Книга: Хлопок одной ладонью. Как неживая природа породила человеческий разум
Назад: Благодарности
На главную: Предисловие

СПИСОК ЛИТЕРАТУРЫ

Часть I. Откуда взялись все

Глава 1. В начале были буквы

1. Cameron, A. G. W. Abundances of the elements in the solar system. Space Science Reviews 15, 121–146, doi:10.1007/bf00172440 (1973).

2. Trends In The Chemical Properties Of The Elements, <>

3. Alberts, B. Molecular biology of the cell. 4th edn (Garland Science, 2002).

4. Hartley, H. Origin of the word 'protein'. Nature 168, 244, doi:10.1038/168244a0 (1951).

5. Ponomarenko, E. A. et al. The Size of the Human Proteome: The Width and Depth. Int J Anal Chem 2016, 7436849, doi:10.1155/2016/7436849 (2016).

6. Докинз Р. Эгоистичный ген. — М.: Мир, 1993.

7. Энгельс Ф. Диалектика природы. — М.: Госполитиздат, 1952.

8. Neptune, </>

9. Эксперимент Миллера — Юри.

10. Koonin, E. V. An RNA-making reactor for the origin of life. Proc Natl Acad Sci USA 104, 9105–9106, doi:10.1073/pnas.0702699104 (2007).

11. Koonin, E. V. The Logic of Chance: The Nature and Origin of Biological Evolution (Pearson Education, 2011).

12. Breaker, R. R. Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 4, doi:10.1101/cshperspect.a003566 (2012).

13. Robertson, M. P. & Joyce, G. F. The origins of the RNA world. Cold Spring Harb Perspect Biol 4, doi:10.1101/cshperspect.a003608 (2012).

14. Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39, 99–123, doi:10.1080/10409230490460765 (2004).

15. Wolf, Y. I. & Koonin, E. V. On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol Direct 2, 14, doi:10.1186/1745-6150-2-14 (2007).

16. Cech, T. R. Structural biology. The ribosome is a ribozyme. Science 289, 878–879, doi:10.1126/science.289.5481.878 (2000).

17. Lincoln, T. A. & Joyce, G. F. Self-sustained replication of an RNA enzyme. Science 323, 1229–1232, doi:10.1126/science.1167856 (2009).

18. Robertson, M. P. & Joyce, G. F. Highly efficient self-replicating RNA enzymes. Chem Biol 21, 238–245, doi:10.1016/j.chembiol.2013.12.004 (2014).

19. Paul, N. & Joyce, G. F. Minimal self-replicating systems. Curr Opin Chem Biol 8, 634–639, doi:10.1016/j.cbpa.2004.09.005 (2004).

20. Wu, M. & Higgs, P. G. Origin of self-replicating biopolymers: autocatalytic feedback can jump-start the RNA world. J Mol Evol 69, 541–554, doi:10.1007/s00239-009-9276-8 (2009).

21. Vaidya, N. et al. Spontaneous network formation among cooperative RNA replicators. Nature 491, 72–77, doi:10.1038/nature11549 (2012).

22. Cafferty, B. J., Fialho, D. M., Khanam, J., Krishnamurthy, R. & Hud, N. V. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat Commun 7, 11328, doi:10.1038/ncomms11328 (2016).

23. Trinks, H., Schröder, W. & Biebricher, C. K. Ice And The Origin Of Life. Origins of Life and Evolution of Biospheres 35, 429–445, doi:10.1007/s11084-005-5009-1 (2005).

24. Price, P. B. Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59, 217–231, doi:10.1111/j.1574–6941.2006.00234.x (2007).

25. Miyakawa, S., Cleaves, H. J. & Miller, S. L. The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32, 209–218, doi:10.1023/a:1019514022822 (2002).

26. Miyakawa, S., Cleaves, H. J. & Miller, S. L. The cold origin of life: A. Implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. Orig Life Evol Biosph 32, 195–208, doi:10.1023/a:1016514305984 (2002).

27. Follmann, H. & Brownson, C. Darwin's warm little pond revisited: from molecules to the origin of life. Naturwissenschaften 96, 1265–1292, doi:10.1007/s00114-009-0602-1 (2009).

28. Pearce, B. K. D., Pudritz, R. E., Semenov, D. A. & Henning, T. K. Origin of the RNA world: The fate of nucleobases in warm little ponds. Proc Natl Acad Sci USA 114, 11327–11332, doi:10.1073/pnas.1710339114 (2017).

29. Опарин А. И. Жизнь, ее природа, происхождение и развитие. — М.: Наука, 1968.

30. Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat Rev Microbiol 6, 805–814, doi:10.1038/nrmicro1991 (2008).

31. Burcar, B. T. et al. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems. Astrobiology 15, 509–522, doi:10.1089/ast.2014.1280 (2015).

32. Baaske, P. et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc Natl Acad Sci USA 104, 9346–9351, doi:10.1073/pnas.0609592104 (2007).

33. Mulkidjanian, A. Y. & Galperin, M. Y. On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 4, 27, doi:10.1186/1745-6150-4-27 (2009).

34. Mulkidjanian, A. Y. On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biol Direct 4, 26, doi:10.1186/1745-6150-4-26 (2009).

35. Deamer, D. W. & Georgiou, C. D. Hydrothermal Conditions and the Origin of Cellular Life. Astrobiology 15, 1091–1095, doi:10.1089/ast.2015.1338 (2015).

36. Sojo, V., Herschy, B., Whicher, A., Camprubi, E. & Lane, N. The Origin of Life in Alkaline Hydrothermal Vents. Astrobiology 16, 181–197, doi:10.1089/ast.2015.1406 (2016).

37. Nisbet, E. G. & Fowler, C. M. R. The hydrothermal imprint on life: did heat-shock proteins, metalloproteins and photosynthesis begin around hydrothermal vents? Geological Society, London, Special Publications 118, 239–251, doi:10.1144/gsl.Sp.1996.118.01.15 (1996).

38. Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307, 1428–1434, doi:10.1126/science.1102556 (2005).

39. Proskurowski, G. et al. Abiogenic hydrocarbon production at lost city hydrothermal field. Science 319, 604–607, doi:10.1126/science.1151194 (2008).

40. Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y. & Koonin, E. V. Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA 109, E821–830, doi:10.1073/pnas.1117774109 (2012).

41. Никитин М. Происхождение жизни: от РНК-мира до последнего общего предка всего живого, <> (2018).

Глава 2. Хорошая идея

1. Rigby, N., van der Merwe, P. & Williams, G. Pacific Exploration: Voyages of Discovery from Captain Cook's Endeavour to the Beagle (Bloomsbury Publishing, 2018).

2. Dynes, W. R., Johansson, W., Percy, W. A. & Donaldson, S. Encyclopedia of Homosexuality: A–L. (Garland Pub., 1990).

3. Franklin, R. The Death of Lord Londonderry. The Historian 96, 3 (2007).

4. Gibson, S. The Spirit of Inquiry: How one extraordinary society shaped modern science (OUP Oxford, 2019).

5. Pearl, S. About Faces: Physiognomy in Nineteenth-Century Britain (Harvard University Press, 2010).

6. Charles Darwin and the voyage of the Beagle (Pilot Press, 1945).

7. Oxford University Museum of Natural History: The Great Debate, <>

8. Barlow, D. The Devil within: Evolution of a tragedy. Weather 52, 337–341, doi:10.1002/j.1477–8696.1997.tb06250.x (1997).

9. Moore, P. The Tragic Life of Charles Darwin's Captain, <>

10. Steinheimer, F. D. Charles Darwin's bird collection and ornithological knowledge during the voyage of H. M. S. "Beagle", 1831–1836. Journal of Ornithology 145, 300–320, doi:10.1007/s10336-004-0043-8 (2004).

11. Sulloway, F. J. Darwin and his finches: The evolution of a legend. Journal of the History of Biology 15, 1–53, doi:10.1007/bf00132004 (1982).

12. MacCallum, R. M., Mauch, M., Burt, A. & Leroi, A. M. Evolution of music by public choice. Proc Natl Acad Sci USA 109, 12081–12086, doi:10.1073/pnas.1203182109 (2012).

13. Hug, L. A. et al. A new view of the tree of life. Nat Microbiol 1, 16048, doi:10.1038/nmicrobiol.2016.48 (2016).

14. Dobzhansky, T. Nothing in Biology Makes Sense except in the Light of Evolution. The American Biology Teacher 35, 125–129, doi:10.2307/4444260 (1973).

15. Campbell, A. K. & Matthews, S. B. Darwin's illness revealed. Postgraduate Medical Journal 81, 248, doi:10.1136/pgmj.2004.025569 (2005).

16. Yale, E. </> (2015).

17. Jenkin, F. [Review of] The origin of species. The North British Review 46, 277–318 (1867).

18. Путин каждый день, <>

19. Wobble and Superwobble. Science 319, 878–878, doi:10.1126/science.319.5865.878b (2008).

20. Vanzi, F., Vladimirov, S., Knudsen, C. R., Goldman, Y. E. & Cooperman, B. S. Protein synthesis by single ribosomes. RNA 9, 1174–1179, doi:10.1261/rna.5800303 (2003).

21. Dennett, D. C. & Dennett, D. C. Darwin's Dangerous Idea: Evolution and the Meanins of Life (Simon & Schuster, 1996).

22. Докинз Р. Эгоистичный ген. — М.: Мир, 1993.

Глава 3. Зачем все усложнять

1. Ligon, B. L. Penicillin: its discovery and early development. Semin Pediatr Infect Dis 15, 52–57, doi:10.1053/j.spid.2004.02.001 (2004).

2. Quinn, R. Rethinking antibiotic research and development: World War II and the penicillin collaborative. Am J Public Health 103, 426–434, doi:10.2105/AJPH.2012.300693 (2013).

3. Barber, M. & Rozwadowska-Dowzenko, M. Infection by penicillin-resistant staphylococci. Lancet 2, 641–644, doi:10.1016/s0140–6736 (48) 92166–7 (1948).

4. Kirby, W. M. Extraction of a Highly Potent Penicillin Inactivator from Penicillin Resistant Staphylococci. Science 99, 452–453, doi:10.1126/science.99.2579.452 (1944).

5. Chambers, H. F. & Deleo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7, 629–641, doi:10.1038/nrmicro2200 (2009).

6. Antimicrobial resistance: global report on surveillance 2014, </> (2014).

7. Bush, K. The evolution of beta-lactamases. Ciba Found Symp 207, 152–163; discussion 163–156 (1997).

8. Dacks, J. B. et al. The changing view of eukaryogenesis — fossils, cells, lineages and how they all come together. J Cell Sci 129, 3695–3703, doi:10.1242/jcs.178566 (2016).

9. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87, 4576–4579, doi:10.1073/pnas.87.12.4576 (1990).

10. Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat Rev Microbiol 15, 711–723, doi:10.1038/nrmicro.2017.133 (2017).

11. Alberts, B. Molecular biology of the cell. 4th edn (Garland Science, 2002).

12. Raven, J. A. Rubisco: still the most abundant protein of Earth? New Phytol 198, 1–3, doi:10.1111/nph.12197 (2013).

13. Leslie, M. Origins. On the origin of photosynthesis. Science 323, 1286–1287, doi:10.1126/science.323.5919.1286 (2009).

14. Perez, N., Cardenas, R., Martin, O. & Michel, L.-M. The potential for photosynthesis in hydrothermal vents: a new avenue for life in the Universe? Astrophysics and Space Science 346, 327–331, doi:10.1007/s10509-013-1460-z (2013).

15. Van Dover, C. L., Reynolds, G. T., Chave, A. D. & Tyson, J. A. Light at deep-sea hydrothermal vents. Geophysical Research Letters 23, 2049–2052, doi:10.1029/96gl02151 (1996).

16. Blankenship, R. E. Early evolution of photosynthesis. Plant Physiol 154, 434–438, doi:10.1104/pp.110.161687 (2010).

17. Nelson, N. & Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5, 971–982, doi:10.1038/nrm1525 (2004).

18. Vinyard, D. J., Ananyev, G. M. & Dismukes, G. C. Photosystem II: the reaction center of oxygenic photosynthesis. Annu Rev Biochem 82, 577–606, doi:10.1146/annurev-biochem-070511–100425 (2013).

19. Scott, C. et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456–459, doi:10.1038/nature06811 (2008).

20. Lane, N. Oxygen: The Molecule that Made the World (Oxford University Press, 2003).

21. Наймарк Е. "Великое кислородное событие" на рубеже архея и протерозоя не было ни великим, ни событием, <

> (2014).

22. van Holde, K. E., Miller, K. I. & Decker, H. Hemocyanins and invertebrate evolution. J Biol Chem 276, 15563–15566, doi:10.1074/jbc.R100010200 (2001).

23. Cavalier-Smith, T. The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann NY Acad Sci 503, 55–71, doi:10.1111/j.1749–6632.1987.tb40597.x (1987).

24. Lopez-Garcia, P. & Moreira, D. Open Questions on the Origin of Eukaryotes. Trends Ecol Evol 30, 697–708, doi:10.1016/j.tree.2015.09.005 (2015).

25. Pedersen, R. B. et al. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat Commun 1, 126, doi:10.1038/ncomms1124 (2010).

26. Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179, doi:10.1038/nature14447 (2015).

27. Seitz, K. W., Lazar, C. S., Hinrichs, K. U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J 10, 1696–1705, doi:10.1038/ismej.2015.233 (2016).

28. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358, doi:10.1038/nature21031 (2017).

29. Imachi, H. et al. Isolation of an archaeon at the prokaryote-eukaryote interface. bioRxiv, 726976, doi:10.1101/726976 (2019).

30. Martin, W. F., Tielens, A. G. M., Mentel, M., Garg, S. G. & Gould, S. B. The Physiology of Phagocytosis in the Context of Mitochondrial Origin. Microbiol Mol Biol Rev 81, doi:10.1128/MMBR.00008–17 (2017).

31. Baum, D. A. A comparison of autogenous theories for the origin of eukaryotic cells. Am J Bot 102, 1954–1965, doi:10.3732/ajb.1500196 (2015).

32. Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21, 1133–1145, doi:10.1097/00004647-200110000-00001 (2001).

33. Engl, E. & Attwell, D. Non-signalling energy use in the brain. J Physiol 593, 3417–3429, doi:10.1113/jphysiol.2014.282517 (2015).

Глава 4. Чего ни сделаешь ради любви

1. Dobzhansky, T., Spassky, B. & Tidwell, T. Genetics of natural populations. XXXII. Inbreeding and the mutational and balanced genetic loads in natural populations of Drosophila pseudoobscura. Genetics 48, 361 (1963).

2. Ralls, K., Ballou, J. D. & Templeton, A. Estimates of Lethal Equivalents and the Cost of Inbreeding in Mammals. Conservation Biology 2, 185–193 (1988).

3. Dobzhansky, T. Genetic Loads in Natural Populations. Science 126, 191–194 (1957).

4. Barrett, S. C. & Charlesworth, D. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522–524, doi:10.1038/352522a0 (1991).

5. Vesteg, M. & Krajčovič, J. On the Origin of Meiosis and Sex. Sull'Origine Della Meiosi e Della Sessualit. 100, 147–161 (2007).

6. Cavalier-Smith, T. Origins of the machinery of recombination and sex. Heredity (Edinb) 88, 125–141, doi:10.1038/sj.hdy.6800034 (2002).

7. Cleveland, L. R. The Origin and Evolution of Meiosis. Science 105, 287–289, doi:10.1126/science.105.2724.287 (1947).

8. Mable, B. K. & Otto, S. P. The evolution of life cycles with haploid and diploid phases. BioEssays 20, 453–462, doi:10.1002/(sici) 1521–1878 (199806) 20:6<453::Aid-bies3>3.0. Co;2-n (1998).

9. Bernstein, H., Byers, G. S. & Michod, R. E. Evolution of Sexual Reproduction: Importance of DNA Repair, Complementation, and Variation. The American Naturalist 117, 537–549, doi:10.1086/283734 (1981).

10. Wilkins, A. S. & Holliday, R. The evolution of meiosis from mitosis. Genetics 181, 3–12, doi:10.1534/genetics.108.099762 (2009).

11. Quinn, A. How is the gender of some reptiles determined by temperature?, </> (2007).

12. Gilbert, S. F. & Barresi, M. J. F. Developmental biology (2016).

13. Lehtonen, J., Kokko, H. & Parker, G. A. What do isogamous organisms teach us about sex and the two sexes? Philos Trans R Soc Lond B Biol Sci 371, doi:10.1098/rstb.2015.0532 (2016).

14. Hopkins, K. Eunuchs in Politics in the Later Roman Empire. Proceedings of the Cambridge Philological Society 9, 62–80, doi:10.1017/S1750270500001408 (1963).

15. Tougher, S. & Boustan, R. a. S. Eunuchs in antiquity and beyond (Classical Press of Wales and Duckworth; David Brown Book [distributor in USA], 2002).

16. Walter, H. E. Biology of the Vertebrates: A Comparative Study of Man and His Animal Allies (Macmillan, 1928).

17. De Felici, M. in Oogenesis (eds Giovanni Coticchio, David F. Albertini, & Lucia De Santis) 19–37 (Springer London, 2013).

18. Fabian, D. F., T. The Evolution of Aging. Nature Education Knowledge 3 (2011).

19. Kirkwood, T. B. Evolution of ageing. Nature 270, 301–304, doi:10.1038/270301a0 (1977).

Часть II. Откуда взялись мы

Глава 5. Сложение движения

1. Simpson, A. G. & Roger, A. J. The real 'kingdoms' of eukaryotes. Curr Biol 14, R693–696, doi:10.1016/j.cub.2004.08.038 (2004).

2. Keeling, P. J. et al. The tree of eukaryotes. Trends Ecol Evol 20, 670–676, doi:10.1016/j.tree.2005.09.005 (2005).

3. Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52, 399–451, doi:10.1111/j.1550–7408.2005.00053.x (2005).

4. Stiller, J. W. et al. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun 5, 5764, doi:10.1038/ncomms6764 (2014).

5. Bodyl, A., Mackiewicz, P. & Gagat, P. Organelle evolution: Paulinella breaks a paradigm. Curr Biol 22, R304–306, doi:10.1016/j.cub.2012.03.020 (2012).

6. Philippe, H. et al. Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19, 706–712, doi:10.1016/j.cub.2009.02.052 (2009).

7. Nielsen, C. Six major steps in animal evolution: are we derived sponge larvae? Evol Dev 10, 241–257, doi:10.1111/j.1525-142X.2008.00231.x (2008).

8. Cavalier-Smith, T. Origin of animal multicellularity: precursors, causes, consequences-the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Philos Trans R Soc Lond B Biol Sci 372, doi:10.1098/rstb.2015.0476 (2017).

9. Fairclough, S. R., Dayel, M. J. & King, N. Multicellular development in a choanoflagellate. Curr Biol 20, R875–876, doi:10.1016/j.cub.2010.09.014 (2010).

10. Juliano, C. & Wessel, G. Developmental biology. Versatile germline genes. Science 329, 640–641, doi:10.1126/science.1194037 (2010).

11. Worheide, G. et al. Deep phylogeny and evolution of sponges (phylum Porifera). Adv Mar Biol 61, 1–78, doi:10.1016/B978-0-12-387787-1.00007–6 (2012).

12. Leininger, S. et al. Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans. Nat Commun 5, 3905, doi:10.1038/ncomms4905 (2014).

13. Ereskovsky, A. V. et al. The Homoscleromorph sponge Oscarella lobularis, a promising sponge model in evolutionary and developmental biology: model sponge Oscarella lobularis. Bioessays 31, 89–97, doi:10.1002/bies.080058 (2009).

14. Sharp, K. H., Eam, B., Faulkner, D. J. & Haygood, M. G. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol 73, 622–629, doi:10.1128/AEM.01493–06 (2007).

15. Gilbert, S. F. & Barresi, M. J. F. Developmental biology (2016).

16. Collins, A. G. Phylogeny of Medusozoa and the evolution of cnidarian life cycles. Journal of Evolutionary Biology 15, 418–432, doi:10.1046/j.1420–9101.2002.00403.x (2002).

17. Telford, M. J., Budd, G. E. & Philippe, H. Phylogenomic Insights into Animal Evolution. Curr Biol 25, R876–887, doi:10.1016/j.cub.2015.07.060 (2015).

18. Finnerty, J. R. Cnidarians Reveal Intermediate Stages in the Evolution of Hox Clusters and Axial Complexity1. Integrative and Comparative Biology 41, 608–620, doi:10.1093/icb/41.3.608 (2015).

19. Adoutte, A. et al. The new animal phylogeny: reliability and implications. Proc Natl Acad Sci USA 97, 4453–4456, doi:10.1073/pnas.97.9.4453 (2000).

20. Seipel, K. & Schmid, V. Evolution of striated muscle: jellyfish and the origin of triploblasty. Dev Biol 282, 14–26, doi:10.1016/j.ydbio.2005.03.032 (2005).

21. Leclere, L. & Rottinger, E. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration. Front Cell Dev Biol 4, 157, doi:10.3389/fcell.2016.00157 (2016).

22. Schippers, A. et al. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433, 861–864, doi:10.1038/nature03302 (2005).

23. Cavalier-Smith, T. Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 361, 969–1006, doi:10.1098/rstb.2006.1842 (2006).

24. Holland, P. W. Did homeobox gene duplications contribute to the Cambrian explosion? Zoological Lett 1, 1, doi:10.1186/s40851-014-0004-x (2015).

25. Mangano, M. G. & Buatois, L. A. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks. Proc Biol Sci 281, 20140038, doi:10.1098/rspb.2014.0038 (2014).

26. Zhang, X. & Cui, L. Oxygen requirements for the Cambrian explosion. Journal of Earth Science 27, 187–195, doi:10.1007/s12583-016-0690-8 (2016).

27. Mills, D. B. & Canfield, D. E. Oxygen and animal evolution: did a rise of atmospheric oxygen "trigger" the origin of animals? Bioessays 36, 1145–1155, doi:10.1002/bies.201400101 (2014).

28. Sperling, E. A. et al. Oxygen, ecology, and the Cambrian radiation of animals. Proc Natl Acad Sci USA 110, 13446–13451, doi:10.1073/pnas.1312778110 (2013).

29. Fox, D. What sparked the Cambrian explosion? Nature 530, 268–270, doi:10.1038/530268a (2016).

30. Deline, B. et al. Evolution of metazoan morphological disparity. Proc Natl Acad Sci USA 115, E8909 — E8918, doi:10.1073/pnas.1810575115 (2018).

Глава 6. На сушу!

1. King, H. Hippocrates' Woman: Reading the Female Body in Ancient Greece (Taylor & Francis, 2002).

2. Singer, C. The strange histories of some anatomical terms. Med Hist 3, 1–7, doi:10.1017/s0025727300024200 (1959).

3. Brown, G. W. Desert Biology: Special Topics on the Physical and Biological Aspects of Arid Regions (Elsevier Science, 2013).

4. Lutz, P. L. & Musick, J. A. The Biology of Sea Turtles (CRC Press, 2017).

5. Honegger, R., Edwards, D. & Axe, L. The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol 197, 264–275, doi:10.1111/nph.12009 (2013).

6. Heckman, D. S. et al. Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133, doi:10.1126/science.1061457 (2001).

7. Hawksworth, D. L. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Botanical Journal of the Linnean Society 96, 3–20, doi:10.1111/j.1095–8339.1988.tb00623.x (2008).

8. Spribille, T. et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488–492, doi:10.1126/science.aaf8287 (2016).

9. Sancho, L. G. et al. Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7, 443–454, doi:10.1089/ast.2006.0046 (2007).

10. Rundel, P. W. The ecological role of secondary lichen substances. Biochemical Systematics and Ecology 6, 157–170, doi: (1978).

11. Nash, T. H. Lichen Biology (Cambridge University Press, 1996).

12. Delwiche, C. F. & Cooper, E. D. The Evolutionary Origin of a Terrestrial Flora. Curr Biol 25, R899–910, doi:10.1016/j.cub.2015.08.029 (2015).

13. Kroken, S. B., Graham, L. E. & Cook, M. E. Occurrence and Evolutionary Significance of Resistant Cell Walls in Charophytes and Bryophytes. American Journal of Botany 83, 1241–1254, doi:10.2307/2446108 (1996).

14. Males, J. & Griffiths, H. Stomatal Biology of CAM Plants. Plant Physiol 174, 550–560, doi:10.1104/pp.17.00114 (2017).

15. Lewis, L. A. & McCourt, R. M. Green algae and the origin of land plants. Am J Bot 91, 1535–1556, doi:10.3732/ajb.91.10.1535 (2004).

16. Field, K. J., Pressel, S., Duckett, J. G., Rimington, W. R. & Bidartondo, M. I. Symbiotic options for the conquest of land. Trends Ecol Evol 30, 477–486, doi:10.1016/j.tree.2015.05.007 (2015).

17. Brundrett, M. in Advances in Ecological Research Vol. 21 (eds M. Begon, A. H. Fitter, & A. Macfadyen) 171–313 (Academic Press, 1991).

18. Brundrett, M. C. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154, 275–304, doi:10.1046/j.1469–8137.2002.00397.x (2002).

19. Harrison, C. J. & Morris, J. L. The origin and early evolution of vascular plant shoots and leaves. Philos Trans R Soc Lond B Biol Sci 373, doi:10.1098/rstb.2016.0496 (2018).

20. Beerling, D. J. Atmospheric carbon dioxide: a driver of photosynthetic eukaryote evolution for over a billion years? Philos Trans R Soc Lond B Biol Sci 367, 477–482, doi:10.1098/rstb.2011.0276 (2012).

21. Dorrell, R. G. & Smith, A. G. Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryot Cell 10, 856–868, doi:10.1128/EC.00326–10 (2011).

22. Caldwell, J. P., Thorp, J. H. & Jervey, T. O. Predator-prey relationships among larval dragonflies, salamanders, and frogs. Oecologia 46, 285–289, doi:10.1007/BF00346253 (1980).

23. Rota-Stabelli, O., Daley, A. C. & Pisani, D. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23, 392–398, doi:10.1016/j.cub.2013.01.026 (2013).

24. Linares, A. M., Maciel-Júnior, J. A. H., Espírito Santo De Mello, H. & Sá Fortes Leite, F. First report on predation of adult anurans by Odonata larvae. Salamandra 52, 42–44 (2016).

25. McCormick, S. & Polis, G. A. Arthropods that prey on vertebrates. Biological Reviews 57, 29–58, doi:10.1111/j.1469-185X.1982.tb00363.x (1982).

26. Ridpath, M. G. Predation on frogs and small birds by Hierodula werneri (Giglio-Tos) (Mantidae) in tropical Australia. . Australian Journal of Entomology 16, 153–154, doi:10.1111/j.1440–6055.1977.tb00077.x (1977).

27. Molinari, J. et al. Predation by giant centipedes, Scolopendra gigantea, on three species of bats in a Venezuelan cave. Caribbean Journal of Science 41, 340–346 (2005).

28. Schmidt-Nielsen, K. & Randall, D. J. Animal Physiology: Adaptation and Environment (Cambridge University Press, 1997).

29. Telford, M. J., Bourlat, S. J., Economou, A., Papillon, D. & Rota-Stabelli, O. The evolution of the Ecdysozoa. Philos Trans R Soc Lond B Biol Sci 363, 1529–1537, doi:10.1098/rstb.2007.2243 (2008).

30. Verberk, W. C. & Bilton, D. T. Can oxygen set thermal limits in an insect and drive gigantism? PLoS One 6, e22610, doi:10.1371/journal.pone.0022610 (2011).

31. Clapham, M. E. & Karr, J. A. Environmental and biotic controls on the evolutionary history of insect body size. Proc Natl Acad Sci USA 109, 10927–10930, doi:10.1073/pnas.1204026109 (2012).

32. Pittman, R. N. in Regulation of Tissue Oxygenation Ch. 4 (Morgan & Claypool Life Sciences, 2011).

Глава 7. Когда кончается свет

1. Alexander, R. M. Dinosaur biomechanics. Proc Biol Sci 273, 1849–1855, doi:10.1098/rspb.2006.3532 (2006).

2. Choo, B. Jurassic art: how our vision of dinosaurs has evolved over time, <> (2015).

3. Benton, M. J., Dhouailly, D., Jiang, B. & McNamara, M. The Early Origin of Feathers. Trends Ecol Evol 34, 856–869, doi:10.1016/j.tree.2019.04.018 (2019).

4. Quain, J. R. What Did T. Rex Look Like? A New Exhibit Has the 'Ultimate Predator' in Feathers, <> (2019).

5. Laurin, M. a. G., J. A. Diapsida. Lizards, Sphenodon, crocodylians, birds, and their extinct relatives, <> (2011).

6. Colbert, E. H. The Age of Reptiles (Dover Publications, 2012).

7. Carroll, R. L. The origin and early radiation of terrestrial vertebrates. Journal of Paleontology 75, 1202–1213, doi:10.1017/S0022336000017248 (2001).

8. Peyser, C. E. & Poulsen, C. J. Controls on Permo-Carboniferous precipitation over tropical Pangaea: A GCM sensitivity study. Palaeogeography, Palaeoclimatology, Palaeoecology 268, 181–192, doi: (2008).

9. Dunne, E. M. et al. Diversity change during the rise of tetrapods and the impact of the 'Carboniferous rainforest collapse'. Proc Biol Sci 285, doi:10.1098/rspb.2017.2730 (2018).

10. Rubidge, B. S. & Sidor, C. A. Evolutionary Patterns among Permo-Triassic Therapsids. Annual Review of Ecology and Systematics 32, 449–480 (2001).

11. DeMar, R. & Barghusen, H. R. Mechanis and the Evolution of the Synapsid Jaw. Evolution 26, 622–637, doi:10.2307/2407058 (1972).

12. Van Valkenburgh, B. & Jenkins, I. Evolutionary Patterns in the History of Permo-Triassic and Cenozoic Synapsid Predators. The Paleontological Society Papers 8, 267–288, doi:10.1017/S1089332600001121 (2002).

13. Sumida, S. & Martin, K. L. M. Amniote Origins: Completing the Transition to Land (Elsevier Science, 1997).

14. Espinoza, R. E., Wiens, J. J. & Tracy, C. R. Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. Proc Natl Acad Sci USA 101, 16819–16824, doi:10.1073/pnas.0401226101 (2004).

15. Sjostrom, E. Wood Chemistry: Fundamentals and Applications (Elsevier Science, 1993).

16. Smant, G. et al. Endogenous cellulases in animals: isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA 95, 4906–4911, doi:10.1073/pnas.95.9.4906 (1998).

17. Watanabe, H. & Tokuda, G. Animal cellulases. Cell Mol Life Sci 58, 1167–1178, doi:10.1007/PL00000931 (2001).

18. Lo, N., Watanabe, H. & Sugimura, M. Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc Biol Sci 270 Suppl 1, S69–72, doi:10.1098/rsbl.2003.0016 (2003).

19. Kamo, S. L. et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian — Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters 214, 75–91, doi: (2003).

20. Renne, P. R. & Basu, A. R. Rapid eruption of the siberian traps flood basalts at the permo-triassic boundary. Science 253, 176–179, doi:10.1126/science.253.5016.176 (1991).

21. Shen, S. Z. et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372, doi:10.1126/science.1213454 (2011).

22. Clarkson, M. O. et al. Ocean acidification and the Permo-Triassic mass extinction. Science 348, 229–232, doi:10.1126/science.aaa0193 (2015).

23. Erwin, D. H. The Permo — Triassic extinction. Nature 367, 231–236, doi:10.1038/367231a0 (1994).

24. Rothman, D. H. et al. Methanogenic burst in the end-Permian carbon cycle. Proc Natl Acad Sci USA 111, 5462–5467, doi:10.1073/pnas.1318106111 (2014).

25. Basu, A. R., Petaev, M. I., Poreda, R. J., Jacobsen, S. B. & Becker, L. Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica. Science 302, 1388–1392, doi:10.1126/science.1090852 (2003).

26. Becker, L. et al. Bedout: a possible end-Permian impact crater offshore of northwestern Australia. Science 304, 1469–1476, doi:10.1126/science.1093925 (2004).

27. Berner, R. A. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochimica et Cosmochimica Acta 69, 3211–3217, doi: (2005).

28. Floudas, D. et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719, doi:10.1126/science.1221748 (2012).

29. Gurewitsch, M. True Colors, </> (2008).

30. Talabot, M. The Myth of Whiteness in Classical Sculpture. The New Yorker (2018).

31. Conway, J., Kosemen, C. M., Naish, D. & Hartman, S. All Yesterdays: Unique and Speculative Views of Dinosaurs and Other Prehistoric Animals (Irregular Books, 2013).

32. Willerslev, E. et al. Long-term persistence of bacterial DNA. Curr Biol 14, R9–10, doi:10.1016/j.cub.2003.12.012 (2004).

33. Shapiro, B. Mammoth 2.0: will genome engineering resurrect extinct species? Genome Biol 16, 228, doi:10.1186/s13059-015-0800-4 (2015).

34. Black, R. You say "Velociraptor," I say "Deinonychus", </> (2008).

35. Vinther, J. The True Colors of Dinosaurs. Sci Am 316, 50–57, doi:10.1038/scientificamerican0317–50 (2017).

36. Brett-Surman, M. K., Holtz, T. R. & Farlow, J. O. The Complete Dinosaur (Indiana University Press, 2012).

37. Amiot, R. et al. Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs. Earth and Planetary Science Letters 246, 41–54, doi: (2006).

38. Varricchio, D. J. et al. Avian paternal care had dinosaur origin. Science 322, 1826–1828, doi:10.1126/science.1163245 (2008).

39. Meng, Q., Liu, J., Varricchio, D. J., Huang, T. & Gao, C. Palaeontology: parental care in an ornithischian dinosaur. Nature 431, 145–146, doi:10.1038/431145a (2004).

40. Hearn, L. & Williams, A. C. C. Pain in dinosaurs: what is the evidence? Philos Trans R Soc Lond B Biol Sci 374, 20190370, doi:10.1098/rstb.2019.0370 (2019).

41. Horner, J. R. The Nesting Behavior of Dinosaurs. Scientific American 250, 130–137 (1984).

42. Riede, T., Eliason, C. M., Miller, E. H., Goller, F. & Clarke, J. A. Coos, booms, and hoots: The evolution of closed-mouth vocal behavior in birds. Evolution 70, 1734–1746, doi:10.1111/evo.12988 (2016).

43. Xu, X., Zhou, Z. & Wang, X. The smallest known non-avian theropod dinosaur. Nature 408, 705–708, doi:10.1038/35047056 (2000).

44. Pan, Y. et al. The molecular evolution of feathers with direct evidence from fossils. Proc Natl Acad Sci USA 116, 3018–3023, doi:10.1073/pnas.1815703116 (2019).

45. Lautenschlager, S., Witmer, L. M., Altangerel, P. & Rayfield, E. J. Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs. Proc Natl Acad Sci USA 110, 20657–20662, doi:10.1073/pnas.1310711110 (2013).

46. Ostrom, J. H. Archaeopteryx and the origin of birds. Biological Journal of the Linnean Society 8, 91–182, doi:10.1111/j.1095–8312.1976.tb00244.x (2008).

47. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc Natl Acad Sci USA 115, 6506–6511, doi:10.1073/pnas.1711842115 (2018).

48. Newitz, A. Lystrosaurus: The Most Humble Badass of the Triassic, </> (2013).

49. Botha, J. & Smith, R. M. H. Lystrosaurus species composition across the Permo-Triassic boundary in the Karoo Basin of South Africa. Lethaia 40, 125–137, doi:10.1111/j.1502–3931.2007.00011.x (2007).

50. Botha-Brink, J. Burrowing in Lystrosaurus: preadaptation to a postextinction environment? Journal of Vertebrate Paleontology 37, e1365080, doi:10.1080/02724634.2017.1365080 (2017).

51. Botha-Brink, J., Codron, D., Huttenlocker, A. K., Angielczyk, K. D. & Ruta, M. Breeding Young as a Survival Strategy during Earth's Greatest Mass Extinction. Sci Rep 6, 24053, doi:10.1038/srep24053 (2016).

52. Huttenlocker, A. K. Body size reductions in nonmammalian eutheriodont therapsids (Synapsida) during the end-Permian mass extinction. PLoS One 9, e87553, doi:10.1371/journal.pone.0087553 (2014).

53. Abdala, F. Galesaurid cynodonts from the Early Triassic of South Africa: Another example of conflicting distribution of characters in non-mammalian cynodonts. South African Journal of Science 99, 95–96 (2003).

54. Schmidt-Nielsen, K. & Randall, D. J. Animal Physiology: Adaptation and Environment (Cambridge University Press, 1997).

55. Tucker, V. A. Respiratory Physiology of House Sparrows in Relation to High-Altitude Flight. Journal of Experimental Biology 48, 55 (1968).

56. Farmer, C. G. The Evolution of Unidirectional Pulmonary Airflow. Physiology (Bethesda) 30, 260–272, doi:10.1152/physiol.00056.2014 (2015).

57. Farmer, C. G. & Sanders, K. Unidirectional airflow in the lungs of alligators. Science 327, 338–340, doi:10.1126/science.1180219 (2010).

58. Schachner, E. R., Cieri, R. L., Butler, J. P. & Farmer, C. G. Unidirectional pulmonary airflow patterns in the savannah monitor lizard. Nature 506, 367–370, doi:10.1038/nature12871 (2014).

59. Cieri, R. L., Craven, B. A., Schachner, E. R. & Farmer, C. G. New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs. Proc Natl Acad Sci USA 111, 17218–17223, doi:10.1073/pnas.1405088111 (2014).

60. Farmer, C. G. Similarity of Crocodilian and Avian Lungs Indicates Unidirectional Flow Is Ancestral for Archosaurs. Integr Comp Biol 55, 962–971, doi:10.1093/icb/icv078 (2015).

61. Erickson, G. M., Rogers, K. C. & Yerby, S. A. Dinosaurian growth patterns and rapid avian growth rates. Nature 412, 429–433, doi:10.1038/35086558 (2001).

62. Gerkema, M. P., Davies, W. I., Foster, R. G., Menaker, M. & Hut, R. A. The nocturnal bottleneck and the evolution of activity patterns in mammals. Proc Biol Sci 280, 20130508, doi:10.1098/rspb.2013.0508 (2013).

63. Charles-Dominique, P. in Phylogeny of the Primates: A Multidisciplinary Approach (eds W. Patrick Luckett & Frederick S. Szalay) 69–88 (Springer US, 1975).

64. Heesy, C. P. & Hall, M. I. The nocturnal bottleneck and the evolution of mammalian vision. Brain Behav Evol 75, 195–203, doi:10.1159/000314278 (2010).

65. Seebacher, F. Dinosaur body temperatures: the occurrence of endothermy and ectothermy. Paleobiology 29, 105–122, doi:10.1666/0094–8373 (2003) 029<0105: DBTTOO>2.0. CO; 2 (2003).

66. Benton, M. J. Ectothermy and the Success of Dinosaurs. Evolution 33, 983–997, doi:10.2307/2407661 (1979).

67. Hillenius, W. J. Turbinates in Therapsids: Evidence for Late Permian Origins of Mammalian Endothermy. Evolution 48, 207–229, doi:10.1111/j.1558–5646.1994.tb01308.x (1994).

68. McNab, B. K. The Evolution of Endothermy in the Phylogeny of Mammals. The American Naturalist 112, 1–21, doi:10.1086/283249 (1978).

69. Bennett, A. F. & Ruben, J. A. Endothermy and activity in vertebrates. Science 206, 649–654, doi:10.1126/science.493968 (1979).

70. Edelman, I. S. Transition from the polikilotherm to the homeotherm: possible role of sodium transport and thyroid hormone. Fed Proc 35, 2180–2184 (1976).

71. Else, P. L., Windmill, D. J. & Markus, V. Molecular activity of sodium pumps in endotherms and ectotherms. Am J Physiol 271, R1287–1294, doi:10.1152/ajpregu.1996.271.5. R1287 (1996).

72. Hughes, D. A., Jastroch, M., Stoneking, M. & Klingenspor, M. Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis. BMC Evol Biol 9, 4, doi:10.1186/1471-2148-9-4 (2009).

73. Virtanen, K. A. BAT thermogenesis: Linking shivering to exercise. Cell Metab 19, 352–354, doi:10.1016/j.cmet.2014.02.013 (2014).

74. Lee, P. et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19, 302–309, doi:10.1016/j.cmet.2013.12.017 (2014).

75. Zhang, W. et al. Irisin: A myokine with locomotor activity. Neurosci Lett 595, 7–11, doi:10.1016/j.neulet.2015.03.069 (2015).

76. Xiong, X. Q. et al. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim Biophys Acta 1852, 1867–1875, doi:10.1016/j.bbadis.2015.06.017 (2015).

77. Kring, D. et al. Chicxulub and the Exploration of Large Peak-Ring Impact Craters through Scientific Drilling. GSA Today 27, doi:10.1130/GSATG352A.1 (2017).

78. Morgan, J. V. et al. The formation of peak rings in large impact craters. Science 354, 878–882, doi:10.1126/science.aah6561 (2016).

79. Ohno, S. et al. Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification. Nature Geoscience 7, 279–282, doi:10.1038/ngeo2095 (2014).

80. Robertson, D. S., McKenna, M. C., Toon, O. B., Hope, S. & Lillegraven, J. A. Survival in the first hours of the Cenozoic. GSA Bulletin 116, 760–768, doi:10.1130/B25402.1 (2004).

81. Pope, K. O., Baines, K. H., Ocampo, A. C. & Ivanov, B. A. Impact winter and the Cretaceous/Tertiary extinctions: Results of a Chicxulub asteroid impact model. Earth and Planetary Science Letters 128, 719–725, doi: (1994).

82. Belcher, C. M. Reigniting the Cretaceous-Palaeogene firestorm debate. Geology 37, 1147–1148, doi:10.1130/focus122009.1 (2009).

83. Farmer, C. G. Parental Care: The Key to Understanding Endothermy and Other Convergent Features in Birds and Mammals. Am Nat 155, 326–334, doi:10.1086/303323 (2000).

84. Grigg, G. C., Beard, L. A. & Augee, M. L. The evolution of endothermy and its diversity in mammals and birds. Physiol Biochem Zool 77, 982–997, doi:10.1086/425188 (2004).

Глава 8. Зеркало

1. Ben-Ami Bartal, I., Decety, J. & Mason, P. Empathy and pro-social behavior in rats. Science 334, 1427–1430, doi:10.1126/science.1210789 (2011).

2. Wechkin, S., Masserman, J. H. & Terris, W. Shock to a conspecific as an aversive stimulus. Psychonomic Science 1, 47–48, doi:10.3758/BF03342783 (1964).

3. Esaias, W. E. & Curl Jr, H. C. Effect of dinoflagellate bioluminescence on copepod ingestion rates. Limnology and Oceanography 17, 901–906, doi:10.4319/lo.1972.17.6.0901 (1972).

4. Seyfarth, R. M. & Cheney, D. L. Affiliation, empathy, and the origins of theory of mind. Proc Natl Acad Sci USA 110 Suppl 2, 10349–10356, doi:10.1073/pnas.1301223110 (2013).

5. Brosnan, S. F. & De Waal, F. B. Monkeys reject unequal pay. Nature 425, 297–299, doi:10.1038/nature01963 (2003).

6. Wernicke's Aphasia, <>

7. Wernicke's aphasia, <>

8. Gallese, V. & Goldman, A. Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences 2, 493–501, doi: (1998).

9. Michael, J. et al. Continuous theta-burst stimulation demonstrates a causal role of premotor homunculus in action understanding. Psychol Sci 25, 963–972, doi:10.1177/0956797613520608 (2014).

10. Keysers, C. & Gazzola, V. Expanding the mirror: vicarious activity for actions, emotions, and sensations. Curr Opin Neurobiol 19, 666–671, doi:10.1016/j.conb.2009.10.006 (2009).

11. Keysers, C. & Gazzola, V. Hebbian learning and predictive mirror neurons for actions, sensations and emotions. Philos Trans R Soc Lond B Biol Sci 369, 20130175, doi:10.1098/rstb.2013.0175 (2014).

12. Botha-Brink, J. & Modesto, S. P. A mixed-age classed 'pelycosaur' aggregation from South Africa: earliest evidence of parental care in amniotes? Proc Biol Sci 274, 2829–2834, doi:10.1098/rspb.2007.0803 (2007).

13. Jasinoski, S. C. & Abdala, F. Aggregations and parental care in the Early Triassic basal cynodonts Galesaurus planiceps and Thrinaxodon liorhinus. PeerJ 5, e2875, doi:10.7717/peerj.2875 (2017).

14. Schmidt-Nielsen, K. & Randall, D. J. Animal Physiology: Adaptation and Environment (Cambridge University Press, 1997).

15. Hopson, J. A. Endothermy, Small Size, and the Origin of Mammalian Reproduction. The American Naturalist 107, 446–452 (1973).

16. Broad, K. D., Curley, J. P. & Keverne, E. B. Mother-infant bonding and the evolution of mammalian social relationships. Philos Trans R Soc Lond B Biol Sci 361, 2199–2214, doi:10.1098/rstb.2006.1940 (2006).

17. Chen, Z. et al. Prolonged milk provisioning in a jumping spider. Science 362, 1052–1055, doi:10.1126/science.aat3692 (2018).

18. Attardo, G. M. et al. Analysis of milk gland structure and function in Glossina morsitans: milk protein production, symbiont populations and fecundity. J Insect Physiol 54, 1236–1242, doi:10.1016/j.jinsphys.2008.06.008 (2008).

19. Keverne, E. Biology and Pathology of Trophoblast (2006).

20. Crockford, C., Deschner, T., Ziegler, T. E. & Wittig, R. M. Endogenous peripheral oxytocin measures can give insight into the dynamics of social relationships: a review. Front Behav Neurosci 8, 68, doi:10.3389/fnbeh.2014.00068 (2014).

21. Nagasawa, M. et al. Social evolution. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science 348, 333–336, doi:10.1126/science.1261022 (2015).

22. Ogawa, S., Kudo, S., Kitsunai, Y. & Fukuchi, S. Increase in oxytocin secretion at ejaculation in male. Clin Endocrinol (Oxf) 13, 95–97, doi:10.1111/j.1365–2265.1980.tb01027.x (1980).

23. Carmichael, M. S. et al. Plasma oxytocin increases in the human sexual response. J Clin Endocrinol Metab 64, 27–31, doi:10.1210/jcem-64-1-27 (1987).

24. Holt-Lunstad, J., Birmingham, W. A. & Light, K. C. Influence of a "warm touch" support enhancement intervention among married couples on ambulatory blood pressure, oxytocin, alpha amylase, and cortisol. Psychosom Med 70, 976–985, doi:10.1097/PSY.0b013e318187aef7 (2008).

25. Grewen, K. M., Girdler, S. S., Amico, J. & Light, K. C. Effects of partner support on resting oxytocin, cortisol, norepinephrine, and blood pressure before and after warm partner contact. Psychosom Med 67, 531–538, doi:10.1097/01.psy.0000170341.88395.47 (2005).

26. Feldman, R. Oxytocin and social affiliation in humans. Horm Behav 61, 380–391, doi:10.1016/j.yhbeh.2012.01.008 (2012).

27. Zak, P. J., Stanton, A. A. & Ahmadi, S. Oxytocin increases generosity in humans. PLoS One 2, e1128, doi:10.1371/journal.pone.0001128 (2007).

28. Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U. & Fehr, E. Oxytocin increases trust in humans. Nature 435, 673–676, doi:10.1038/nature03701 (2005).

29. Domes, G., Heinrichs, M., Michel, A., Berger, C. & Herpertz, S. C. Oxytocin improves "mind-reading" in humans. Biol Psychiatry 61, 731–733, doi:10.1016/j.biopsych.2006.07.015 (2007).

30. Guastella, A. J. et al. Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry 67, 692–694, doi:10.1016/j.biopsych.2009.09.020 (2010).

31. Guastella, A. J., Mitchell, P. B. & Dadds, M. R. Oxytocin increases gaze to the eye region of human faces. Biol Psychiatry 63, 3–5, doi:10.1016/j.biopsych.2007.06.026 (2008).

32. Rosenzweig, M. R., Breedlove, S. M. & Watson, N. V. Biological psychology: An introduction to behavioral and cognitive neuroscience, 4th edn (Sinauer Associates, 2005).

33. Herculano-Houzel, S. et al. The elephant brain in numbers. Front Neuroanat 8, 46, doi:10.3389/fnana.2014.00046 (2014).

34. Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3, 31, doi:10.3389/neuro.09.031.2009 (2009).

35. Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci USA 109 Suppl 1, 10661–10668, doi:10.1073/pnas.1201895109 (2012).

36. Dunbar, R. I. & Shultz, S. Evolution in the social brain. Science 317, 1344–1347, doi:10.1126/science.1145463 (2007).

37. Dunbar, R. I. M. The social brain hypothesis. Evolutionary Anthropology: Issues, News, and Reviews 6, 178–190, doi:10.1002/(SICI) 1520–6505 (1998) 6:5<178::AID-EVAN5>3.0. CO; 2–8 (1998).

38. The World of Air Transport in 2018, <> (2018).

39. Cartmill, M. in Primate Evolution and Human Origins 14–21 (Routledge, 2017).

40. Bloch, J. I. & Boyer, D. M. Grasping primate origins. Science 298, 1606–1610, doi:10.1126/science.1078249 (2002).

41. Ross, C. F., Hall, M. I. & Heesy, C. P. in Primate origins: Adaptations and evolution 233–256 (Springer, 2007).

42. Heesy, C. P. & Hall, M. I. The nocturnal bottleneck and the evolution of mammalian vision. Brain Behav Evol 75, 195–203, doi:10.1159/000314278 (2010).

43. Jacobs, G. H. Evolution of colour vision in mammals. Philos Trans R Soc Lond B Biol Sci 364, 2957–2967, doi:10.1098/rstb.2009.0039 (2009).

44. Hall, M. I., Kamilar, J. M. & Kirk, E. C. Eye shape and the nocturnal bottleneck of mammals. Proc Biol Sci 279, 4962–4968, doi:10.1098/rspb.2012.2258 (2012).

45. Heesy, C. P. Seeing in stereo: The ecology and evolution of primate binocular vision and stereopsis. Evolutionary Anthropology: Issues, News, and Reviews 18, 21–35, doi:10.1002/evan.20195 (2009).

46. Shamay-Tsoory, S. G. & Abu-Akel, A. The Social Salience Hypothesis of Oxytocin. Biol Psychiatry 79, 194–202, doi:10.1016/j.biopsych.2015.07.020 (2016).

47. De Dreu, C. K., Greer, L. L., Van Kleef, G. A., Shalvi, S. & Handgraaf, M. J. Oxytocin promotes human ethnocentrism. Proc Natl Acad Sci USA 108, 1262–1266, doi:10.1073/pnas.1015316108 (2011).

48. De Dreu, C. K. et al. The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science 328, 1408–1411, doi:10.1126/science.1189047 (2010).

49. de Menocal, P. B. African climate change and faunal evolution during the Pliocene — Pleistocene. Earth and Planetary Science Letters 220, 3–24, doi: (2004).

50. Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158, doi:10.1038/38229 (1997).

51. Elton, S. The environmental context of human evolutionary history in Eurasia and Africa. J Anat 212, 377–393, doi:10.1111/j.1469–7580.2008.00872.x (2008).

52. Darwin, C. The descent of man: and selection in relation to sex (J. Murray, 1871).

53. Lovejoy, C. O. Evolution of human walking. Scientific American 259, 118–125 (1988).

54. Milton, K. A hypothesis to explain the role of meat‐eating in human evolution. Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews 8, 11–21 (1999).

55. Stanford, C. B. & Bunn, H. T. Meat-eating and human evolution (Oxford University Press, 2001).

56. Carvalho, S. et al. Chimpanzee carrying behaviour and the origins of human bipedality. Curr Biol 22, R180–181, doi:10.1016/j.cub.2012.01.052 (2012).

57. Wheeler, P. E. The evolution of bipedality and loss of functional body hair in hominids. Journal of Human Evolution 13, 91–98, doi: (1984).

58. Falk, D. Brain evolution in Homo: The "radiator" theory. Behavioral and Brain Sciences 13, 333–344, doi:10.1017/S0140525X00078973 (1990).

59. Langdon, J. H. Umbrella hypotheses and parsimony in human evolution: a critique of the Aquatic Ape Hypothesis. J Hum Evol 33, 479–494, doi:10.1006/jhev.1997.0146 (1997).

60. Balter, M. Becoming human. What made humans modern? Science 295, 1219–1225, doi:10.1126/science.295.5558.1219 (2002).

Часть III. Откуда взялся я

Глава 9. Мысль как абстракция

1. Robinson, W. S. in The Routledge Handbook of Consciousness 51–63 (Routledge, 2018).

2. Travis, J. Glia: the brain's other cells. Science 266, 970–973 (1994).

3. Magistretti, P. J. Neuron-glia metabolic coupling and plasticity. J Exp Biol 209, 2304–2311, doi:10.1242/jeb.02208 (2006).

4. Panatier, A. et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125, 775–784, doi:10.1016/j.cell.2006.02.051 (2006).

5. Aloisi, F. Immune function of microglia. Glia 36, 165–179, doi:10.1002/glia.1106 (2001).

6. Graeber, M. B. Changing face of microglia. Science 330, 783–788, doi:10.1126/science.1190929 (2010).

7. Pardridge, W. M. Transport of nutrients and hormones through the blood-brain barrier. Diabetologia 20, 246–254 (1981).

8. Kandel, E. R. Principles of neural science (2013).

9. Meissner, H. P. & Schmelz, H. Membrane potential of beta-cells in pancreatic islets. Pflugers Arch 351, 195–206, doi:10.1007/bf00586918 (1974).

10. Wood, D. C. Action spectrum and electrophysiological responses correlated with the photophobic response of Stentor coeruleus. Photochemistry and photobiology 24, 261–266 (1976).

11. Wood, D. C. Electrophysiological studies of the protozoan, Stentor coeruleus. Journal of neurobiology 1, 363–377 (1969).

12. Nickel, M. Evolutionary emergence of synaptic nervous systems: what can we learn from the non-synaptic, nerveless Porifera? Invertebrate Biology 129, 1–16, doi:10.1111/j.1744–7410.2010.00193.x (2010).

13. Brenner, E. D. et al. Plant neurobiology: an integrated view of plant signaling. Trends in Plant Science 11, 413–419, doi: (2006).

14. Satterlie, R. A. & Spencer, A. N. in Nervous systems in invertebrates 213–264 (Springer, 1987).

15. Hulbert, A. J. & Else, P. L. Comparison of the "mammal machine" and the "reptile machine": energy use and thyroid activity. Am J Physiol 241, R350–356, doi:10.1152/ajpregu.1981.241.5. R350 (1981).

16. Dibrova, D. V., Galperin, M. Y., Koonin, E. V. & Mulkidjanian, A. Y. Ancient Systems of Sodium/Potassium Homeostasis as Predecessors of Membrane Bioenergetics. Biochemistry (Mosc) 80, 495–516, doi:10.1134/S0006297915050016 (2015).

17. Venkatesh, B. et al. Genetic basis of tetrodotoxin resistance in pufferfishes. Curr Biol 15, 2069–2072, doi:10.1016/j.cub.2005.10.068 (2005).

18. Soong, T. W. & Venkatesh, B. Adaptive evolution of tetrodotoxin resistance in animals. Trends Genet 22, 621–626, doi:10.1016/j.tig.2006.08.010 (2006).

19. Ballard, D. H. Brain computation as hierarchical abstraction (MIT Press, 2015).

20. Nickerson, R. S. & Adams, M. J. Long-term memory for a common object. Cognitive Psychology 11, 287–307, doi: (1979).

21. Goldstein, A. G. & Chance, J. E. Visual recognition memory for complex configurations. Perception & Psychophysics 9, 237–241, doi:10.3758/BF03212641 (1971).

22. Miller, N. & Campbell, D. T. Recency and primacy in persuasion as a function of the timing of speeches and measurements. The Journal of Abnormal and Social Psychology 59, 1–9, doi:10.1037/h0049330 (1959).

23. Mackay, D. G. et al. Relations between emotion, memory, and attention: Evidence from taboo Stroop, lexical decision, and immediate memory tasks. Memory & Cognition 32, 474–488, doi:10.3758/BF03195840 (2004).

24. Simons, D. J. & Chabris, C. F. Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception 28, 1059–1074, doi:10.1068/p281059 (1999).

25. Kukushkin, N. V. & Carew, T. J. Memory Takes Time. Neuron 95, 259–279, doi:10.1016/j.neuron.2017.05.029 (2017).

26. Kukushkin, N. V. Taking memory beyond the brain: Does tobacco dream of the mosaic virus? Neurobiol Learn Mem 153, 111–116, doi:10.1016/j.nlm.2018.01.003 (2018).

27. Denes, A. S. et al. Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129, 277–288, doi:10.1016/j.cell.2007.02.040 (2007).

Глава 10. Огонь изнутри

1. Платон. Собр. соч. В 4 т. Т. 3. — М.: Мысль, 1994.

2. Siegel, R. E. Principles and Contradictions of Galen's Doctrine of Vision. Sudhoffs Archiv 54, 261–276 (1970).

3. Sabra, A. I. The Optics of Ibn Al-Haytham: Books I–III: on Direct Vision (Warburg Institute, University of London, 1989).

4. Gregg, V. R., Winer, G. A., Cottrell, J. E., Hedman, K. E. & Fournier, J. S. The persistence of a misconception about vision after educational interventions. Psychonomic Bulletin & Review 8, 622–626 (2001).

5. Thibodeau, P. Ancient Optics: Theories and Problems of Vision. A Companion to Science, Technology, and Medicine in Ancient Greece and Rome, 130–144, doi:10.1002/9781118373057.ch8 (2016).

6. Herwig, A. & Schneider, W. X. Predicting object features across saccades: Evidence from object recognition and visual search. Journal of Experimental Psychology: General 143, 1903–1922, doi:10.1037/a0036781 (2014).

7. Land, M. F. & Tatler, B. W. Looking and acting: Vision and eye movements in natural behaviour (Oxford University Press, 2009).

8. De Weerd, P., Gattass, R., Desimone, R. & Ungerleider, L. G. Responses of cells in monkey visual cortex during perceptual filling-in of an artificial scotoma. Nature 377, 731–734, doi:10.1038/377731a0 (1995).

9. Cirelli, C. & Tononi, G. Is sleep essential? PLoS Biol 6, e216, doi:10.1371/journal.pbio.0060216 (2008).

10. Hill, V. M., O'Connor, R. M. & Shirasu-Hiza, M. Tired and stressed: Examining the need for sleep. Eur J Neurosci, doi:10.1111/ejn.14197 (2018).

11. Van Wylen, D. G., Park, T. S., Rubio, R. & Berne, R. M. Increases in cerebral interstitial fluid adenosine concentration during hypoxia, local potassium infusion, and ischemia. J Cereb Blood Flow Metab 6, 522–528, doi:10.1038/jcbfm.1986.97 (1986).

12. Kalinchuk, A. V. et al. Local energy depletion in the basal forebrain increases sleep. Eur J Neurosci 17, 863–869, doi:10.1046/j.1460–9568.2003.02532.x (2003).

13. Porkka-Heiskanen, T. & Kalinchuk, A. V. Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15, 123–135, doi:10.1016/j.smrv.2010.06.005 (2011).

14. Fredholm, B. B. Adenosine, adenosine receptors and the actions of caffeine. Pharmacology & toxicology 76, 93–101 (1995).

15. Tononi, G. & Cirelli, C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34, doi:10.1016/j.neuron.2013.12.025 (2014).

16. Liu, Z.-W., Faraguna, U., Cirelli, C., Tononi, G. & Gao, X.-B. Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. Journal of Neuroscience 30, 8671–8675 (2010).

17. Babkoff, H., Sing, H. C., Thorne, D. R., Genser, S. G. & Hegge, F. W. Perceptual distortions and hallucinations reported during the course of sleep deprivation. Percept Mot Skills 68, 787–798, doi:10.2466/pms.1989.68.3.787 (1989).

18. Siegel, R. K. & West, L. J. Hallucinations: Behavior, experience, and theory (John Wiley & Sons, 1975).

19. West, L. J., Pierce, C. M. & Thomas, W. D. Lysergic Acid Diethylamide: Its Effects on a Male Asiatic Elephant. Science 138, 1100–1103, doi:10.1126/science.138.3545.1100 (1962).

20. Siegel, R. K. LSD-induced effects in elephants: Comparisons with musth behavior. Bulletin of the Psychonomic Society 22, 53–56, doi:10.3758/BF03333759 (1984).

21. de Vivo, L. et al. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507–510, doi:10.1126/science.aah5982 (2017).

22. Stickgold, R., Hobson, J. A., Fosse, R. & Fosse, M. Sleep, learning, and dreams: off-line memory reprocessing. Science 294, 1052–1057, doi:10.1126/science.1063530 (2001).

23. Siegel, J. M. The stuff dreams are made of: anatomical substrates of REM sleep. Nature neuroscience 9, 721 (2006).

24. Englot, D. J. A modern epilepsy surgery treatment algorithm: Incorporating traditional and emerging technologies. Epilepsy Behav 80, 68–74, doi:10.1016/j.yebeh.2017.12.041 (2018).

25. Penfield, W. & Rasmussen, T. The cerebral cortex of man; a clinical study of localization of function (Macmillan, 1950).

26. Penfield, W. The interpretive cortex; the stream of consciousness in the human brain can be electrically reactivated. Science 129, 1719–1725, doi:10.1126/science.129.3365.1719 (1959).

27. Bartolomei, F. et al. Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories. Neurology 63, 858–864, doi:10.1212/01.wnl.0000137037.56916.3f (2004).

28. Graziano, M. S. A., Taylor, C. S. R. & Moore, T. Complex Movements Evoked by Microstimulation of Precentral Cortex. Neuron 34, 841–851, doi: (2002).

29. Friston, K. A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360, 815–836, doi:10.1098/rstb.2005.1622 (2005).

30. Harris, K. D. & Mrsic-Flogel, T. D. Cortical connectivity and sensory coding. Nature 503, 51–58, doi:10.1038/nature12654 (2013).

31. Ts'o, D. Y., Gilbert, C. D. & Wiesel, T. N. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci 6, 1160–1170 (1986).

32. Buzas, P. et al. Model-based analysis of excitatory lateral connections in the visual cortex. J Comp Neurol 499, 861–881, doi:10.1002/cne.21134 (2006).

33. Fiorani Junior, M., Rosa, M. G., Gattass, R. & Rocha-Miranda, C. E. Dynamic surrounds of receptive fields in primate striate cortex: a physiological basis for perceptual completion? Proc Natl Acad Sci USA 89, 8547–8551, doi:10.1073/pnas.89.18.8547 (1992).

34. Sirosh, J. & Miikkulainen, R. Cooperative self-organization of afferent and lateral connections in cortical maps. Biological Cybernetics 71, 65–78, doi:10.1007/BF00198912 (1994).

35. O'Reilly, R. C. & Rudy, J. W. Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev 108, 311–345, doi:10.1037/0033-295x.108.2.311 (2001).

36. Isaacson, J. S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243, doi:10.1016/j.neuron.2011.09.027 (2011).

37. Dorrn, A. L., Yuan, K., Barker, A. J., Schreiner, C. E. & Froemke, R. C. Developmental sensory experience balances cortical excitation and inhibition. Nature 465, 932–936, doi:10.1038/nature09119 (2010).

38. Benchenane, K., Tiesinga, P. H. & Battaglia, F. P. Oscillations in the prefrontal cortex: a gateway to memory and attention. Curr Opin Neurobiol 21, 475–485, doi:10.1016/j.conb.2011.01.004 (2011).

39. Mumford, D. On the computational architecture of the neocortex. Biological cybernetics 66, 241–251 (1992).

40. Mumford, D. On the computational architecture of the neocortex. Biological cybernetics 65, 135–145 (1991).

41. Teyler, T. J. & DiScenna, P. The hippocampal memory indexing theory. Behavioral neuroscience 100, 147 (1986).

42. Tanaka, K. Z. et al. Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84, 347–354 (2014).

43. Wallenstein, G. V., Hasselmo, M. E. & Eichenbaum, H. The hippocampus as an associator of discontiguous events. Trends in Neurosciences 21, 317–323, doi: (1998).

44. Bota, M., Sporns, O. & Swanson, L. W. Architecture of the cerebral cortical association connectome underlying cognition. Proc Natl Acad Sci USA 112, E2093–2101, doi:10.1073/pnas.1504394112 (2015).

45. van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J Neurosci 31, 15775–15786, doi:10.1523/JNEUROSCI.3539–11.2011 (2011).

46. Rebola, N., Carta, M. & Mulle, C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci 18, 208–220, doi:10.1038/nrn.2017.10 (2017).

47. Sharon, T., Moscovitch, M. & Gilboa, A. Rapid neocortical acquisition of long-term arbitrary associations independent of the hippocampus. Proc Natl Acad Sci USA 108, 1146–1151, doi:10.1073/pnas.1005238108 (2011).

48. Morris, R. G. M., Garrud, P., Rawlins, J. N. P. a. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681 (1982).

49. Rasch, B. & Born, J. Maintaining memories by reactivation. Curr Opin Neurobiol 17, 698–703, doi:10.1016/j.conb.2007.11.007 (2007).

50. Frankland, P. W. & Bontempi, B. The organization of recent and remote memories. Nat Rev Neurosci 6, 119–130, doi:10.1038/nrn1607 (2005).

51. Callaway, E. M. Feedforward, feedback and inhibitory connections in primate visual cortex. Neural Netw 17, 625–632, doi:10.1016/j.neunet.2004.04.004 (2004).

52. Kok, P., Bains, L. J., van Mourik, T., Norris, D. G. & de Lange, F. P. Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback. Curr Biol 26, 371–376, doi:10.1016/j.cub.2015.12.038 (2016).

53. Elhilali, M. & Shamma, S. A. A cocktail party with a cortical twist: how cortical mechanisms contribute to sound segregation. J Acoust Soc Am 124, 3751–3771, doi:10.1121/1.3001672 (2008).

54. Kerlin, J. R., Shahin, A. J. & Miller, L. M. Attentional gain control of ongoing cortical speech representations in a "cocktail party". J Neurosci 30, 620–628, doi:10.1523/JNEUROSCI.3631–09.2010 (2010).

55. Northover, S. B., Pedersen, W. C., Cohen, A. B. & Andrews, P. W. Artificial surveillance cues do not increase generosity: two meta-analyses. Evolution and Human Behavior 38, 144–153, doi: (2017).

56. Dear, K., Dutton, K. & Fox, E. Do 'watching eyes' influence antisocial behavior? A systematic review & meta-analysis. Evolution and Human Behavior 40, 269–280, doi: (2019).

57. Nickerson, R. S. Confirmation bias: A ubiquitous phenomenon in many guises. Review of general psychology 2, 175–220 (1998).

58. Казанцева А. Кто бы мог подумать! Как мозг заставляет нас делать глупости. — М.: Corpus, 2014.

59. Shipp, S., Adams, R. A. & Friston, K. J. Reflections on agranular architecture: predictive coding in the motor cortex. Trends in neurosciences 36, 706–716 (2013).

60. Adams, R. A., Shipp, S. & Friston, K. J. Predictions not commands: active inference in the motor system. Brain Structure and Function 218, 611–643 (2013).

61. Thomson, E. E., Carra, R. & Nicolelis, M. A. Perceiving invisible light through a somatosensory cortical prosthesis. Nat Commun 4, 1482, doi:10.1038/ncomms2497 (2013).

Глава 11. Сколько стоит счастье

1. Sacks, O. Awakenings (Pan Macmillan, 1991).

2. Italie, H. Taking Nothing for Granted: The Short, Tragic "Awakening" of Rose R., <> (1991).

3. Beier, K. T. et al. Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. Cell 162, 622–634, doi:10.1016/j.cell.2015.07.015 (2015).

4. Kandel, E. R. Principles of neural science (2013).

5. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599, doi:10.1126/science.275.5306.1593 (1997).

6. Roesch, M. R., Calu, D. J. & Schoenbaum, G. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat Neurosci 10, 1615–1624, doi:10.1038/nn2013 (2007).

7. Zaghloul, K. A. et al. Human substantia nigra neurons encode unexpected financial rewards. Science 323, 1496–1499, doi:10.1126/science.1167342 (2009).

8. Carr, D. B. & Sesack, S. R. Projections from the Rat Prefrontal Cortex to the Ventral Tegmental Area: Target Specificity in the Synaptic Associations with Mesoaccumbens and Mesocortical Neurons. The Journal of Neuroscience 20, 3864, doi:10.1523/JNEUROSCI.20-10-03864.2000 (2000).

9. Frankopan, P. The Silk Roads: A New History of the World (Bloomsbury, 2015).

10. Friston, K., Thornton, C. & Clark, A. Free-energy minimization and the dark-room problem. Frontiers in psychology 3, 130 (2012).

11. Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and brain sciences 36, 181–204 (2013).

12. Barrett, L. F. & Simmons, W. K. Interoceptive predictions in the brain. Nat Rev Neurosci 16, 419–429, doi:10.1038/nrn3950 (2015).

13. Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

Глава 12. В начале было слово

1. Everett, D. & Everett, D. L. Don't Sleep, There are Snakes: Life and Language in the Amazonian Jungle (Profile, 2009).

2. Colapinto, J. The Interpreter: Has a remote Amazonian tribe upended our understanding of language? The New Yorker (2007).

3. Sakel, J. Acquiring complexity: The Portuguese of some Pirahã men. Linguistic Discovery 10, 75–88 (2012).

4. Everett, D. et al. Cultural constraints on grammar and cognition in Pirahã: Another look at the design features of human language. Current anthropology 46, 621–646 (2005).

5. Everett, D. L. Challenging Chomskyan linguistics: the case of Pirahã. Human development 50, 297 (2007).

6. Chomsky, N. in Recursion: Complexity in Cognition (eds Tom Roeper & Margaret Speas) 1–15 (Springer International Publishing, 2014).

7. von Humboldt, W. & Humboldt, W. Linguistic variability & intellectual development (University of Pennsylvania Press, 1972).

8. Heil, M. & Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25, 137–144, doi:10.1016/j.tree.2009.09.010 (2010).

9. Wyatt, T. D. Pheromones and Animal Behavior: Chemical Signals and Signatures (Cambridge University Press, 2014).

10. Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea (2009).

11. Martini, S. & Haddock, S. H. Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Sci Rep 7, 45750, doi:10.1038/srep45750 (2017).

12. Janik, V. M. Cognitive skills in bottlenose dolphin communication. Trends Cogn Sci 17, 157–159, doi:10.1016/j.tics.2013.02.005 (2013).

13. Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M. N. & Jenner, K. C. Cultural revolution in whale songs. Nature 408, 537, doi:10.1038/35046199 (2000).

14. Garland, E. C. et al. Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Curr Biol 21, 687–691, doi:10.1016/j.cub.2011.03.019 (2011).

15. Seyfarth, R. M., Cheney, D. L. & Marler, P. Vervet monkey alarm calls: semantic communication in a free-ranging primate. Animal Behaviour 28, 1070–1094 (1980).

16. Savage-Rumbaugh, E. S. & Rumbaugh, D. M. The emergence of language. Tools, language and cognition in human evolution, 86–108 (1993).

17. Deacon, T. W. The symbolic species: The co-evolution of language and the brain (WW Norton & Company, 1998).

18. Gardner, R. A. & Gardner, B. T. Teaching sign language to a chimpanzee. Science 165, 664–672 (1969).

19. Fouts, R. S. & Fouts, D. H. Loulis in conversation with the cross-fostered chimpanzees. Teaching sign language to chimpanzees, ed. RA Gardner, B. T. Gardner & TE Van Cantfort, 293–307 (1989).

20. Rensberger, B. in Washington Post (1985).

21. Botha, R. On homesign systems as a potential window on language evolution. Language & Communication 27, 41–53, doi: (2007).

22. Pyers, J. E. & Senghas, A. Language promotes false-belief understanding: Evidence from learners of a new sign language. Psychological science 20, 805–812 (2009).

23. Pyers, J. E., Shusterman, A., Senghas, A., Spelke, E. S. & Emmorey, K. Evidence from an emerging sign language reveals that language supports spatial cognition. Proc Natl Acad Sci USA 107, 12116–12120, doi:10.1073/pnas.0914044107 (2010).

24. Senghas, A. Intergenerational influence and ontogenetic development in the emergence of spatial grammar in Nicaraguan Sign Language. Cognitive Development 18, 511–531 (2003).

25. Senghas, R. J., Senghas, A. & Pyers, J. E. in Biology and knowledge revisited 305–324 (Routledge, 2014).

26. Докинз Р. Эгоистичный ген. — М.: Мир, 1993.

27. Whorf, B. L. Science and linguistics (Bobbs-Merrill Indianapolis, IN, 1940).

28. Malotki, E. Hopi Time: A Linguistic Analysis of the Temporal Concepts in the Hopi Language (Mouton, 1983).

29. Boroditsky, L. How language shapes thought. Scientific American 304, 62–65 (2011).

30. Boroditsky, L. & Gaby, A. Remembrances of times East: absolute spatial representations of time in an Australian aboriginal community. Psychological Science 21, 1635–1639 (2010).

31. Winawer, J. et al. Russian blues reveal effects of language on color discrimination. Proceedings of the National Academy of Sciences 104, 7780–7785 (2007).

32. Gordon, P. Numerical cognition without words: evidence from Amazonia. Science 306, 496–499, doi:10.1126/science.1094492 (2004).

33. Frank, M. C., Everett, D. L., Fedorenko, E. & Gibson, E. Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition 108, 819–824 (2008).

34. Tono Tono, <>

35. Broca's Aphasia, <>

36. Caramazza, A. & Zurif, E. B. Dissociation of algorithmic and heuristic processes in language comprehension: Evidence from aphasia. Brain and Language 3, 572–582, doi: (1976).

Эпилог

1. Harari, Y. N. Sapiens: A Brief History of Humankind (Harper, 2015).

2. Diamond, J. M. et al.Guns, Germs, and Steel: The Fates of Human Societies (W. W. Norton, 1997).

3. Weismann, A. Das Keimplasma; eine Theorie der Vererbung (Fischer, 1892).

Назад: Благодарности
На главную: Предисловие