетание magnetic variation (буквально «магнитная вариация») вместо magnetic declination, чтобы избежать смешения с астрономическим склонением (astronomical declination) – одним из основных параметров, использующихся в навигации по небесным телам.

271

Хорошую иллюстрацию можно найти по адресу https://maps.ngdc.noaa.gov/viewers/historical_declination/.

272

Строго говоря, магнитным наклонением называется угол между вектором напряженности магнитного поля Земли и горизонтальной плоскостью в рассматриваемой точке земной поверхности (НАКЛОНЕНИЕ МАГНИТНОЕ // Большая российская энциклопедия. Электронная версия (2017); https://bigenc.ru/physics/text/2246483. – Прим. ред.

273

Строго говоря, в теслах (и кратных единицах) измеряется не напряженность магнитного поля, а магнитная индукция. Эти величины совпадают в вакууме, или в немагнитной среде. Заметим также, что в геофизике используется внесистемная единица измерения гамма (γ), соответствующая напряженности магнитного поля в вакууме при индукции, равной 1 нТл.

274

Карты, показывающие изменения наклонения, склонения и напряженности магнитного поля на поверхности Земли, можно найти на сайте Национального управления атмосферных и океанических исследований США: https://ngdc.noaa.gov/geomag/WMM/image. shtml.

275

См. такую карту по адресу: https://www.ngdc.noaa.gov/geomag/WMM/data/WMM2015/WMM2015_F_MERC.pdf.

276

Viguier, C. (1882). ‘Le sens de l’orientation et ses organes chez les animaux et chez l’homme’, Revue Philosophique de la France et de l’Etranger. P. 1–36.

277

Gould, J. L., & Gould, C. G., Nature’s Compass (Princeton University Press, 2012). P. 100–104.

278

Merkel, F. W., Wiltschko, W. (1965). Magnetismus und Richtungsfinden zugunruhiger Rotkehlchen (Erithacus rubecula)‘. Vogelwarte, 23 (1). P. 71–77.

279

См. описание опытов Вилчко в кн.: Биогенный магнетит и магниторецепция. М.: Мир, 1989. Т. 2. С. 247–253. – Прим. ред.

280

Wiltschko, W., & Wiltschko, R. (1972). ‘Magnetic compass of European robins’, Science, 176 (4030). P. 62–64.

281

Они же малиновки (Erithacus rubecula).

282

Able, K. P., & Able, M. A. (1993). ‘Daytime calibration of magnetic orientation in a migratory bird requires a view of skylight polarization’, Nature, 364 (6437). P. 523.

283

Cochran, W. W., Mouritsen, H., & Wikelski, M. (2004). ‘Migrating songbirds recalibrate their magnetic compass daily from twilight cues’, Science, 304 (5669). P. 405–408.

284

Wiltschko, W., & Wiltschko, R. (2005). ‘Magnetic orientation and magnetoreception in birds and other animals’, Journal of Comparative Physiology A, 191 (8). P. 675–693.

285

Bottesch, M., Gerlach, G., Halbach, M., Bally, A., Kingsford, M. J., & Mouritsen, H. (2016). ‘A magnetic compass that might help coral reef fish larvae return to their natal reef’, Current Biology, 26 (24), R 1266–R 1267.

286

Phillips, J. B., & Sayeed, O. (1993). ‘Wavelength-dependent effects of light on magnetic compass orientation in Drosophila melanogaster’, Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 172 (3). P. 303–308.

287

Vácha, M., Drštková, D., & Pu˚ žová, T. (2008). ‘Tenebrio beetles use magnetic inclination compass’, Naturwissenschaften, 95 (8). P. 761–765.

288

Megaptera novaeangliae.

289

Rasmussen, K., Palacios, D. M., Calambokidis, J., Saborío, M. T., Dalla Rosa, L., Secchi, E. R., … & Stone, G. S. (2007). ‘Southern Hemisphere humpback whales wintering off Central America: insights from water temperature into the longest mammalian migration’, Biology Letters, 3 (3). P. 302–305.

290

Horton, T. W., Holdaway, R. N., Zerbini, A. N., Hauser, N., Garrigue, C., Andriolo, A., & Clapham, P. J. (2011). ‘Straight as an arrow: humpback whales swim constant course tracks during long-distance migration’, Biology Letters, rsbl20110279.

291

Bailey, H., Senior, B., Simmons, D., Rusin, J., Picken, G., & Thompson, P. M. (2010). ‘Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals’, Marine Pollution Bulletin, 60 (6). P. 888–897.

292

Kirschvink, J. L., Dizon, A. E., & Westphal, J. A. (1986). ‘Evidence from strandings for geomagnetic sensitivity in cetaceans’, Journal of Experimental Biology, 120 (1). P. 1–24; Kirschvink, J. L., ‘Geomagnetic sensitivity in cetaceans: an update with live stranding records in the United States’, in Sensory Abilities of Cetaceans (Springer, Boston, MA, 1990). P. 639–649.

293

Vanselow, K. H., Jacobsen, S., Hall, C., & Garthe, S. (2017). ‘Solar storms may trigger sperm whale strandings: explanation approaches for multiple strandings in the North Sea in 2016’, International Journal of Astrobiology. P. 1–9.

294

От англ. слов spy (подглядывать) и hopping (скачки́).

295

Garrigue C, Clapham, P. J., Geyer, Y., Kennedy, A. S., Zerbini, A. N. (2015). ‘Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales’, Royal Society Open Science, 2, 150489: http://dx.doi.org/10.1098/rsos.150489.

296

Обзор начального этапа истории загадки о миграции монарха см.: Brower, L. (1996). ‘Monarch butterfly orientation: missing pieces of a magnificent puzzle’, Journal of Experimental Biology, 199 (1). P. 93–103.

297

Urquhart, F., The Monarch Butterfly (University of Toronto Press, 1960). P. viii.

298

Ibid.

299

Приведенный ниже рассказ о миграции монарха во многом позаимствован из Walbauer, G. (2000). ‘Millions of monarchs, bunches of beetles: how bugs find strength in numbers’. Harvard University Press. P. 50–70.

300

Приблизительно 1,5 га, или 15 000 м2.

301

Barker, J. F., & Herman, W. S. (1976). ‘Effect of photoperiod and temperature on reproduction of the monarch butterfly, Danaus plexippus’, Journal of Insect Physiology, 22 (12). P. 1565–1568.

302

Perez, S. M., Taylor, O. R., & Jander, R. (1997). ‘A sun compass in monarch butterflies’, Nature, 387 (6628). P. 29.

303

Mouritsen, H., & Frost, B. J. (2002). ‘Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms’, Proceedings of the National Academy of Sciences, 99 (15). P. 10162–10166.

304

Эта методика более подробно описана в главе 17.

305

Reppert, S. M., Zhu, H., & White, R. H., (2004). ‘Polarized light helps monarchs migrate’, Current Biology, 14 (2). P. 155–158.

306

Merlin, C., Gegear, R. J., & Reppert, S. M. (2009). ‘Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies’, Science, 325 (5948). P. 1700–1704; и Guerra, P. A., Merlin, C., Gegear, R. J., & Reppert, S. M. (2012). ‘Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies’, Nature Communications, 3. P. 958.

307

Heinze, S., & Reppert, S. M. (2011). ‘Sun compass integration of skylight cues in migratory monarch butterflies’, Neuron, 69 (2). P. 345–358.

308

Guerra, P. A., Gegear, R. J., & Reppert, S. M. (2014). ‘A magnetic compass aids monarch butterfly migration’, Nature Communications, 5.

309

Reppert, S. M., Guerra, P. A., & Merlin, C. (2016). ‘Neurobiology of monarch butterfly migration’, Annual Review of Entomology, 61. P. 25–42.

310

Stalleicken, J., Mukhida, M., Labhart, T., Wehner, R., Frost, B. J. & Mouritsen, H. (2005). ‘Do monarch butterflies use polarized skylight for orientation?’, Journal of Experimental Biology, 208. P. 2399–2408.

311

Mouritsen, H., Derbyshire, R., Stalleicken, J., Mouritsen, O. Ø., Frost, B. J., & Norris, D. R. (2013). ‘An experimental displacement and over 50 years of tag-recoveries show that monarch butterflies are not true navigators’, Proceedings of the National Academy of Sciences, 110 (18). P. 7348–7353.

312

Русское название этого вида – бродяжка рыжая или бродяжница рыжая (желтоватая).

313

Anderson, R. C. (2009). ‘Do dragonflies migrate across the western Indian Ocean?’, Journal of Tropical Ecology, 25 (4). P. 347–358.

314

Hobson, K. A., Anderson, R. C., Soto, D. X., & Wassenaar, L. I. (2012). ‘Isotopic evidence that dragonflies (Pantala flavescens) migrating through the Maldives come from the northern Indian subcontinent’, PloS One, 7 (12), e52594.

315

Chapman, J. W., Reynolds, D. R., & Wilson, K. (2015). ‘Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences’, Ecology Letters, 18 (3). P. 287–302.

316

Или ванесса чертополоховая, Vanessa cardui.

317

Nesbit, R. L., Hill, J. K., Woiwod, I. P., Sivell, D., Bensusan, K. J., & Chapman, J. W. (2009). ‘Seasonally adaptive migratory headings mediated by a sun compass in the painted lady butterfly, Vanessa cardui’, Animal Behaviour, 78 (5). P. 1119–1125.

318

Chapman, J. W., Bell, J. R., Burgin, L. E., Reynolds, D. R., Pettersson, L. B., Hill, J. K., … & Thomas, J. A. (2012). ‘Seasonal migration to high latitudes results in major reproductive benefits in an insect’, Proceedings of the National Academy of Sciences, 109 (37). P. 14924–14929.

319

Hu, G., Lim, K. S., Horvitz, N., Clark, S. J., Reynolds, D. R., Sapir, N., & Chapman, J. W. (2016). ‘Mass seasonal bioflows of high-flying insect migrants’, Science, 354 (6319). P. 1584–1587.

320

Chapman, J. W., et al. (2010). ‘Flight orientation behaviors promote optimal migration trajectories in high-flying insects’, Science, 327. P. 682–685.

321

Synthliboramphus antiquus.

322

Gaston, A. J., Hashimoto, Y., & Wilson, L. (2015). First evidence of east—west migration across the North Pacific in a marine bird’, Ibis, 157 (4). P. 877–882.

323

Agrotis infusa.

324

В Австралии существуют и другие популяции мотылька Богонга, которые мигрируют в других направлениях.

325

15 сентября 2000 г.

326

Warrant, E., Frost, B., Green, K., Mouritsen, H., Dreyer, D., Adden, A., … & Heinze, S. (2016). ‘The Australian Bogong moth Agrotis infusa: a long-distance nocturnal navigator’, Frontiers in Behavioral Neuroscience, 10.

327

Эти термины происходят от латинских слов aestas (лето) и hiems (зима).

328

Heinze, S., & Warrant, E. (2016). ‘Bogong moths’, Current Biology, 26 (7), R 263–R 265.

329

Ibid.

330

Вомба́ты, вомбатовые – семейство млекопитающих из отряда двурезцовых сумчатых; распространены в Южной и Восточной Австралии, а также на о. Тасмания. (Щипанов Н. А. ВОМБАТЫ // Большая российская энциклопедия. Т. 5. М., 2006. С. 699). – Прим. ред.

331

Цит. в Warrant, E., Frost, B., Green, K., Mouritsen, H., Dreyer, D., Adden, A., … & Heinze, S. (2016). ‘The Australian Bogong moth Agrotis infusa: a long-distance nocturnal navigator’, Frontiers in Behavioral Neuroscience, 10.

332

Корробори – обрядовые танцы, посредством которых австралийские аборигены общались с духами «Времени сновидений».

333

Dreyer, D., Frost, B., Mouritsen, H., Günther, A., Green, K., Whitehouse, M., … & Warrant, E. (2018). ‘The Earth’s Magnetic Field and Visual Landmarks Steer Migratory Flight Behavior in the Nocturnal Australian Bogong Moth’, Current Biology.

334

Эверглейдс – обширный заболоченный район на юге полуострова Флорида; часть этой территории входит в состав одноименного национального парка.

335

Python molurus bivittatus. Естественный ареал этой змеи – Южная и Юго-Восточная Азия.

336

Pittman, S. E., Hart, K. M., Cherkiss, M. S., Snow, R. W., Fujisaki, I., Smith, B. J., … & Dorcas, M. E. (2014). Homing of invasive Burmese pythons in South Florida: evidence for map and compass senses in snakes’, Biology Letters, 10 (3), 20140040.

337

Гренландское название – Уманарссуак.

338

В специальной литературе эти типы навигации называют, соответственно, «аллоцентрическим» и «эгоцентрическим».

339

Иногда ее также называют «истинной навигацией».

340

Двух сигналов было бы недостаточно, так как соответствующие им окружности могут пересекаться в двух точках, что порождает неоднозначность.

341

В этой работе Пердек изучал обыкновенных скворцов (Sturnus vulgaris) и зябликов (Fringilla coelebs).

342

Perdeck, A. C. (1958). ‘Two Types of Orientation in Migrating Starlings, Sturnus vulgaris L., and Chaffinches, Fringilla coelebs L., as Revealed by Displacement Experiments’, Ardea, 46 (1–2). P. 1, 2.

343

Schmidt-Koenig, K., & Schlichte, H. J. (1972). ‘Homing in pigeons with impaired vision’, Proceedings of the National Academy of Sciences, 69 (9). P. 2446–2447; и Schmidt-Koenig, K., & Walcott, C. (1978). ‘Tracks of pigeons homing with frosted lenses’, Animal Behaviour, 8 (26). P. 480–486.

344

Walcott, C., & Schmidt-Koenig, K. (1973). ‘The effect on pigeon homing of anesthesia during displacement’, The Auk3, 90. P. 281–286.

345

Wallraff, H. G. (2013). ‘Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results’, Biogeosciences, 10 (11). P. 6929–6943.

346

Wallraff, H. (2005). ‘Beyond familiar landmarks and integrated routes: goal-oriented navigation by birds’, Connection Science, 17 (1–2). P. 91–106.

347

Boström, J. E., Åkesson, S., & Alerstam, T. (2012). ‘Where on earth can animals use a geomagnetic bi-coordinate map for navigation?’, Ecography, 35 (11). P. 1039–1047.

348

Более подробное обсуждение см.: Mouritsen, H. (2013). ‘The Magnetic Senses’, in: C. G. Galizia, P.-M. Lledo (eds.), Neurosciences – From Molecule to Behavior: A University Textbook, DOI 10.1007/978–3–642–10769–6_20. P. 427–443.

349

Muheim, R. (2011). ‘Behavioural and physiological mechanisms of polarized light sensitivity in birds’, Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366 (1565). P. 763–771.

350

Waterman, T. H. (2006). ‘Reviving a neglected celestial underwater polarization compass for aquatic animals’, Biological Reviews, 81 (1). P. 111–115.

351

Powell, S. B., Garnett, R., Marshall, J., Rizk, C., & Gruev, V. (2018). ‘Bioinspired polarization vision enables underwater geolocalization’, Science Advances, 4 (4), eaao6841.

352

Они же ротоногие (Stomatopoda), отряд ракообразных.

353

Thorup, K., Bisson, I.-A., Bowlin, M. S., Holland, R. A., Wingfield, J. C., Ramenofsky, M., & Wikelski, M. (2007). ‘Evidence for a navigational map stretching across the continental U.S. in a migratory songbird’, Proc. Natl. Acad. Sci. USA, 104. P. 18115–18119.

354

Zonotrichia leucophrys – птица семейства овсянковых, обитающая в Канаде и США.

355

Acrocephalus scirpaceus.

356

Chernetsov, N., Kishkinev, D., & Mouritsen, H. (2008). ‘A long-distance avian migrant compensates for longitudinal displacement during spring migration’, Current Biology, 18 (3). P. 188–190.

357

Piggins, H. D., & Loudon, A. (2005). ‘Circadian biology: clocks within clocks’, Current Biology, 15 (12), R 455–R 457.

358

Kishkinev, D., Chernetsov, N., & Mouritsen, H. (2010). ‘A Double-Clock or Jetlag Mechanism is Unlikely to be Involved in Detection of East—West Displacements in a Long-Distance Avian Migrant’, The Auk, 127 (4). P. 773–780.

359

Kishkinev, D., Chernetsov, N., Pakhomov, A., Heyers, D., & Mouritsen, H. (2015). ‘Eurasian reed warblers compensate for virtual magnetic displacement’, Current Biology, 25 (19), R 822–R 824.

360

Kishkinev, D., Chernetsov, N., Heyers, D., & Mouritsen, H. (2013). ‘Migratory reed warblers need intact trigeminal nerves to correct for a 1,000 km eastward displacement’, PLoS One, 8 (6), e65847.

361

Chernetsov, N., Pakhomov, A., Kobylkov, D., Kishkinev, D., Holland, R. A., & Mouritsen, H. (2017). ‘Migratory Eurasian reed warblers can use magnetic declination to solve the longitude problem,’ Current Biology, 27 (17). P. 2647–2651.

362

Quinn, T. P., and Brannon, E. L. (1982). ‘The use of celestial and magnetic cues by orienting sockeye salmon smolts’, J. Comp. Physiol., 147. P. 547–552.

363

Oncorhynchus nerka.

364

Putman, N. F., Lohmann, K. J., Putman, E. M., Quinn, T. P., Klimley, A. P., & Noakes, D. L. (2013). ‘Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon’, Current Biology, 23 (4). P. 312–316.

365

Putman, N. F., Scanlan, M. M., Billman, E. J., O’Neil, J. P., Couture, R. B., Quinn, T. P., … & Noakes, D. L. (2014). ‘An inherited magnetic map guides ocean navigation in juvenile Pacific salmon’, Current Biology, 24 (4). P. 446–450.

366

Capreolus capreolus.

367

Obleser, P., Hart, V., Malkemper, E. P., Begall, S., Holá, M., Painter, M. S., … & Burda, H. (2016). ‘Compass-controlled escape behavior in roe deer’, Behavioral Ecology and Sociobiology, 70 (8). P. 1345–1355.

368

Chelonia mydas.

369

Carr, A. F., The Sea Turtle (University of Texas, 1986). P. 26, 27.

370

Здесь и далее цит. по изд.: Карр А. В океане без компаса / Пер. с англ. И. Гуровой. М.: Мир, 1971.

371

Ibid. P. 159.

372

Ibid. P. 163–165.

373

Ракообразные семейства Alpheidae.

374

Papi, F., Liew, H. C., Luschi, P., & Chan, E. H. (1995). ‘Long-range migratory travel of a green turtle tracked by satellite: evidence for navigational ability in the open sea’, Marine Biology, 12 (2). P. 171–175.

375

Luschi, P., Papi, F., Liew, H. C., Chan, E. H., & Bonadonna, F. (1996). ‘Long-distance migration and homing after displacement in the green turtle (Chelonia mydas): a satellite tracking study’, Journal of Comparative Physiology A, 178 (4). P. 447–452.

376

Они же головастые черепахи, или каретты (Caretta caretta).

377

Dermochelys coriacea.

378

Papi, F., Luschi, P., Crosio, E., & Hughes, G. R. (1997). ‘Satellite tracking experiments on the navigational ability and migratory behaviour of the loggerhead turtle Caretta caretta’, Marine Biology, 129 (2). P. 215–220.

379

Hughes, G. R., Luschi, P., Mencacci, R., & Papi, F. (1998). ‘The 7000-km oceanic journey of a leatherback turtle tracked by satellite’, Journal of Experimental Marine Biology and Ecology, 229 (2). P. 209–217.

380

Luschi, P., Åkesson, S., Broderick, A. C., Glen, F., Godley, B. J., Papi, F., & Hays, G. C. (2001). ‘Testing the navigational abilities of ocean migrants: displacement experiments on green sea turtles (Chelonia mydas)’, Behavioral Ecology and Sociobiology, 50 (6). P. 528–534.

381

Hays, G. C., Åkesson, S., Broderick, A. C., Glen, F., Godley, B. J., Papi, F., & Luschi, P. (2003). ‘Island-finding ability of marine turtles’, Proceedings of the Royal Society of London B: Biological Sciences, 270 (suppl. 1). P. S 5–S 7.

382

Luschi, P., Benhamou, S., Girard, C., Ciccione, S., Roos, D., Sudre, J., & Benvenuti, S. (2007). ‘Marine turtles use geomagnetic cues during open-sea homing’, Current Biology, 17 (2). P. 126–133.

383

Gadus morhua.

384

Bonanomi, S., Overgaard Therkildsen, N., Retzel, A., Berg Hedeholm, R., Pedersen, M. W., Meldrup, D., … & Nielsen, E. E. (2016). ‘Historical DNA documents long-distance natal homing in marine fish’, Molecular Ecology, 25 (12). P. 2727–2734.

385

На сайте лаборатории Ломанна можно найти хороший обзор проводимых в ней исследований с иллюстрациями и многими из публикаций этой группы: http://www.unc.edu/depts/oceanweb/turtles/.

386

Здесь: административный центр коста-риканской провинции Гуанакасте, не имеющий никакого отношения к одноименной африканской стране.

387

Lepidochelys olivacea.

388

Morpho.

389

Семейство Palinuridae.

390

Lohmann, K. J., & Lohmann, C. M. (1992). Orientation to waves by green turtle hatchlings. Journal of Experimental Biology, 171 (1). P. 1–13.

391

См. видеозапись на сайте http://www.unc.edu/depts/oceanweb/turtles/.

392

Mirounga angustirostris.

393

Stewart, B. S., & DeLong, R. L. (1995). ‘Double migrations of the northern elephant seal, Mirounga angustirostris’, Journal of Mammalogy, 76 (1). P. 196–205.

394

Carcharodon carcharias.

395

Bonfil, R., Meÿer, M., Scholl, M. C., Johnson, R., O’Brien, S., Oosthuizen, H., … & Paterson, M. (2005). ‘Transoceanic migration, spatial dynamics, and population linkages of white sharks’, Science, 310 (5745). P. 100–103.

Назад: Примечания
Дальше: Примечания