Книга: Первые три минуты
Назад: Предисловие автора к первому изданию
Дальше: 2. Расширяющаяся Вселенная

Предисловие автора ко второму изданию

Астрономические наблюдения последних лет в общих чертах подтверждают космологическую теорию, какой мы ее себе представляли в 1977 г., когда книга «Первые три минуты» впервые увидела свет. Но за прошедшие 16 лет прояснились некоторые загадки, возникли новые проблемы, были выдвинуты новаторские идеи, касающиеся очень раннего периода истории Вселенной (первой секунды)… Поэтому я несказанно рад выходу второго издания «Первых трех минут», в послесловии к которому мне представилась возможность привести книгу в соответствие требованиям времени. Я признателен Мартину Кесслеру из Basic Books за редактирование новой версии, а также Полу Шапиро и Этану Вишниаку – за ценные замечания к послесловию.

Стивен Вайнберг Остин, штат Техас, апрель 1993 г.

1. Введение. Великан и Корова

О происхождении Вселенной повествует «Младшая Эдда» – сборник скандинавских мифов, составленный около 1220 г. происходившим из знатного рода поэтом и политиком Снорри Стурлусоном. Вначале, говорится в «Эдде», было ничто:

 

Земли еще не было,

и небосвода,

бездна сияла,

трава не росла.

 

К северу и югу от «ничего» находились царства инея и огня, Нифльхейм и Муспелльсхейм. Теплый воздух из Муспелльсхейма повстречался с инеем из Нифльхейма и растопил его, и из капель вырос великан Имир. Чем Имир питался? Оказывается, там еще была дававшая молоко корова Аудумла. А чем питалась она? По-видимому, лизала соляные камни. И так далее, и тому подобное.

Я ни в коем случае не хочу ранить чьи-либо религиозные чувства – пусть и религиозные чувства викингов. Но, думаю, мало кого удовлетворит такое описание происхождения Вселенной. Если даже закрыть глаза на отсутствие доказательств, эти передававшиеся из уст в уста сказания вызывают гораздо больше вопросов, чем дают ответов: за каждым из последних тянется целая цепочка новых сущностей.

Однако риск оказаться в своих космологических построениях столь же наивными, как создатели мифов «Эдды», совсем не мешает прогрессу наших физических теорий – слишком велик соблазн проследить историю мироздания до начала времен. С самого рождения современной науки (в XVI–XVII вв.) физики и астрономы снова и снова обращаются к проблеме происхождения Вселенной.

Правда, на исследования такого рода всегда смотрели с подозрением. Помнится, в 1950-х, когда я был еще студентом и делал в науке лишь первые шаги (решая другие задачи), считалось, что уважающий себя ученый не должен тратить драгоценное время на исследования ранней Вселенной. На то были причины: на протяжении почти всей истории современных физики и астрономии достаточные наблюдательные и теоретические основания, на которых можно было бы строить модели ранней Вселенной, просто-напросто отсутствовали.

Но в последнее десятилетие ситуация кардинально поменялась. Теория ранней Вселенной получила настолько широкое распространение, что астрономы теперь часто называют ее «стандартной моделью». Некоторые, возможно, слышали о теории Большого взрыва. Так вот, «стандартная модель» – примерно то же самое, только с гораздо более подробным описанием состава Вселенной. Именно эта теория и составляет предмет данной книги.

Чтобы дать о нем общее представление, наверное, стоит начать с краткого изложения истории ранней Вселенной, как она понимается в «стандартной модели». Это всего лишь небольшая аннотация – в последующих главах мы подробно расскажем о каждой эпохе и обсудим, почему, как мы думаем, все происходило так, а не иначе.

Сначала был взрыв. Но не такой, к каким мы привыкли на земле, когда взрывная волна, распространяясь от эпицентра, захватывает все более далекие слои воздуха. Первичный взрыв возник одновременно везде и заполнил сразу все пространство, причем каждая частица стала удаляться от каждой. В этом контексте выражение «все пространство» означает либо всю бесконечную Вселенную, либо весь объем конечной Вселенной, замкнутой саму на себя наподобие поверхности шара. И то и другое понять нелегко, но это нам не помешает: при обсуждении ранней Вселенной едва ли важно, была она конечной или нет.

Через сотую долю секунды (самый ранний момент, о котором мы хоть что-то знаем) температура во Вселенной была около ста миллиардов (1011) градусов Цельсия. Это намного больше, чем в центре даже самой горячей звезды. Вообще, при такой жаре не может существовать ни один из привычных нам ингредиентов материи: разрушаются даже ядра атомов, не говоря уже о самих атомах и молекулах. Разлетающееся в этом взрыве вещество состояло на самом деле из различных сортов так называемых элементарных частиц, которые изучает современная физика высоких энергий.

Мы еще не раз о них вспомним, а пока ограничимся перечислением тех, которых в ранней Вселенной было больше всего (подробности же оставим для глав 3 и 4). Одна из частиц, в изобилии присутствовавшая в первые мгновения после Большого взрыва, – электрон, отрицательно заряженная частица, переносящая по проводам электрический ток и заполняющая в современной Вселенной внешние оболочки атомов и молекул. Не было тогда недостатка и в позитронах – положительно заряженных частицах с точно такой же массой, как у электронов. Интересно, что в современном мире позитроны встречаются, пожалуй, только в ускорителях высоких энергий, в некоторых радиоактивных распадах и в бурных астрономических явлениях (космические лучи, взрывы сверхновых и т. п.). Однако в ранней Вселенной число позитронов почти точно равнялось числу электронов. Кроме того, примерно в таких же количествах здесь присутствовали различные типы нейтрино – эфемерных частиц, совершенно лишенных массы и заряда. Наконец, Вселенную заполнял свет. Специально отделять его от остальных частиц не имеет смысла, ведь, согласно квантовой теории, он состоит из фотонов – незаряженных частиц с нулевой массой. (Когда один из атомов в спирали электрической лампочки переходит из высокоэнергетического состояния в низкоэнергетическое, он испускает один фотон. Лампочка при этом излучает так много фотонов, что нам они кажутся непрерывным потоком света. Однако, например, фотоэлектрический элемент способен улавливать одиночные фотоны: один фотон – один отсчет.) Каждый фотон обладает определенными энергией и импульсом, величина которых зависит от длины волны света. Если говорить о свете, заполнявшем Вселенную на ранних стадиях ее возникновения, то количество и средняя энергия фотонов были такими же, как у электронов, позитронов и нейтрино.

Все эти частицы – электроны, позитроны, нейтрино и фотоны – постоянно рождались из вакуума и, прожив короткую жизнь, снова аннигилировали (исчезали). Другими словами, их число не было фиксированным, а определялось равновесием между процессами рождения и аннигиляции. Из этого баланса можно вычислить плотность того вселенского «супа», который варился при температуре в сотню миллиардов градусов: он был в четыре миллиарда (4 × 109) раз плотнее воды. Была в нем и небольшая примесь более тяжелых частиц – протонов и нейтронов, из которых в настоящее время состоят атомные ядра. (Протоны заряжены положительно, а нейтроны электрически нейтральны и чуть тяжелее протонов.) На каждые протон и нейтрон приходилось, грубо говоря, по миллиарду электронов, позитронов, нейтрино и фотонов. Будучи определенной из наблюдений, эта цифра – миллиард фотонов на одну ядерную частицу – является тем ключом, который позволяет установить стандартную модель Вселенной. Дорогу к измерению этого числа, по сути, проложило открытие реликтового излучения, речь о котором пойдет в главе 3.

По мере того как развивался взрыв, температура падала. Через десятую долю секунды она равнялась тридцати миллиардам (3 × 1010) градусов Цельсия, через секунду – примерно десяти тысячам миллионов, а через 14 секунд – уже трем миллиардам градусов. Первичный бульон охладился настолько, что электроны и позитроны стали быстрее аннигилировать, чем рождаться из фотонов и нейтронов. Благодаря высвобождаемой в процессе аннигиляции вещества энергии темп охлаждения Вселенной несколько замедлился, но температура все равно продолжала падать и к концу первых трех минут достигла отметки в один миллиард градусов. Стало достаточно «холодно» для того, чтобы протоны и нейтроны начали образовывать сложные ядра. Первым на очереди стоял тяжелый водород, или дейтерий, состоящий из одного протона и одного нейтрона. В то же время плотность «супа» оставалась довольно высокой (чуть меньше, чем у воды), поэтому легкие ядра, быстро находя друг друга, превращались в самые стабильные легкие ядра – ядра гелия, состоявшие из двух протонов и двух нейтронов.

Когда истекли первые три минуты, Вселенную заполняли в основном свет, нейтрино и антинейтрино. Правда, в небольшом количестве присутствовали еще ядра (из них около 73 % водорода и 27 % гелия) и электроны, оставшиеся после эпохи электрон-позитронной аннигиляции. Все это вещество продолжало разлетаться, постепенно охлаждаясь и становясь все менее плотным. Спустя долгие сотни тысяч лет его температура снизилась настолько, что ядра, соединившись с электронами, образовали атомы водорода и гелия. Этот газ, в свою очередь, под влиянием силы тяжести разбился на сгустки, а те собрались вместе и образовали галактики и звезды нынешней Вселенной. Однако эти звезды в начале своего жизненного пути состояли именно из тех ингредиентов, которые были приготовлены в первые три минуты.

Набросанная выше стандартная модель – далеко не самая удовлетворительная теория происхождения Вселенной, которую можно придумать. Как и «Младшая Эдда», она смущенно умалчивает о самом начале, о первой сотой доле секунды. Как бы нам ни хотелось того избежать, в ней приходится выставлять начальные условия «руками». В частности, задавать отношение числа фотонов к количеству ядер, равное миллиарду. Хотя, конечно, нам больше по душе пришлись бы основательные логические умозаключения.

Например, одна из альтернативных теорий, выглядящая более привлекательно (во всяком случае, с философской точки зрения), – это так называемая модель стационарной Вселенной. Предложенная в конце 1940-х гг. Германом Бонди, Томасом Голдом и (в несколько отличной формулировке) Фредом Хойлом, она утверждает, что Вселенная всегда была примерно такой же, как сейчас. По мере ее расширения рождается новое вещество, которое и заполняет зазоры между галактиками. А на вопрос о том, почему Вселенная такая, какая она есть, стационарная модель отвечает незамысловато: это единственный для мироздания способ оставаться одинаковым во все времена. Тогда проблема ранней Вселенной теряет смысл – нет никакой ранней Вселенной.

Как же мы пришли к «стандартной модели»? И почему она вытеснила остальные теории вроде «стационарной Вселенной»? Достигнутное научным сообществом согласие – свидетельство объективного подхода современной астрофизики: ее движителем являются не философские предпочтения или авторитетные мнения маститых астрофизиков, а лишь эмпирические данные.

В последующих двух главах будет рассказано о двух ключевых догадках, которые, будучи подкрепленными астрономическими наблюдениями, привели нас к «стандартной модели»: об открытии разбегания удаленных галактик и обнаружении слабых радиопомех, заполняющих всю Вселенную. Этот путь усеян неудачными гипотезами, упущенными возможностями и теоретическими предрассудками. А сколько копий сломано в борьбе разных взглядов – не счесть. Историки науки найдут здесь богатый материал для исследования.

В этом обзоре наблюдательной космологии я попытаюсь собрать имеющиеся данные в связную картину, повествующую о физических условиях в ранней Вселенной. Таким образом мы с вами подробнее проследим ее первые три минуты. Лучше всего для наших целей, наверное, подходит кинематографический подход: мы – кадр за кадром – увидим, как Вселенная расширялась, охлаждалась и что она сварила в собственном соку. Мы также попытаемся заглянуть в эпоху, плотно укутанную завесой тайны – в первую сотую долю секунды, – и ответить на вопрос о том, что было до нее.

Так ли уж мы уверены в «стандартной модели»? Может быть, новые открытия заставят нас от нее отказаться и заменить какой-нибудь другой космогонией или даже восстановить в правах теорию «стационарной Вселенной»? Не исключено. Рассказывая о первых трех минутах так, словно мы действительно знаем, что там происходило, я никак не могу отделаться от ощущения, будто пишу нечто фантастическое.

Однако даже если «стандартная модель» потеряет свою силу, она навсегда останется одной из вех истории космологии. Сегодня физики и астрофизики проверяют с ее помощью свои идеи (всего десять лет назад это было не так), изучая, к каким следствиям они могут привести в рамках «стандартной модели». Кроме того, сейчас последняя нередко служит тем теоретическим базисом, на основе которого составляются программы астрономических наблюдений. «Стандартная модель» служит тем языком, который позволяет теоретикам и наблюдателям оценить достижения друг друга. Если однажды на смену ей придет более совершенная теория, начало этому процессу, вероятно, положат наблюдения или вычисления, намеки на которые даст сама «стандартная модель».

В последней главе я немного порассуждаю о будущем Вселенной. Возможно, она будет бесконечно расширяться, становясь холоднее, разреженней и постепенно умирая. А может быть, она снова сожмется, разломав галактики, звезды, атомы и, наконец, атомные ядра на их составные части. Тогда все наши сегодняшние вопросы по поводу первых трех минут встанут во всей своей полноте, когда мы захотим предсказать ход событий в последние три минуты.

Назад: Предисловие автора к первому изданию
Дальше: 2. Расширяющаяся Вселенная

Rusarug
Hello ogrik2.ru will you feel half a xanax xanax for dogshow long does xanax stay in your system