Наука о данных — это партнерство между специалистом по данным и компьютером. В главе 2 мы описали жизненный цикл процесса CRISP-DM, которому следует специалист по данным. CRISP-DM определяет последовательность принимаемых им решений и действия, которые помогут их воплотить. Основные задачи специалиста по данным в цикле CRISP-DM сводятся к тому, чтобы определить проблему, спроектировать набор данных, подготовить их, принять решение о том, какой тип анализа будет использован, а затем оценить и интерпретировать результаты. Вклад компьютера в этом партнерстве заключается в его способности обрабатывать данные и искать закономерности. Машинное обучение — это область исследований, которая разрабатывает алгоритмы для выявления компьютером закономерностей в данных. Алгоритмы и методы машинного обучения в основном применяются на этапе моделирования в CRISP-DM. Процесс машинного обучения представляет собой два последовательных этапа.
На первом алгоритм машинного обучения применяется к набору данных для выявления в нем закономерностей. Сами закономерности могут быть представлены разными способами. Позже в этой главе мы опишем наиболее популярные из них: деревья решений, регрессионные модели и нейронные сети. Эти представления закономерностей известны как модели, поэтому и сам этап жизненного цикла CRISP-DM называется этапом моделирования. Проще говоря, все алгоритмы машинного обучения создают модели из данных, но каждый из них разработан для создания моделей, использующих определенный тип представления.
На втором этапе, когда модель создана, она применяется для анализа. В ряде случаев решающее значение имеет структура модели, которая показывает, какие именно атрибуты являются важными для конкретной области определения. Например, мы могли бы применить алгоритм машинного обучения к набору данных пациентов, уже перенесших инсульт, а затем использовать такую структуру модели, которая распознавала бы факторы, тесно связанные с инсультом. Существуют модели для маркировки или классификации новых объектов. К примеру, основная цель модели спам-фильтра состоит в том, чтобы маркировать входящие электронные письма, а не выявлять атрибуты спам-сообщений.
Большинство алгоритмов машинного обучения можно отнести либо к обучению с учителем, либо к обучению без учителя. Цель обучения с учителем состоит в том, чтобы научить алгоритм сопоставлять разные значения разных атрибутов объекта со значением заданного атрибута этого же объекта, известного как целевой атрибут. Например, когда обучение с учителем применяется для спам-фильтра, алгоритм пытается изучить функцию, которая сопоставляет атрибуты, описывающие электронную почту, со значением (спам / не спам) целевого атрибута; функция, которую изучает алгоритм, является моделью спам-фильтра. В этом контексте искомая алгоритмом закономерность является функцией, которая сопоставляет значения входных атрибутов со значением целевого атрибута, а модель, которую возвращает алгоритм, является компьютерной программой, выполняющей эту функцию. По сути, обучение с учителем осуществляется путем поиска одной из множества функций, которая наилучшим образом отображает связь между входными и выходными данными. Однако для любого набора данных разумной сложности существует так много комбинаций входных данных и их возможных сопоставлений с выходными данными, что алгоритм не может испробовать их все. Поэтому каждый алгоритм машинного обучения предпочитает определенные типы функций во время поиска. Эти предпочтения известны как смещение обучения алгоритма. Реальная проблема в использовании машинного обучения состоит в том, чтобы найти алгоритм, смещение обучения которого лучше всего подходит для конкретного набора данных. Как правило, для того, чтобы выяснить, какой из алгоритмов лучше всего работает с конкретным набором данных, требуются эксперименты.