Книга: Идеи с границы познания. Эйнштейн, Гёдель и философия науки
Назад: Глава десятая. Комедия красок
Дальше: Глава двенадцатая. Обожествление бесконечности. Почему русские ей поклоняются, а французы нет

Часть пятая. Бесконечность большая и малая

Глава одиннадцатая. Видения о бесконечном. Георг Кантор против Дэвида Фостера Уоллеса

Едва ли какая-то идея по богатству истории способна потягаться с идеей бесконечности. Она зародилась среди древних парадоксов, две тысячи лет ставила философов в тупик, а затем, в конце XIX века, отважный интеллектуальный подвиг заставил ее выдать свои тайны – впрочем, взамен она оставила целую кучу новых парадоксов. Проследить за развитием сюжета можно безо всякого специального образования: основные открытия, несмотря на обеспечившую их изобретательность, можно описать несколькими закорючками на салфетке во время вечеринки с коктейлями. Все это делает бесконечность непреодолимо соблазнительным материалом для популяризатора науки, и за долгие годы о ней появилось довольно много книг.

Самой выдающейся фигурой, попробовавшей себя в этом деле, был Дэвид Фостер Уоллес. Как вправе заподозрить читатели «Бесконечной шутки», ее автор обладал глубоким и тонким пониманием математики и метафизики. А книга «Все и еще немножко. Компактная история ∞» (Wallace, D. F., Everything and More: A Compact History of ∞), написанная за пять лет до самоубийства Уоллеса в 2008 году в возрасте 46 лет, стала попыткой посвятить несведущего в математике читателя в тайны бесконечного.

В сущности, странно, что конечные существа вроде нас умудрились что-то узнать о бесконечности, если учесть, что мы не способны непосредственно воспринимать ее. Декарт полагал, что представление о бесконечности у нас врожденное, однако поведение детей это опровергает: в ходе одного исследования младшие школьники «рассказывали, что “считают и считают” в попытке добраться до последнего числа и после долгих усилий приходят к выводу, что его не существует». Так ли иначе, человек, который приложил больше всех стараний, чтобы облечь бесконечность в теорию, утверждал, что озарения дарованы ему Богом, и окончил свои дни в сумасшедшем доме.

Вообще говоря, есть две версии бесконечности. Относительно путаная и мистическая, которую можно назвать метафизической бесконечностью, ассоциируется с идеями вроде совершенства, абсолюта, Бога. Относительно строгая математическая бесконечность – это как раз та бесконечность, о которой решил рассказать Уоллес. Она коренится в идее отсутствия предела: время, которое течет вечно, пространство, которое можно подразделять безо всяких ограничений, числа, которые можно генерировать сколько угодно. Метафизическая бесконечность имеет тенденцию пробуждать в тех, кто над ней размышляет, благоговейный восторг, а математическая на протяжении большей части западной интеллектуальной истории служит объектом крайних подозрений и даже презрения. Впервые она появилась в V веке до н. э. в парадоксах Зенона Элейского. Зенон утверждал, что если пространство можно делить бесконечно, то быстроногий Ахиллес никогда не обгонит черепаху: за то время, пока он окажется там, где была черепаха, та уползет немного дальше – и так до бесконечности, ad infinitum. Такие парадоксы были настолько травмоопасными, что Аристотель решил изгнать идею «полной» бесконечности из греческой мысли – и задал направление всей философии на ближайшие 2000 лет.

Последовавшая реабилитация бесконечности опирается на другой парадокс, сформулированный в 1638 году Галилеем. Рассмотрим все целые числа: 1, 2, 3, 4 и так далее, – предлагает Галилей. Теперь рассмотрим только квадраты: 1, 4, 9, 16 и так далее. Целых чисел, конечно, больше, чем квадратов, поскольку квадраты – лишь часть целых чисел, причем малая. Однако, замечает Галилей, есть способ сопоставить квадраты с целыми числами: 1 с 1, 2 с 4, 3 с 9, 4 с 16 и так далее. Когда таким образом создают два соотносящихся конечных множества – каждому элементу первого множества соответствует один и только один элемент второго множества и наоборот, – чтобы понять, что они одинакового размера, не обязательно проделывать утомительные подсчеты. Однако, распространив этот принцип на бесконечные множества, Галилей обнаружил, что тяготеет к выводу, что квадратов столько же, сколько целых чисел, и точка. То есть часть равна целому – мысль, которая самому Галилею показалась нелепой.

Два с половиной века спустя Георг Кантор положил парадокс Галилея в основу математической теории бесконечности. Кантор (1845–1918) – немецкий математик, родившийся в России и отличавшийся художественными наклонностями и обостренным интересом к богословию. Он понял, что крах привычной логики части и целого дает новое определение бесконечности, которое не опирается на смутное представление о чем-то беспредельном. Бесконечное множество, как описывал его Кантор, это множество того же размера, что и некоторые его части. Иначе говоря, бесконечное множество – это множество, которое может потерять некоторые элементы, но от этого не уменьшается.

Теперь у Кантора появилась возможность задать новаторский вопрос: все ли бесконечности равны или некоторые равнее других?

Кантор стал искать бесконечность больше, чем целые числа, и начал с рассмотрения множества дробей. Казалось бы, это был верный кандидат, поскольку дроби организованы на числовой прямой очень плотно: между каждыми двумя целыми числами бесконечно много дробей (например, между 0 и 1 лежат /2, 11/3, 1/4, 1/5 и так далее). Однако Кантор, к своему удивлению, быстро нашел простой способ однозначно сопоставить целые числа и дроби. Несмотря на первоначальное впечатление, эти две бесконечности оказались одинаковыми. Возможно, подумал ученый, все бесконечные множества одинаковой величины просто потому, что они неисчерпаемы. Но затем он рассмотрел множество вещественных чисел, тех самых, которые отмечают точки на непрерывной прямой. Удастся ли и их однозначно сопоставить с целыми числами? Кантор разработал непревзойденно хитроумное доказательство, так называемый диагональный способ, и доказал, что ответ отрицательный. Иначе говоря, есть по крайней мере две разные бесконечности, бесконечность целых чисел и бесконечность континуума, и вторая больше первой.

Но это был еще не конец. Кантор стал искать все более крупные бесконечности и обратился к пространствам высших размерностей. Ведь на двумерной плоскости, рассудил он, точек наверняка больше, чем на одномерной линии. Года два он пытался доказать, что точки на плоскости нельзя однозначно сопоставить с точками на линии – и все это увенчалось тем, что в 1878 году он обнаружил, что на самом деле такое соответствие возможно. Простой трюк показал, что на отрезке длиной в дюйм точек ровно столько же, сколько во всем пространстве. «Я это вижу, но не верю своим глазам!» – писал Кантор коллеге.

После открытия, что ни размер, ни размерность не делают бесконечность больше, поиски забуксовали. Но через десять лет упорного труда (с перерывом на лечение в санатории после нервного срыва) Кантор вывел новый фундаментальный принцип, который позволил ему продолжить восхождение: множеств вещей всегда больше, чем самих вещей. В конечном мире это довольно очевидно. Если у вас, скажем, три предмета, из них можно составить восемь разных множеств (в том числе, естественно, пустое). Гениальность Кантора состояла в том, что он обобщил этот принцип на царство бесконечного.

Чтобы все стало чуть менее абстрактным, давайте представим себе, будто мы живем в мире, где бесконечно много людей. Теперь рассмотрим все возможные клубы (множества людей), которые могут существовать в таком мире. Самый неэксклюзивный из этих клубов – универсальный клуб, в который входят абсолютно все до единого. Самый эксклюзивный – нулевой клуб, в котором нет ни одного члена. Между этими крайностями лежит бесконечное множество других клубов – в одних членов очень много, в других всего несколько. Насколько велика эта бесконечность? Есть ли способ однозначно сопоставить людей и клубы, показав тем самым, что два бесконечных набора на самом деле одного размера? Предположим, каждого человека можно сопоставить с одним и только одним клубом и наоборот. Одни люди окажутся членами клубов, с которыми сопоставлены (например, человек, сопоставленный с универсальным клубом). Другие по чистой случайности не будут членами клуба, с которыми ассоциированы (например, человек, сопоставленный с нулевым клубом). Эти люди войдут в клуб, который можно назвать «Граучо-клубом». Граучо-клуб – это своего рода общество изгоев: он состоит из людей, сопоставленных с клубами, в которые их не приняли. Поэтому человек, сопоставленный с нулевым клубом, в который он, естественно, не входит, может утешиться, что его приняли хотя бы в Граучо-клуб.

Тут все принимает интересный оборот. Поскольку считается, что каждому человеку соответствует какой-то клуб и наоборот, должен быть кто-то, кто сопоставлен с самим Граучо-клубом. Назовем его Вуди. Он член Граучо-клуба или нет? Ну, предположим, да. Это значит, что по определению его надо исключить из клуба, с которым он сопоставлен. Следовательно, Вуди – не член Граучо-клуба. Но если он не член Граучо-клуба, значит, поскольку клуб, с которым он сопоставлен, его не принял, Вуди – член Граучо-клуба. С какой стороны ни посмотри, везде противоречие. Как мы зашли в этот тупик? Все из-за предположения, что людей можно однозначно сопоставить с клубами. Следовательно, это предположение ложно. Тем самым установлено, что бесконечность из множеств вещей больше, чем бесконечность самих вещей.

Красота этого принципа, который известен как теорема Кантора, состоит в том, что его можно применять много раз подряд. Если дано любое бесконечное множество, всегда можно создать бесконечность еще больше, рассмотрев его показательное множество – множество всех подмножеств, которые можно из него создать.

Кантор возвел поверх простого reductio ad absurdum нескончаемую башню бесконечностей. Это было как сон, что-то вроде «Кубла-хана» Кольриджа. Но математики обнаружили в этой новой теории ресурсы, необходимые, чтобы подвести под свой предмет надежный фундамент. «Никто не изгонит нас из рая, который создал нам Кантор», – провозгласил великий (и влиятельный) математик Давид Гильберт. Однако некоторые математики отмели канторовскую бесконечность бесконечностей как «туман на тумане» и «математическое безумие». У Кантора сложилось впечатление, что эти критики преследуют его, что усугубило его нервное расстройство (судя по всему, у него был маниакально-депрессивный психоз). В промежутках между постоянными срывами и госпитализациями он размышлял над теологическими следствиями из бесконечного и с неменьшим пылом разрабатывал теорию, что шекспировские пьесы написал Бэкон.

Теория Кантора «прямо подтверждает, что человеческий интеллект способен понимать бесконечные множества и манипулировать ими, то есть по-настоящему ими овладеть», – писал Уоллес в Everything and More. И добавил, что героическим подвигом это достижение делает чудовищная абстрактность бесконечности: «Это своего рода предельный отход от реального опыта», отрицание «самой что ни на есть вездесущей и гнетущей черты конкретного мира: все кончается, все имеет границы, все проходит». Уоллес ясно понимал все «ужасы и опасности» абстрактного мышления. Две тысячи лет считалось, что идея бесконечности ставит под угрозу душевное здоровье. И именно Кантор при всем своем безумии сумел укротить бесконечность и показал, что ее можно осознать и не сойти при этом с ума.

Доступно и понятно писать об абстрактных математических идеях, оказывается, тоже опасно. Например, очень легко впасть в излишнюю цветистость. В одной очень популярной книге о математическом анализе сказано, что «декартова плоскость координат полна странной, торжественной тишины», в книге о нуле написано, что это число – «тень в косых лучах страха». Легко впасть и в мистицизм. Математик Амир Д. Ацель в книге «Загадка алефа» (Aczel, A. D., The Mystery of the Aleph), написанной за несколько лет до книги Уоллеса о бесконечности, пытается сделать из Георга Кантора каббалиста, проникнувшего в «заповедный сад Господа». «Бесконечность и разум» Руди Ракера (Rucker, R., Infinity and the Mind), потрясающее исследование, обладающее подлинной математической глубиной, зачем-то обращается к дзен-буддизму. С другой стороны, маленькая классическая книга «Игры с бесконечностью» венгерского логика Ружи Петер, умершей в 1977 году (Péter, R., Playing with Infinity), обладает и прозрачностью, и обаянием безо всякого эзотерического флера. Но все популяризаторы при всех их недочетах на совесть выполнили неподъемную работу, без которой невозможно сделать понятными новичку абстрактные идеи, пусть даже самые прекрасные. Упрощение и умолчание позволило им дать первое приближение к подлинной ясности.

Напротив, работу Уоллеса едва ли можно назвать популяризацией. Сам Уоллес уверял читателя, что это «популярно-техническое сочинение», и утверждал, будто его собственное математическое образование едва выходит за рамки средней школы. Однако пойти на обычные компромиссы он отказался. Текст Everything and More зачастую плотен, как учебник по математике, хотя значительно более хаотичен. Мне еще не попадались научно-популярные книги по математике, в которых было бы столько технических подробностей, тем более что работа Уоллеса претендует на «компактность» (он называет свою книгу «брошюрой», но на самом деле в ней больше трех сотен страниц, впрочем, в строго математическом смысле она и вправду компактна, поскольку имеет начало и конец и может быть закрыта). Мотивы Уоллеса достойны восхищения: он решил написать книгу, которая была бы лучше «иных недавних популярных сочинений, которые рассказывают о доказательствах Кантора так плоско и убого… что математика искажается, а красота меркнет». Но когда автор не слишком уверенно владеет своим материалом, он рискует пожертвовать ясностью в угоду зрелищности, жонглируя формулами и терминами, что твой фокусник. Уоллес предлагал читателям, новичкам в мире математики бесконечностей, попросту «наслаждаться символогией». Он писал, что некоторые термины – «недостижимое порядковое», «трансфинитная рекурсия» – «приятно произносить, даже если не особенно представляешь себе, что они обозначают». Уоллеса очень привлекала эстетическая сторона учебников по математике, и это, вероятно, также объясняет его любовь к заглавным буквам и аббревиатурам («что касается» превратилось в «ч/к», Галилей – в ГГ, а «Божественное братство пифагорейцев» – в ББП); впрочем, эта любовь часто проявлялась и в его художественных произведениях.

И все же энтузиазм Уоллеса по поводу теории бесконечности очевиден на каждой странице (не в последнюю очередь в его убеждении, что Кантор – «важнейший математик XIX века», с которым согласятся лишь немногие математики и историки науки). И даже если местами он путается, то только потому, что отважно форсирует самые непреодолимые глубины. Вопрос в том, поспевает ли за ним читатель.

Если книга отличается сложностью, но не строгостью, вероятно, ее не стоит советовать тем, кто ищет математического просветления. Все-таки работа Уоллеса обеспечивает исключительно литературный опыт. Учитывая природу такого опыта, можно, пожалуй, поискать подсказку в том, как отозвался о великом открытии Кантора Людвиг Витгенштейн. А Витгенштейн решил, что трепет, который испытываешь, осознав, что одни бесконечности больше других, это чисто «школярское удовольствие». В его теории нет ничего божественного, она не описывает мир вечных, трансцендентных, едва вообразимых сущностей – на самом деле это не более чем собрание (конечных) умственных фокусов. Витгенштейн заметил, что можно представить себе, что теорию бесконечных множеств «создал какой-то сатирик в виде пародии на математику». А тогда, должно быть, Уоллес, обладавший трансцендентным талантом сатирика, все же совершил нечто значительное – создал лукавую пародию на популярно-техническую литературу. «Пародия на математику»… Если назвать так труды Кантора по бесконечности, это, разумеется, обидно и несправедливо. А если описать этими словами книгу Уоллеса, может статься, это было бы воспринято как дань восхищения.

Назад: Глава десятая. Комедия красок
Дальше: Глава двенадцатая. Обожествление бесконечности. Почему русские ей поклоняются, а французы нет