Вся традиционная логика обычно предполагает, что в ней используются только точные символы. Закон исключенного среднего – истина, когда используются точные символы, но он неверен, когда символы являются неопределенными и неточными.
Бертран Рассел
Два события в начале XX века породили нечеткую, или «туманную логику», как ее в то время называли философы. Во-первых, логик Бертран Рассел вновь открыл и раскрыл классические греческие парадоксы на основе современной математики. Затем физик Вернер Гейзенберг обнаружил «принцип неопределенности» в квантовой физике. Парадокс Рассела положил конец тысячелетию слепой веры в точность математики, двухвалентной математики. Некоторые математики описали данный эффект как «потерянный рай».
В начале XX века Рассел заложил логические основы для нечеткой, неопределенной логики, но никогда не концентрировался на данном вопросе и не занимался им всерьез. Но стоит отметить, что, по крайней мере, он наконец выпустил серого кота из черно-белой сумки.
Принцип квантовой неопределенности Гейзенберга закончил или, по крайней мере, помял наше слепое верование в точность науки и фактических истин. Эта вера росла и развивалась со времен Исаака Ньютона, когда она в значительной степени вытесняла веру в религию и Бога. Теперь наука стала более свободной и смогла освещать новые пути. Сначала мы рассмотрим парадоксы Рассела и принцип неопределенности Гейзенберга и поглядим, где заканчивается западная логика и начинается размытость.
Рассмотрим гору песка. Гора ли это? Да. Выбросьте горсть песка из этой кучи, замените часть песка зерном. Будет ли гора песка все еще являться горой песка? Да. Продолжайте убирать песок и задавать себе этот двухвалентный вопрос – и в конце концов вы окажетесь у пустоты: перед вами не будет ни песчинок, ни горы песка. Гора песка превратилась в ничто.
Парадокс Кучи – логический парадокс, сформулированный Евбулидом из Милета (IV век до н. э.), связанный с неопределенностью предиката «быть кучей». Формулировка парадокса основана на базисной предпосылке, согласно которой одно зернышко не образует кучи, и индуктивной предпосылке, по которой добавление одного зернышка к совокупности, кучей не являющейся, несущественно для образования кучи. При принятии этих предпосылок никакая совокупность из сколь угодно большого количества зерен не будет образовывать кучи, что противоречит представлению о существовании кучи из зерен.
Греческое слово sorites означает логическую цепочку высказываний по принципу: «Если А, тогда В; Если В, то тогда и С; Если С… Если Y, то Z», и так далее. Получается, что первое слагаемое влечет за собой последнее: если А, то Z. Утверждения словно спускаются по лестнице.
Бертран Рассел привел пример мужской головы, обрамленной волосами, и задал вопрос, был ли мужчина лысым. Если мы будем состригать волосы с мужской головы по частям и то и дело задаваться вопросом, лысый ли мужчина, то не сможем утвердительно ответить на данный вопрос до тех пор, пока не сострижем все волосы с головы мужчины. Парадокс кучи звучит и выглядит более логично, поскольку в нем мы можем наблюдать последовательность фактов. Например: ваш мозг жив? Да. А если мы убьем одну его живую клетку, будет ли он все еще являться живым? Да. Мы продолжим задавать вопросы до тех пор, пока, в конечном итоге, спрашивать будет уже не о чем. Теперь попробуем перевернуть игру наоборот и представим, что мы имеем дело с безжизненным замороженным мозгом, к которому применили умную армию нечетких роботов, которые в свою очередь являются специалистами в области молекулярной инженерии и восстанавливают молекулы в мертвых клетках мозга и оживляют их. Мозг мертв? Да, он все еще мертв. Восстановим еще одну его клетку, затем еще одну, словно механик часть за частью чинит разбитую машину, и в конечном итоге ваш мозг снова живет, и вы снова живете. Что-то вроде этого случается каждое утро, когда мы просыпаемся и переходим от сна к бодрости.
Эти примеры могут показаться смешными и изобретательными для подтверждения утверждения о том, что все включает Парадокс Кучи. Поэтому рассмотрим любую старую вещь, сделанную из чего угодно. Рассмотрим камень или стул, планету или вовсе Вселенную. Они сделаны из молекул. Вещи и люди – это просто наборы молекул, мешки с атомами. Некоторые молекулы принадлежат к веществу, а остальные – нет. По крайней мере, согласно двухвалентной логике. Молекулы, выходящие за границы предмета, бросают вызов классификации.
Проще говоря, Парадокс Кучи состоит в следующем: если мы рассмотрим кучу песка, из которого постепенно удаляются песчинки, то можно построить рассуждение, используя утверждения: 1000000 песчинок – это куча песка; куча песка минус одна песчинка – это по-прежнему куча песка.
Если без остановки продолжать второе действие, в конечном счете это приведет к тому, что куча окажется состоящей из одной песчинки. На первый взгляд есть несколько способов избежать этого заключения. Можно возразить первой предпосылке, сказав, что миллион песчинок – это не куча. Но вместо 1000000 может быть сколь угодно другое большое число, а второе утверждение будет верным при любом числе с любым количеством нулей.
Таким образом, ответ должен прямо отрицать существование таких вещей, как куча. Кто-то может возразить второй предпосылке, заявив, что она верна не для всех «коллекций зерна» и что удаление одного зерна или песчинки все еще оставляет кучу кучей. Или же может заявить о том, что куча песка может состоять из одной песчинки.
Нечеткая логика берет «парадокс» из парадокса кучи. Это сводится к простой арифметике: умножьте кучу определений и получите определенность. Умножьте кучу неопределенностей, и получите сложную неопределенность. Чем больше неопределенностей вы умножаете, тем больше неопределенностей получаете. Бивалентность гласит, что утверждение «мозг жив» истинно на 100 %. Нечеткая логика или многозначность считает, что это правда в некоторой степени, менее 100 %, сначала, возможно, 99 % истинно, и в конечном итоге только 1 % истинно, когда, допустим, уже почти все клетки мозга мертвы.
Мораль: чем больше шагов в нашем вопросе, тем сложнее опрос. Когда мы спускаемся по лестнице выводов, выводов Шерлока Холмса, каждый шаг становится менее уверенным, менее безопасным, менее убедительным. Чем дольше он объясняется, тем меньше мы доверяем ему. Лучшим аргументом является прямое доказательство или опыт.
А как же дело обстоит с математическими рассуждениями? Они остаются двухвалентными. Они следуют по цепочке 100 %-ной уверенности и точности. Факт А влечет за собой факт В с точностью, факт В с точностью влечет за собой факт С, и так далее, пока дело не дойдет до определенного вывода. Математики часто судят о «глубине» теоремы по количеству шагов в ее доказательстве.
В 1976 году компьютер проверил тысячи случаев, чтобы доказать теорему о четырех цветах, согласно которой возможно окрасить карту только четырьмя цветами, если страны, разделяющие границы, должны иметь разные цвета. «Глубокая теорема» означает твердое доказательство, и это обычно означает длительное доказательство. Парадокс Кучи напоминает нам, что блуждать по просторам математики – совсем другое дело, нежели теоретически блуждать по просторам Вселенной.
Нечеткая логика основывается на двухвалентном рассуждении математики. Мы используем много маленьких черно-белых кирпичиков для построения математической теории серости. Тогда возникает вопрос: можем ли мы найти математическое утверждение, которое является серым? Проблема несоответствия (вызов Хемингуэя) заставляет нас отказаться от поиска утверждения о мире, которое является определенным, черно-белым описанием серой вещи. Но как насчет обратного? Можем ли мы найти серое описание черно-белой математики?
Парадоксы в тех случаях, когда некое понятие ссылается само на себя, облачены в такие формы, в которых они одновременно утверждают и отрицают себя. Они обладают логической формой и во многом способны раздосадовать западных математиков.
Существует множество парадоксов, которые имеют одну из конечных точек, – факт А или не факт А. Из всех правил есть исключения. Это правило. Есть ли у него исключения? Предположим, что есть. Но тогда оно перестает быть правилом. Если у него есть исключения, тогда есть правила без исключений, и оно опровергает себя. В таком случае получается, что конечная точка данного парадокса находится где-то между фактом А и фактом не А. То же самое справедливо и для обобщения – все обобщения ложны.
Вы можете создать свой собственный парадокс лжеца на карточке. Для этого на одной стороне карточки напишите: «Предложение с другой стороны карточки истинно». С другой стороны напишите: «Предложение с другой стороны ложно».
В таких случаях парадоксы, которые ссылаются сами на себя, выглядят довольно забавно и симпатично, просто создавая игру слов. Это помогло дать им название «парадокс», которое предполагает, что двухвалентные противоречия являются только очевидными проблемами, а также что они представляют собой исключения, которые мы можем исправить путем работы с ними.
Бертран Рассел нашел парадокс, который положил конец точной математике, которая преобладала и главенствовала в науке со времен Аристотеля. Именно по этой причине Бертран Рассел может по праву считаться «дедушкой» нечеткой логики.
Парадокс Рассела имеет дело с множеством множеств. Коробок, которые наполнены коробками. Сами по себе множества не являются нечеткими. Объекты либо внутри них, либо снаружи. И это тоже вопрос степени. Бертран Рассел обнаружил множества, содержащие объекты и не содержащие объекты внутри себя. Иными словами, он обнаружил множество всех множеств, которые не являлись своими членами.
Рассмотрим множество яблок. Является ли оно множеством самого себя? Нет. Его члены – яблоки, а не множества. То же самое относится ко множествам других возможных объектов, предметов, людей, звезд и вселенных. Они не содержат множества. Они содержат людей, звезды или вселенные. А что насчет множества всех множеств? Является ли оно членом самого себя? Да. Множество всех множеств – это то множество, которому принадлежит членство в своем клубе.
Парадокс Рассела поразил математическое сообщество, произвел фурор и получил статус скандального. За несколько десятилетий до этого математикам приходилось иметь дело с неевклидовыми геометриями изогнутого пространства. На рубеже веков Георг Кантор, немецкий математик, ученик Вейерштрасса, наиболее известный как создатель теории множеств, заставил их принять каскад бесконечностей – столько бесконечностей, сколько существовало чисел (по правде говоря, возможно, чисел существует гораздо больше, чем мы привыкли думать, – возможно, существует континуум нечетких бесконечностей). Но изогнутое пространство и лестница бесконечностей не оспаривали определенность математики. Они расширяли ее границы, переводя на новый уровень. Парадокс Рассела был не парадоксом, а противоречием. Это означало, что возможно доказать любое заявление, которое нравилось ученым, поскольку противоречие подразумевает все.
Первой реакцией на это стало отрицание. Многие математики не одобряли парадоксы, не воспринимая их всерьез и считая, что парадоксы – лишь игра слов. Они не наблюдали проблем или противоречий в математических направлениях, которыми занимались. Они не обнаружили никаких парадоксов ни в гомологической ветви алгебры, ни в коммуникативной алгебре, ни в дифференциальной геометрии. Парадоксы казались артефактами, полученными в процессе того, как логики использовали основы логики и теории множеств. И такое отношение к парадоксам сохраняется по сей день. Парадоксы затрагивают многие разнообразные ветви и направления математики, оказывая влияние на них потому, что каждая ветвь основывается на теории множеств, но, тем не менее, математики не придают парадоксам надлежащего значения. Множество или класс является фундаментальной структурой в математике. Изначально существовали не объекты, а множества объектов. Даже множества были пусты.
Следующей реакцией на появление парадоксов стала попытка определить их как несуществующие. Парадоксы – противоречия. Ученые пытались доказать, что предположения и допущение различных фактов при объяснении парадоксов приводят к противоречию или абсурду. Такой техникой пользовался древнегреческий философ Сократ, этой же техникой пользуются политики для атаки на своих оппонентов. Мы не замечаем, как часто все мы в повседневной жизни прибегаем к подобному приему опровержения того, что нам не нравится.
Не нужно спорить с идеей или практикой. Нужно показать, что предмет обсуждения абсурден или приводит к плохим последствиям: атеизм влечет упадок морали. Анархия ведет к хаосу. Употребление марихуаны влечет за собой употребление более тяжелых наркотиков. Порнография приводит к насилию. В этих случаях мы используем следующую технику: если А подразумевает С и если С оказывается ложным или ведет по неправильному пути, тогда мы отрицаем А.
Парадоксы Бертрана Рассела были непростыми. Все пути в математике вели к ним, вся математика в целом сводилась к ним. Логика вела к ним. Никто не знал, от каких математических идей и предположений они должны были отказаться, чтобы предотвратить парадоксы. В споре более одного шага. Эффект имеет несколько совместных логических причин. Если А и В означают С, а если С получается ложным, то либо А является ложным, либо В является ложным, либо оба А и В являются ложными. Мы не знаем, что именно. Математика основывается на нескольких аксиомах и некоторых наитиях. Какие именно из них вызвали проблемы и несоответствия?
Начался поиск чистого набора аксиом, который избегал парадоксов. Рассел предложил свою «теорию типов», чтобы избежать парадоксов. Эта теория гласила, что можно говорить только на одном уровне математики за один раз, продвигаясь по иерархии математической лестницы. То есть, вы можете сделать утверждение «яблоки – красные», потому что знаете, что красный цвет – свойство яблок. Это свойство присуще данным объектам в логической иерархии. Также вы можете сделать заявление «красный – это цвет», идя по такому же логическому пути. Но вы не можете сказать «яблоки – это цвет» потому что тогда вы пропустите одну из логических ступеней математической лестницы. Так утверждал Бертран Рассел. Он утверждал так в надежде, что это поможет предотвратить парадоксы.
Математики и логики оспаривали это предположение и продолжали демонстрировать, что теория типов Рассела обходится математике слишком дорого.
Другие предложенные наборы аксиом постигла та же участь. Эти аксиомы либо содержали слишком много математики, либо приводили к новым парадоксам. Некоторые сочетали и то, и другое. Они сохранили математику за счет математики и не предложили другой альтернативы. Новые аксиомы не опирались на интуицию. Они были слишком загадочными и абстрактными для мозга человека, развившегося путем эволюционирования от млекопитающих. Символы языка и символы торговли появились в конце этого процесса за последние 10000 лет или около того – примерно за последние 500 поколений. Единственным возможным случаем появления нового набора аксиом был случай, который подразумевал под собой избавление от парадоксов с ущербом для математики.
Рассел, похоже, первым предложил нечеткие ответы на вопросы. Он не преследовал нечеткую логику непосредственно, но, так или иначе, он в некотором роде ее предложил. Почему бы не отказаться от закона исключенного среднего? К черту Аристотеля. Кто сказал, что верен и может существовать либо факт А, либо факт не А? Но это казалось слишком радикальным. Никто не хотел отказываться от доказательства путем противоречия. Гарвардский логик Уиллард Ван Орман Куайн, преемник Рассела, как и другие, сказал, что сам взгляд был своего рода «доведением до абсурда».
Идея об абсурдности также упускала из виду ключевой момент: кто сказал, что все противоречия одинаковы? Предположим, что мы подчиняемся законам логики и математики и получаем один из ответов: А или не А. Кто сказал, что это утверждение должно быть точным на 100 %? Мы имеем дело с пограничными делами только в том случае, когда сами определяем границы.
Нечеткий подход идет еще дальше – с точки зрения нечеткой логики парадоксы самореференции, парадоксы с отсылкой на самих себя, являются «полуправдами». Нечеткими противоречиями. А и не А, но А истинно только 50 %, а не А истинно только 50 %. Парадоксы буквально наполовину верны и наполовину ложны. Они находятся в середине нечетких кубов, равноудаленных от черно-белых их граней. Они соответствуют Будде, который сидит, ухмыляясь, и Аристотелю, который сидит нахмурившись при разных значениях.
Старые и новые парадоксы многому учат нас. Первое, чему они учат, – это то, что мы назвали их неверно. Термин «парадокс» предполагает исключение. Чистый анализ показывает обратное. Парадоксы – это правило, а не исключение. Исключением являются чистые черно-белые исходы, нечеткие кубы, заполненные серыми ответами. Есть две аристотелевские крайности черного и белого, 0 и 1, и бесконечно много оттенков серого между ними. Серый оттенок означает факт А и факт не А в некоторой степени. Парадоксы также показывают, чего стоит бивалентность и как дорого она иногда обходится. Вы не можете всегда просто брать и округлять факты, это не так просто. Вы меняете точность на простоту, и за это приходится платить.
Парадоксы самореференции показывают, что двухвалентный страх перед логическим противоречием заканчивается противоречием.
В конце 1920-х годов Вернер Гейзенберг ошеломил научный мир своим принципом неопределенности квантовой механики. Он показал, что вы можете рассматривать предмет ближе и при этом видеть меньше. Рассел показал, что логика в нашем сознании неясна и неопределенна. Теперь Гейзенберг показал, что атомы в мозгу человека неопределенны. Даже обладая полной информацией о чем-либо, вы не могли бы делать утверждения об этом со 100 %-ной уверенностью. Мы помним, что фундаментальное соображение Гейзенберга заключалось в том, что чем точнее измеряется одна характеристика частицы, тем менее точно можно измерить вторую.
Гейзенберг показал, что даже в физике истина высказываний является вопросом степени. Он заставил мир столкнуться с многозначной логикой, утверждениями истинными, ложными или неопределенными до некоторой степени. Он не разработал математику нечеткой логики. Ян Лукасевич в Польше уже делал это примерно десять лет назад. Гейзенберг заставил людей сомневаться в бивалентной логике. Они воспринимали это как нечто само собой разумеющееся на протяжении веков, потому что Аристотель считал это само собой разумеющимся. Аристотель и математики считали, что каждое «правильно сформулированное» утверждение было либо истинным, либо ложным. Возможно, мы не сможем определить истинность высказываний о внутреннем содержимом солнц, атомов или инопланетян на дальней стороне Вселенной. Гейзенберг доказал, что в квантовой механике некоторые вещи мы не сможем узнать никогда. Они в принципе непознаваемы. Гейзенберг заставил ученых сомневаться. В то время теория вероятности была единственным способом, чтобы облачить это сомнение в математическую форму. Итак, вместо того, чтобы совершить шаг от черно-белой истины к серой, принцип неопределенности остановился на черно-белой истине: все или ничего. Возможно, со временем нечеткая математика и нечеткая квантовая физика смогут это исправить.
Пожалуй, вам нужно знать три малоизвестных факта о принципе неопределенности Гейзенберга. Во-первых, почти все неправильно ее понимают. Она не имеет никакого отношения к тому, как измерение нарушает то, что вы измеряете. Во-вторых, существует множество принципов неопределенности, и они не имеют ничего общего с квантовой механикой. Они имеют гораздо больше общего с обработкой сигналов, которые управляют телевизорами, телефонами и вашими глазами. Это все артефакты линейного способа взглянуть на мир. В-третьих, принципы неопределенности вытекают прямо из самой старой и самой важной теоремы в математике, теоремы Пифагора о треугольниках. Эта теорема, в свою очередь, вытекает прямо из нечеткой логики, и наоборот.
Квантовая механика представляет собой раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка, – основным коэффициентом квантовой теории. Утверждения квантовой механики могут существенно отличаться от суждений классической механики. Классическая механика, хорошо описывающая системы макроскопических масштабов, не способна описать все явления на уровне молекул, атомов, электронов и фотонов. Квантовая механика адекватно описывает основные свойства и поведение атомов, ионов, молекул, конденсированных сред и других систем с электронно-ядерным строением. Квантовая механика также способна описывать поведение электронов, фотонов, а также других элементарных частиц.
Большинство людей считает, что квантовая механика странна. Они не знают подробностей, но знают что-либо о принципе неопределенности Гейзенберга. Они знают, что относительность Эйнштейна излучает свет, создает черные дыры, замедляет ход часов и измеряет энергию ядерных взрывов. И люди считают, что принцип неопределенности – настоящая странность: вы нарушаете то, что измеряете. Люди слышали об этом в школе, в кино или на вечеринке. Популярные научные авторы ссылаются на это, когда пишут об истории науки или об обнаружении субатомных частиц. Журналисты и социологи указывают на это. Родители рассказывают об этом своим детям, когда дети спрашивают их об атомах или микропроцессорах.
И все они ошибаются. Правда здесь более странна, чем домыслы. Неверные домыслы заключаются в неверном трактовании принципа неопределенности.
Гейзенберг нашел соотношение неопределенности. Он нашел и другие отношения между «сопряженными» переменными, между энергией и временем, напряженностью электрического и магнитного полей. Квантовые теоретики вскоре увидели, что отношения неопределенности возникли между многими квантовыми объектами. Многие ученые полагали, а многие считают так и до сих пор, что отношения неопределенности были уникальны для квантовой механики.