Краткий ответ: Запас топлива и тяга стартовой ступени лунного модуля позволяла вывести его на орбиту, а «космодромом» послужила нижняя спускаемая ступень аппарата.
Выражаю признательность инженеру-двигателестроителю Елисею Маслову, а также инженеру-баллистику и популяризатору космонавтики, автору видеоблога «Море Ясности» Антону Громову за помощь в подготовке главы
Космический корабль, который доставлял людей на Луну и возвращал обратно в космос, назывался лунным модулем (Lunar module). Он имел двухступенчатую конструкцию: нижняя ступень (Descent stage) имела массу 10,3 т в заправленном состоянии, и ее маршевый двигатель тягой примерно 4,5 т обеспечивал сход с орбиты и мягкую посадку. Верхняя ступень (Ascent stage) снаряженной массой 4,7 т и тягой двигателя около 1,6 т возвращала экипаж на окололунную орбиту.
Чтобы вновь оказаться на окололунной орбите и встретиться там с кораблем Apollo, необходимо было иметь:
Для успешной стыковки и возвращения на Землю надо не только взлететь, но и выйти в точку встречи, где запланирована стыковка с командным кораблем.
Apollo ascent stage — стартовая ступень лунного модуля, которая была обитаемым отсеком и средством доставки астронавтов с поверхности Луны на низкую окололунную орбиту. NASA
Внешний облик стартовой (верхней) ступени лунного модуля (Ascent stage) сильно отличается от привычных нам ракет и космических кораблей, поскольку совершенно не приспособлен к взаимодействию с атмосферой и земным притяжением, поэтому кажется удивительным, что подобная неказистая и небольшая конструкция смогла вернуть людей с лунной поверхности.
Возвращаемая ступень лунного модуля имела массу 4,7 т, из которых чуть больше половины составляло топливо. Два бака горючего (аэрозин) и бак окислителя (тетраоксид азота) питали две топливные системы: маршевый двигатель тягой 1,6 т и двигатели системы ориентации. Из-за разницы в силе притяжения на Луне вес стартующей ступени составлял около 800 кг, поэтому тяги двигателя вполне хватало.
Схема устройства лунного модуля Apollo, в том числе расположения топливных баков. NASA
На этот вопрос можно ответить с помощью формулы Циолковского, с которой началась вся космонавтика.
Расчет произведен Антоном Громовым. Как видим, масса стартовой ступени лунного модуля и ее запас топлива позволяли получить прирост скорости 2385 м/с, в то время как орбитальная скорость на высоте стыковки с кораблем Apollo составляла около 1650 м/с. Примерно 200 м/с приходилось добавлять для компенсации гравитационных потерь, но даже так у взлетающего аппарата сохранялся немалый запас скорости. (Более подробный расчет можно найти в Приложении в конце книги.)
На Луне нет космодромов или просто подготовленных к старту площадок, поэтому космический корабль должен быть готов к таким условиям. Можно предположить, что единственный способ обеспечить достаточно безопасный старт с поверхности космического тела — это привезти стартовый стол с собой. В случае лунного модуля Apollo таким стартовым столом выступала первая нижняя ступень, которая обеспечивала мягкую посадку. Похожая конструкция, только в меньшем масштабе, была у советских космических аппаратов, доставивших лунный грунт. Однако оборудованный стартовый стол не обязателен при достаточно ровной поверхности и хорошей системе ориентации: так, пилотируемая лунная программа СССР предусматривала старт лунного корабля с неподготовленной поверхности Луны.
Верхняя ступень лунного модуля отделялась от нижней при помощи пиротехнических средств. Серия пироболтов подрывалась за несколько минут перед стартом с Луны. Пироболты — это крепежные средства, внутри которых находится заряд взрывчатки. Подрыв электрического детонатора позволяет отделить части, скрепленные пироболтом. Простота и надежность пироболтов позволяют активно использовать их в космонавтике всех стран. На лунном модуле Apollo пироболты скрепляли многие элементы конструкции между посадочной и подъемной ступенью и все коммуникации между ними.
Также пировзрыватели использовали, чтобы разорвать металлические мембраны в гелиевых емкостях и обеспечить необходимое давление в 7 атмосфер в топливной системе двигательной установки. Малые взрывы разрушали мембраны, что приводило двигатель в готовность к старту.
Элементы конструкции, соединяющие нижнюю и верхнюю ступени лунного модуля, разделялись более сложными средствами под названием пироножи (Explosive Guillotine). В пироноже взрывчатка придает энергию движения лезвию, которое разрушает связующие элементы, такие как алюминиевые тяги и элементы каркаса космического корабля. То есть в случае применения пироножа продукты взрыва не разлетаются в разные стороны, как в случае с пироболтами.
После разделения двух ступеней приводился в действие маршевый ракетный двигатель, который поднимал одну ступень над другой. Малые ракетные двигатели системы ориентации удерживали стартующую ступень в необходимом положении. Они же обеспечивали ориентацию в движении по траектории выведения на низкую окололунную орбиту.
Малые ракетные двигатели и система ориентации могли выровнять положение корабля после подъема и давали возможность старта даже с наклонной поверхности. Например, Apollo 15 прилунился на краю кратера с наклоном около 11 градусов, что близко к критическим 15 градусам, но система ориентации смогла задать необходимое положение взлетающей ступени сразу после старта.