Книга: Энциклопедия долгой и здоровой жизни
Назад: Словарь терминов
Дальше: Часть 3. Cекреты вечной молодости

Ведущие мировые научные центры в области исследований старения и долголетия

Институт исследований старения Бака (The Buck Institute for Research on Aging), Новато, Калифорния, США

Группа исследований в области геронтологии (Gerontology Research Group), Лос-Анджелес, Калифорния, США

Медицинский колледж Альберта Эйнштейна (Albert Einstein College of Medicine), Бронкс, США

Ливерпульский университет (University of Liverpool), Ливерпуль, Великобритания

Институт здорового старения Лондонского университетского колледжа (Institute of Healthy aging UCL), Лондон, Великобритания

Отделение медицинской патологии Университета Вашингтона (Department of Pathology University of Washington), Сиэтл, США

Отделение геронтологии, Университет медицинских наук Арканзаса (Department of Geriatrics, University of Arkansas for Medical Sciences), Литл-Рок, США

Гарвардская медицинская школа (Harvard Medical School), Бостон, США

Медицинская школа Стэнфордского университета (Stanford University School of Medicine), Стэнфорд, США

Центр популяционного здоровья и старения, Университет Дюка (Center for Population Health and Aging, Duke University), Дурхам, США

Отдел экспериментальной патологии Университета Болоньи (Department of Experimental Pathology, University of Bologna), Болонья, Италия

Каролинский институт (Karolinska Institute), Стокгольм, Швеция

Онкологический институт Розвелла Парка (Roswell Park Cancer Institute), Буффало, США

Университет Рочестера (University of Rochester), Рочестер, США

Лаборатория генетики старения и продолжительности жизни МФТИ (Moscow Institute of Physics and Technology), Долгопрудный, Россия

Лаборатория молекулярной радиобиологии и геронтологии Института биологии Коми НЦ УрО РАН (Institute of biology, RAS), Россия

Институт молекулярной генетики РАН (Institute of Molecular Genetics, RAS), Москва, Россия

Институт молекулярной биологии РАН (Institute of Molecular Biology, RAS), Москва, Россия

Институт общей генетики РАН (Institute of General Genetics, RAS), Москва, Россия

Список литературы

1. Aaron, K.J. and P. W. Sanders, Role of dietary salt and potassium intake in cardiovascular health and disease: a review of the evidence. Mayo Clin Proc, 2013. 88 (9): p. 987–95.

2. Ashar, F.N., et al., Association of mitochondrial DNA levels with frailty and all-cause mortality. J Mol Med (Berl), 2014.

3. Ayyadevara, S., et al., Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell, 2008. 7 (1): p. 13–22.

4. Bannister, C.A., et al., Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab, 2014. 16 (11): p. 1165–73.

5. Bar, C., et al., Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat Commun, 2014. 5: p. 5863.

6. Bartke, A., et al., Extending the lifespan of long-lived mice. Nature, 2001. 414 (6862): p. 412.

7. Behrens, A., et al., Impact of genomic damage and ageing on stem cell function. Nat Cell Biol, 2014. 16 (3): p. 201–7.

8. Bernardes de Jesus, B., et al., Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med, 2012. 4 (8): p. 691–704.

9. Blagosklonny, M.V., Geroconversion: irreversible step to cellular senescence. Cell Cycle, 2014: p. 0.

10. Blaser, M.J. and G. F. Webb, Host Demise as a Beneficial Function of Indigenous Microbiota in Human Hosts. MBio, 2014. 5 (6).

11. Boghossian, S., et al., Leptin gene transfer in the hypothalamus enhances longevity in adult monogenic mutant mice in the absence of circulating leptin. Neurobiol Aging, 2007. 28 (10): p. 1594–604.

12. Buffenstein, R., Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol B, 2008. 178 (4): p. 439–45.

13. Cesari, M., B. Vellas, and G. Gambassi, The stress of aging. Exp Gerontol, 2013. 48 (4): p. 451–6.

14. Chakravarty, E.F., et al., Reduced disability and mortality among aging runners: a 21-year longitudinal study. Arch Intern Med, 2008. 168 (15): p. 1638–46.

15. Chin, R.M., et al., The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature, 2014. 510 (7505): p. 397–401.

16. Claus, S.P., Mammalian-microbial cometabolism of L-carnitine in the context of atherosclerosis. Cell Metab, 2014. 20 (5): p. 699–700.

17. Collins, J.J., et al., The measurement and analysis of age-related changes in Caenorhabditis elegans. WormBook, 2008: p. 1–21.

18. Craig, T., et al., The Digital Ageing Atlas: integrating the diversity of age-related changes into a unified resource. Nucleic Acids Res, 2014.

19. Dall’Olio, F., et al., N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev, 2013. 12 (2): p. 685–98.

20. Danilov, A., et al., Selective anticancer agents suppress aging in Drosophila. Oncotarget, 2013. 4 (9): p. 1507–26.

21. De Haes, W., et al., Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci U S A, 2014. 111 (24): p. E2501–9.

22. Ernst, I.M., et al., Vitamin E supplementation and lifespan in model organisms. Ageing Res Rev, 2013. 12 (1): p. 365–75.

23. Estep, P.W., Declining asexual reproduction is suggestive of senescence in hydra: comment on Martinez, D., “Mortality patterns suggest lack of senescence in hydra.” Exp Gerontol 33, 217–25. Exp Gerontol, 2010. 45 (9): p. 645–6.

24. Evans, W.J., Drug discovery and development for ageing: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci, 2011. 366 (1561): p. 113–9.

25. Gabuzda, D. and B. A. Yankner, Physiology: Inflammation links ageing to the brain. Nature, 2013. 497 (7448): p. 197–8.

26. Garatachea, N., et al., Exercise attenuates the major hallmarks of aging. Rejuvenation Res, 2014.

27. Garatachea, N., et al., Elite athletes live longer than the general population: a meta-analysis. Mayo Clin Proc, 2014. 89 (9): p. 1195–200.

28. Gierman, H.J., et al., Whole-Genome Sequencing of the World’s Oldest People. PLoS One, 2014. 9 (11): p.e112430.

29. Gladyshev, V.N., The free radical theory of aging is dead. Long live the damage theory! Antioxid Redox Signal, 2014. 20 (4): p. 727–31.

30. Gorbunova, V., et al., Comparative genetics of longevity and cancer: insights from long-lived rodents. Nat Rev Genet, 2014. 15 (8): p. 531–40.

31. Hannum, G., et al., Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell, 2013. 49 (2): p. 359–67.

32. Hayden, E.C., Old as time: What we can learn from past attempts to treat aging. Nat Med, 2014. 20 (12): p. 1362–4.

33. He, C., et al., Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import. PLoS Genet, 2014. 10 (12): p. e1004860.

34. Healy, K., et al., Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc Biol Sci, 2014. 281 (1784): p. 20140298.

35. Horvath, S., DNA methylation age of human tissues and cell types. Genome Biol, 2013. 14 (10): p. R115.

36. Hou, L., et al., Systems biology in aging: linking the old and the young. Curr Genomics, 2012. 13 (7): p. 558–65.

37. Ingram, D.K. and G. S. Roth, Calorie restriction mimetics: Can you have your cake and eat it, too? Ageing Res Rev, 2014.

38. Jasper, H., Sirtuins: Longevity focuses on NAD+. Nat Chem Biol, 2013. 9 (11): p. 666–7.

39. Jones, O.R., et al., Diversity of ageing across the tree of life. Nature, 2014. 505 (7482): p. 169–73.

40. Kenyon, C., et al., A C. elegans mutant that lives twice as long as wild type. Nature, 1993. 366 (6454): p. 461–4.

41. Kim, E.B., et al., Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature, 2011. 479 (7372): p. 223–7.

42. Labunskyy, V.M., et al., Lifespan extension conferred by endoplasmic reticulum secretory pathway deficiency requires induction of the unfolded protein response. PLoS Genet, 2014. 10 (1): p. e1004019.

43. Levine, M.E., et al., Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab, 2014. 19 (3): p. 407–17.

44. Lionaki, E. and N. Tavernarakis, Oxidative stress and mitochondrial protein quality control in aging. J Proteomics, 2013. 92: p. 181–94.

45. Lopez-Otin, C., et al., The hallmarks of aging. Cell, 2013. 153 (6): p. 1194–217.

46. Martinez, D.E., Mortality patterns suggest lack of senescence in hydra. Exp Gerontol, 1998. 33 (3): p. 217–25.

47. Maxmen, A., Calorie restriction falters in the long run. Nature, 2012. 488 (7413): p. 569.

48. McGill, H.C., Jr., et al., Origin of atherosclerosis in childhood and adolescence. Am J Clin Nutr, 2000. 72 (5 Suppl): p. 1307S-1315S.

49. Metzgar, M., et al., The feasibility of a Paleolithic diet for low-income consumers. Nutr Res, 2011. 31 (6): p. 444–51.

50. Michan, S., Calorie restriction and NAD (+) /sirtuin counteract the hallmarks of aging. Front Biosci (Landmark Ed), 2014. 19: p. 1300–19.

51. Moskalev, A.A., et al., Genetics and epigenetics of aging and longevity. Cell Cycle, 2014. 13 (7): p. 1063–77.

52. Moskalev, A.A., et al., The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev, 2013. 12 (2): p. 661–84.

53. Munoz-Espin, D. and M. Serrano, Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol, 2014. 15 (7): p. 482–96.

54. Nagai, R., et al., Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes, 2012. 61 (3): p. 549–59.

55. Nagai, R., et al., Inhibition of AGEs formation by natural products. Amino Acids, 2014. 46 (2): p. 261–6.

56. Naylor, R.M., D. J. Baker, and J.M. van Deursen, Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin Pharmacol Ther, 2013. 93 (1): p. 105–16.

57. Nikoletopoulou, V., E. Kyriakakis, and N. Tavernarakis, Cellular and molecular longevity pathways: the old and the new. Trends Endocrinol Metab, 2014. 25 (4): p. 212–23.

58. Oh, J., Y. D. Lee, and A. J. Wagers, Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med, 2014. 20 (8): p. 870–80.

59. Othman, R., Dietary lipids and cancer. Libyan J Med, 2007. 2 (4): p. 180–4.

60. Paganini-Hill, A., C. H. Kawas, and M. M. Corrada, Antioxidant Vitamin Intake and Mortality: The Leisure World Cohort Study. Am J Epidemiol, 2014.

61. Pallauf, K., et al., Vitamin C and lifespan in model organisms. Food Chem Toxicol, 2013. 58: p. 255–63.

62. Petralia, R.S., M. P. Mattson, and P. J. Yao, Aging and longevity in the simplest animals and the quest for immortality. Ageing Res Rev, 2014. 16: p. 66–82.

63. Pietsch, K., et al., Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid— and rosmarinic acid-mediated life extension in C. elegans. Biogerontology, 2011. 12 (4): p. 329–47.

64. Reimers, C.D., G. Knapp, and A. K. Reimers, Does physical activity increase life expectancy? A review of the literature. J Aging Res, 2012. 2012: p. 243958.

65. Reis-Rodrigues, P., et al., Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan. Aging Cell, 2012. 11 (1): p. 120–7.

66. Ristow, M., Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med, 2014. 20 (7): p. 709–11.

67. Ristow, M. and K. Schmeisser, Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS). Dose Response, 2014. 12 (2): p. 288–341.

68. Rosenkranz, R.R., et al., Active lifestyles related to excellent self-rated health and quality of life: cross sectional findings from 194,545 participants in The 45 and Up Study. BMC Public Health, 2013. 13: p. 1071.

69. Samraj, A.N., et al., A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci U S A, 2014.

70. Santos-Lozano, A., et al., Where are supercentenarians located? A worldwide demographic study. Rejuvenation Res, 2014.

71. Seim, I., et al., Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nat Commun, 2013. 4: p. 2212.

72. Seim, I., et al., The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal. Aging (Albany NY), 2014. 6 (10): p. 879–99.

73. Shaposhnikov, M., et al., The effects of pectins on life span and stress resistance in Drosophila melanogaster. Biogerontology, 2014. 15 (2): p. 113–27.

74. Shostal, O.A. and A. A. Moskalev, The genetic mechanisms of the influence of the light regime on the lifespan of Drosophila melanogaster. Front Genet, 2012. 3: p. 325.

75. Skulachev, V.P., Aging as a particular case of phenoptosis, the programmed death of an organism (a response to Kirkwood and Melov “On the programmed/non-programmed nature of ageing within the life history”). Aging (Albany NY), 2011. 3 (11): p. 1120–3.

76. Spindler, S.R., P. L. Mote, and J. M. Flegal, Lifespan effects of simple and complex nutraceutical combinations fed isocalorically to mice. Age (Dordr), 2014. 36 (2): p. 705–18.

77. van Deursen, J.M., The role of senescent cells in ageing. Nature, 2014. 509 (7501): p. 439–46.

78. Villeda, S.A., et al., Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med, 2014. 20 (6): p. 659–63.

79. Wang, X., et al., Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ, 2014. 349: p. g4490.

80. Weidner, C.I., et al., Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol, 2014. 15 (2): p. R24.

81. Wilkinson, J.E., et al., Rapamycin slows aging in mice. Aging Cell, 2012. 11 (4): p. 675–82.

82. Willcox, D.C., G. Scapagnini, and B. J. Willcox, Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev, 2014. 136–137: p. 148–62.

83. Yoshimoto, S., et al., Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 2013. 499 (7456): p. 97–101.

84. Yun, J. and T. Finkel, Mitohormesis. Cell Metab, 2014. 19 (5): p. 757–66.

85. Zhang, G., et al., Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature, 2013. 497 (7448): p. 211–6.

Назад: Словарь терминов
Дальше: Часть 3. Cекреты вечной молодости