Книга: Идеи с границы познания. Эйнштейн, Гёдель и философия науки
Назад: Часть пятая. Бесконечность большая и малая
Дальше: Глава тринадцатая. Опасная идея бесконечно малого

Глава двенадцатая. Обожествление бесконечности. Почему русские ей поклоняются, а французы нет

Математику издавна принято связывать с мистикой. Высшую математику придумали пифагорейцы – секта, верившая, в частности, в переселение душ и считавшая грехом поедание бобов. Даже сегодня от математики нет-нет да и повеет чем-то мистическим. Многие математики, даже выдающиеся, открыто признаются в вере в царство совершенных математических сущностей, парящее в вышине над грубым эмпирическим миром, то есть, по сути, в платоновские небеса.

В число таких платоников входит и Ален Конн, заведующий кафедрой анализа и геометрии в Коллеж де Франс. Лет двадцать назад в диалоге с нейробиологом Жан-Пьером Шанже Конн заявил о своем убеждении, что «существует исходная неизменная математическая реальность, не зависящая от человеческого разума», причем она «обладает реальностью значительно более неизменной, чем окружающая нас физическая реальность». Непоколебимо платонических взглядов придерживается и сэр Роджер Пенроуз, почетный профессор математики в Оксфорде на кафедре Роуза Болла: он считает, что мир природы – всего лишь «тень» платоновского царства вечных математических форм.

Такие сверхъестественные представления о математике первым обосновал сам Платон в своем «Государстве». Он заметил, что геометры говорят об идеально круглых кругах и идеально прямых линиях, однако в осязаемом мире их не найдешь. То же самое можно сказать даже и о числах, полагал Платон, поскольку они должны состоять из идеально равных единиц. Поэтому, заключал Платон, объекты, изучаемые математиками, существуют, должно быть, в другом мире, неизменном и трансцендентном.

Какой бы ни была соблазнительной платоновская картина математики, она оставляет непроясненным один момент. Как математики выходят на связь с этим трансцендентным царством? Откуда они знают о математических объектах, если эти объекты лежат вне мира пространства и времени? Современные платоники, если задать им этот вопрос, обычно только вяло отмахиваются. Конн упоминает «особое чувство», «не сводимое к зрению, слуху или осязанию», которое позволяет ему воспринимать математическую реальность. Пенроуз заявляет, что человеческое сознание иногда «прорывается» в платоновский мир. Курт Гёдель, один из самых стойких платоников XX века, писал, что «несмотря на недоступность чувственному опыту, мы обладаем некоторой способностью воспринимать» математические объекты, и добавлял: «Не вижу причин, почему мы должны доверять такого рода восприятию, то есть математической интуиции, меньше, нежели чувственному восприятию».

Однако математики, как и все мы, думают мозгом. И трудно представить себе, как физический орган вроде мозга может взаимодействовать с нефизической реальностью. Как заметил философ Хилари Патнэм, «мы не можем представить себе никакого нервного процесса, способного как-то соотноситься с “восприятием математического объекта”».

Чтобы выйти из этого тупика, можно, например, переключиться с Платона на Аристотеля. Пусть в нашем мире и нет совершенных математических сущностей, зато вдоволь несовершенных приближений. Мы можем грубо рисовать мелом на доске круги и линии, можем складывать два яблока и три яблока, и хотя яблоки не идентичны, все равно получится пять яблок. Однако, абстрагировавшись от подобного восприятия заурядных ощущаемых вещей, мы приходим к интуитивному представлению об основных математических понятиях. А остальное – дело логики. Таково аристотелевское представление о математике, и оно вполне согласуется со здравым смыслом. Но есть один воображаемый математический объект, с которым оно справиться не может, и это – бесконечность. У нас нет опыта восприятия бесконечности. Как и восприятия чего-то даже отдаленно на нее похожего. Да, у нас есть ощущение, что считать можно неопределенно долго, поскольку, какое бы большое число мы ни выдумали, всегда можно получить число еще больше, прибавив к нему 1. И, наверное, мы можем вообразить, как бесконечно тянется время или расширяется пространство. Но настоящая, «полная» бесконечность, в противоположность просто «потенциальной» – нет, с таким мы в мире природы никогда не сталкиваемся.

К идее бесконечности с древности относились с подозрением, если не с ужасом. Парадоксы Зенона вроде бы показывали, что если пространство можно бесконечно делить на бесконечно малые фрагменты, движение становится невозможным. Фома Аквинский утверждал, что бесконечно большие числа противоречат сами себе, поскольку числа получаются при счете, поэтому бесконечную коллекцию собрать никогда не получится. Галилей отмечал, что бесконечность нарушает принцип «часть меньше целого». Размышлять о бесконечном оставили богословам, а те отождествили ее с божественным. Паскаль, чья семьдесят вторая «Мысль» – это ода бесконечности в прозе, полагал, что понять бесконечность нельзя, ею можно лишь восхищаться. И даже относительно недавно, в 1831 году, Гаусс объявил, что «пользоваться бесконечным множеством как реальной сущностью… в математике недопустимо».

Однако стало очевидно, что без бесконечности математикам не обойтись. Даже «прикладная» математика – математическая физика, выросшая из дифференциального и интегрального исчисления, которое изобрели Ньютон и Лейбниц, – не лишена фундаментальных недочетов, которые может исправить только строгая теория множеств, в том числе бесконечных. Нужную теорию обеспечил лишь в конце XIX века Георг Кантор, немецкий математик, родившийся в России. Кантор не собирался описывать свойства бесконечности ради них самих, напротив, он утверждал, что эта идея была ему «логически навязана, почти что против моей воли».

На разработку теории бесконечных множеств Кантора вдохновила проблема «дрожащей струны», название которой звучит очень непритязательно. А в результате у него после двух десятков лет интеллектуальных мучений получилось нечто отнюдь не очевидное – последовательность бесконечностей все более высокого порядка, бесконечная их иерархия, восходящая к неведомому пределу, который Кантор назвал Абсолютом. Кантор решил, что видение ниспослано ему свыше, а если он передаст его миру, то станет «посланником Божиим» (по словам его биографа Джозефа Даубена).

Поначалу новую теорию Кантора встретили неоднозначно. Леопольд Кронекер, его бывший учитель, назвал ее «мошенничеством» и «математическим безумием», а Давид Гильберт, напротив, заявил: «Никто не изгонит нас из рая, который создал нам Кантор». Бертран Рассел в автобиографии вспоминал, что «ошибочно считал все доводы Кантора заблуждениями», но затем понял, что «заблуждался только я».

В некоторых случаях реакция на теорию Кантора зависела от государственных границ. Французские математики в целом настороженно относились к ее метафизическому флеру. Анри Пуанкаре, который соперничал с немецким математиком Гильбертом за звание величайшего математика своего времени, заметил, что высшие бесконечности «отдают формой без содержания, что претит французскому духу». А русские математики, напротив, приняли свежеоткрытую иерархию бесконечностей с восторгом.

Почему же французы и русские отнеслись к теории Кантора настолько по-разному? Некоторые наблюдатели списали все на французский рационализм в противоположность русскому мистицизму. К такому объяснению склонялся, например, Лорен Грэхем, американский историк науки, в прошлом преподаватель Массачусетского технологического института, и Жан-Мишель Кантор, математик из Математического института де Жюссе, в своей книге «Имя для бесконечности» (Graham, L., Kantor, J.-M., Naming Infinity). И именно русские мистики оказались двигателями математического прогресса, утверждают Грэхэм и Кантор. В интеллектуальной жизни французских математиков, замечают они, господствовали Декарт, для которого ясность и отчетливость были гарантией истинности, и Огюст Конт, который требовал очистить науку от метафизических спекуляций. Представления Кантора о нескончаемой иерархии бесконечностей явно претили бы обоим.

А русских сверхъестественный дух теории Кантора только согревал. Более того, у истоков одной из самых влиятельных математических школ XX века – Московской математической школы середины столетия – стояли русские математики, принадлежавшие к еретической секте имяславцев. Сектанты верили, что если непрестанно повторять имя Божие, можно слиться с божественным. Имяславие возникло еще в IV веке среди палестинских отшельников-христиан, а в новое время его возродил русский монах Иларион. В 1907 году он опубликовал книгу «На горах Кавказа», где описывал, как доходил до религиозного экстаза, нараспев повторяя имена Бога и Иисуса Христа до тех пор, пока дыхание и сердцебиение не входили с ними в резонанс.

В глазах официальной православной церкви имяславцы были еретиками, поскольку приравнивали Бога к Его имени, и царский режим подавил движение (чтобы выдворить сектантов из Афонского монастыря, где было много мятежных монахов-имяславцев, даже отправили военных моряков). Но для математиков, входивших в секту, имяславие, по всей видимости, открывало особый путь к бесконечности и на платоновские небеса, где она обитала. Так что русские смело применяли высшие бесконечности в своих математических трудах. «Пока французам мешал их рационализм, русским придавала сил их вера в мистическое», – утверждают Грэхэм и Кантор.

Тут напрашиваются два разных вопроса. Во-первых, правда ли, что имяславский мистицизм помог русским в математических исследованиях? Грэхэм и Кантор убеждены, что да, и утверждают, что в этом случае «религиозная ересь поспособствовала рождению новой отрасли современной математики». Это заставляет задать второй вопрос: разве может мистицизм сыграть важную роль в обретении математических знаний, особенно знаний о бесконечности? На него авторы, убежденные антиклерикалы, отвечают уже не так уверенно. «Мы доверяем рациональной мысли больше, чем мистическому озарению», – пишут они. Но ведь то же самое можно сказать и о французских математиках, которых русские опередили. У читателя остается впечатление, что мистицизм в математике заключает в себе какое-то зерно прагматической истины – то есть это работающий метод.

Вспомним, с какими понятийными трудностями столкнулись математики к концу XIX века. Когда Кантор приступил к работе над бесконечностью, в основных понятиях математического анализа, который десятилетиями был главным математическим инструментом познания физического мира, еще царила путаница. В сущности, математический анализ имеет дело с кривыми. Две его главные операции – это поиск направления кривой в данной точке (производная) и поиск площади, ограниченной кривой (интеграл). Кривые математически описываются функциями. Одни функции красивые и гладкие, например, синусоида, они называются непрерывными. У других есть точки разрыва. Насколько разрывной может быть функция, чтобы к ней все же можно было применять методы математического анализа? Это был важнейший вопрос, ответ на который мучительно искали современники Кантора.

Оказалось, что для ответа нужна идея множества. Рассмотрим множество всех точек, где функция прерывиста и совершает скачки. Чем больше и сложнее это множество разрывов, тем «патологичнее» функция. Поэтому Кантор и обратил внимание на множества точек. Как измерить размер такого множества? Кантор попытался это выяснить, и у него получилась теория, определяющая целую иерархию бесконечностей в зависимости от их размера.

Теория множеств Кантора и его открытие, что бесконечности бывают «большие» и «маленькие», обеспечили все необходимое, чтобы привести математический анализ в порядок и расширить его основные понятия. Работой руководили три французских математика. Эмиль Борель, математик, руководивший Эколь Нормаль Сюпериор – Высшей нормальной школой – был еще и журналистом (он выпускал авторитетное левое периодическое издание Revue du Mois), государственным служащим, видной фигурой парижского бомонда, а затем – участником Сопротивления и узником гестапо. Борель и его ученики Анри Лебег и Рене Бэр сумели избавить математический анализ от самых неприятных недочетов, касавшихся его оснований. Борель сформулировал теорию меры, без которой невозможно было изучать вероятности. Бэр разработал понятие непрерывности и изучил ее связи с производной. А Лебег представил красивую новую теорию интегрального исчисления, избавленную от самых досадных пробелов.

Все эти великолепные достижения основывались на открытии Кантора, однако французское трио относилось к нему с подозрением. Парадоксы, которые открыли Бертран Рассел и другие мыслители, пробудили у Бореля, Лебега и Бэра опасения, что теория множеств, вероятно, содержит логические ошибки. Особенно скептически они отнеслись к так называемой аксиоме выбора – нововведению немецкого математика Эрнста Цермело, который придумал ее, чтобы расширить теорию Кантора. Согласно аксиоме выбора, некоторые множества существуют несмотря на то, что для их создания нет рецепта. Предположим, например, что у вас есть множество, состоящее из бесконечного числа пар носков. Скажем, вы хотите определить новое множество, в которое входит только по одному носку из каждой пары. Поскольку носки в паре идентичны, нет правила, которое позволило бы это сделать. Тем не менее аксиома выбора гарантирует, что такое множество существует, хотя для его создания нужно произвольно выбрать по носку бесконечное число раз.

В конце концов французское трио отвергло аксиому выбора – Борель объявил, что «таким рассуждениям в математике не место», – а с ним и применение высших бесконечностей как таковых. Что это – интеллектуальная робость? Авторы Naming Infinity полагают, что да. Французское трио «дало слабину», очутившись «на краю интеллектуальной бездны, перед которой они остановились». Причем эти сомнения, как нас убеждают авторы, дорого им обошлись не только с математической, но и с психологической точки зрения. Борель отступил от абстракций теории множеств на более надежную почву теории вероятностей. «Je vais pantoufler dans les probabilités», как говорил он сам. Это очаровательное выражение означает «Я буду развлекаться с вероятностями» (по-французски pantoufler – «играть и резвиться в домашних тапочках»). Лебег «от досады» стал «несколько угрюмым». А Бэр, всегда отличавшийся хрупким здоровьем, и физическим, и психическим, провел последние годы жизни в одиночестве и покончил с собой.

Зато русское трио, работавшее в то же время параллельно с ними, с радостью приняло метафизические аспекты теории множеств. Главная фигура русского трио – Дмитрий Егоров – был человеком глубоко верующим. Как и его ученик Павел Флоренский, математик, получивший богословское образование и ставший священником (через несколько лет после Октябрьской революции Троцкий при виде отца Флоренского, выступающего на научной конференции в рясе, в изумлении воскликнул: «А это еще кто такой?!»). Флоренский стал духовным наставником другого ученика Егорова – Николая Лузина. И Егоров, и Флоренский входили в подпольный кружок имяславцев – влияние этой секты распространилось с провинциальных монастырей на московскую интеллигенцию, и Лузин, хотя и не входил в секту, симпатизировал ее философии. Все трое перенесли имяславие в математику. По всей видимости, они считали, что сам акт называния позволит им прикоснуться к бесконечным множествам, которые невозможно определить обычными математическими средствами. «Разве можно убедить себя в существовании математического объекта, не определив его?» – недоверчиво спрашивал Лебег. С точки зрения Флоренского это было все равно что спрашивать: «Разве можно убедить себя в существовании Бога, не определив Его?» Можно, конечно, считали русские – ведь само имя Господа, многократно произнесенное, несло с собой убежденность в Его существовании. (Неофициальным лозунгом имяславцев было «Имя Божие есть Бог».) Русские математики были убеждены, что достаточно просто назвать новые математические сущности – и они будут существовать.

Как имя может обладать такой волшебной силой, трудно себе представить. В современной философии есть две соперничающие теории того, как работают имена и названия. Согласно теории «дескриптивизма» (у истоков которой стоял немецкий логик Готлоб Фреге), у каждого имени или названия есть ассоциация с описанием, а предмет или явление, которые оно называет, – это то, что соответствует описанию. Например, если мы используем имя «Гомер», то имеем в виду человека, соответствующего описанию вроде «автор “Илиады” и “Одиссеи”». Более новая «каузальная» теория имен (ее отстаивает, в числе прочих, американский философ Сол Крипке) отрицает, что у названия есть ассоциированный дескриптивный смысл, и утверждает, что имя привязано к своему носителю исторической цепочкой коммуникаций, которая тянется в пространстве-времени до самого первоначального акта «крещения». Согласно одной теории, имена приклеиваются к носителям семантическим клеем, согласно другой – клеем каузальным.

Которая из этих теорий подходит для наименования математических объектов? Очевидно, не каузальная. Математик не способен вступить в каузальный контакт с бесконечностью. Нельзя показать пальцем на бесконечное множество и сказать «Нарекаю тебя А», поскольку такие множества, если они и существуют, не часть пространственно-временного мира. Единственный способ назвать бесконечное множество – это дать математическое описание, которому соответствует это множество и только оно, как предполагает дескриптивистская теория имен. Значит, назвать то или иное бесконечное множество можно, сказав: «Пусть А – множество всех рациональных чисел, чьи квадраты меньше 2». Здесь, естественно, имя дается исключительно для простоты и удобства. За собственно референцию отвечает определение. И без определения невозможно утверждать, что множество существует.

Это понимало французское трио. «Определить – это всегда назвать характерное свойство определяемого», – писал Лебег. Определить что-то – значит сказать, какое качество отличает его от всего остального. И именно такие определения допускала аксиома выбора, что, с точки зрения французов, было опасно. Так правда ли, что безудержное применение бесконечности позволило мистикам-русским сделать открытия, недоступные более осмотрительным французам? Авторы Naming Infinity утверждают, что да, но они несколько преувеличивают. Драматическую последнюю главу в логическом развитии математического анализа дописало все-таки французское трио. Каждый работающий математик близко знаком с «борелевской алгеброй», «категорией Бэра», а главное – с «интегралом Лебега». Русские математики добавили к этой главе разве что несколько сносок. (Самая знаменитая теорема Егорова, касающаяся бесконечной последовательности функций, в сущности, повторяет результат Бореля и Лебега.) Да, Лузин помог сформулировать «дескриптивную теорию множеств», отрасль теории множеств, которая применяет высшие бесконечности Кантора для описания сложных подмножеств чисел на вещественной прямой. Но называть это открытие «новым полем современной математики», как делают авторы Naming Infinity, – значит все-таки сильно преувеличивать его важность.

Подлинная заслуга Егорова и Лузина состоит в том, что они нанесли Москву на математическую карту. В начале двадцатых годов вокруг них в Московском университете сложился кружок молодых математиков, взявший себе в честь Лузина название «Лузитания». «Великий бог профессор Лузин / Укажет нам в науке путь!» – гласила ода, сочиненная одним из лузитанцев. Математическое творчество процветало, невзирая на голод и Гражданскую войну. Семинары проходили чуть ли не при минусовых температурах из-за недостатка дров, но студенты, чтобы греться, устроили каток прямо в здании математического факультета «и пели, скользя по льду вокруг главной лестницы при звездном свете».

В первые годы советской эпохи власти не обращали особого внимания на математиков, поскольку их труды были очень уж абстрактны. Егоров и Лузин не упоминали на лекциях о религии и лишь намекали на «мистическую красоту» математического мира и на то, как важно давать названия его объектам. Однако относительная вседозволенность кончилась, когда к власти пришел Сталин. Егорова заклеймили как «реакционера и сторонника религиозных верований, оказывающего опасное влияние на студентов, человека, путающего математику с мистицизмом». Его обвинителем был Эрнест Кольман, хитрый и коварный математик-марксист, которого прозвали «черным ангелом». В результате и Егоров, и Флоренский, как и другие имяславцы, были арестованы. Егоров объявил в тюрьме голодовку и умер в 1931 году. Говорят, что его последними словами были «Спаси меня, Господи, именем Твоим». Флоренского пытали и отправили в лагерь ГУЛАГа за полярным кругом, где он, по всей видимости, был казнен в 1937 году. Кольман метил и в Лузина, который в манере Монти Пайтона бомбардировал его эзотерическими математическими доводами. Но у Лузина были влиятельные заступники, и один из них обратился лично к Сталину, подчеркнув, что даже сам Ньютон был «религиозный фанатик». После унизительного судебного процесса, где помимо всего прочего Лузина обвиняли в том, что он публиковал свои работы в зарубежных журналах, его все же пощадили.

В кампании против Лузина участвовали несколько его бывших студентов, в том числе Павел Александров и Андрей Колмогоров. Оба они затмили своего наставника, а Колмогорова сейчас считают одним из полудюжины величайших математиков XX века. Колмогоров и Александров много лет были любовниками, их любимым развлечением были дальние заплывы, после которых они вместе занимались математикой неглиже. Вполне вероятно, что их враждебное отношение к Лузину было вызвано скорее профессиональным соперничеством и личной неприязнью, чем идеологией. Как-то раз Лузин оскорбил Колмогорова прямо в здании Академии наук, скаламбурив насчет мужеложства и высшей математики, после чего Колмогоров ударил его по лицу.

Московская математическая школа процветала еще долго после того, как ее основатели-мистики исчезли с научного горизонта. В послевоенную эпоху советская столица как средоточие математических талантов уступала лишь Парижу. Однако высшие бесконечности, которым поклонялись имяславцы, отошли на второй план, а на смену теории множеств, которую предпочитал Лузин, пришли методы Колмогорова и Александрова, больше соответствовавшие господствовавшим взглядам. А что касается аксиомы выбора, вызвавшей столько споров, Курт Гёдель в 1938 году доказал, что она логически согласуется с другими, общепризнанными аксиомами теории множеств, так что необходимость в мистическом обосновании отпала. Поскольку ее применение не может вызвать никаких гибельных противоречий, математики получили свободу применять ее по своему усмотрению. Теперь им не нужно задумываться о том, описывает ли она платоновский мир бесконечных множеств.

И вот он перед нами – ключ к избавлению математики от мистицизма. Оттенок мистического науке (как субъекту) придает общепринятое мнение о природе его объектов. Объекты, изучаемые химией и ботаникой, – часть физического мира, а объекты математики, как считается, обретаются в трансцендентном мире, к которому нормальные способы познания неприменимы. Но вдруг таких трансцендентных объектов просто нет? Не превращается ли тогда математика в богословие без Бога? Вдруг (как настаивают философы-номиналисты) все это просто выдумки, восхитительно сложная волшебная сказка?

В каком-то смысле да. Если не существует подлинной математической реальности, подлежащей описанию, математики вольны сочинять любые истории, то есть исследовать всевозможные гипотетические реальности, дав волю воображению. Как говорил как-то сам Кантор, «суть математики – свобода». Согласно такой картине работа математиков состоит из утверждений «если – то»: если такая-то и такая-то структура удовлетворяет тем или иным аксиомам, то такая структура должна удовлетворять тем или иным дальнейшим условиям. (Такие высказывания о математике в духе «если – то» иногда мелькают, в частности, у Бертрана Рассела и Хилари Патнэма.) Некоторые из этих аксиом, возможно, описывают гипотетические структуры, имеющие аналоги в физическом мире, и составляют «прикладную» математику. Некоторые не имеют никакого отношения к пониманию физического мира, но все же полезны в пределах самой математики. Скажем, аксиома выбора не нашла применения в прикладной математике, но большинство математиков предпочитают на нее ссылаться, поскольку она многое проясняет в «выдуманных» областях математики вроде топологии.

Воображение математиков подчиняется только одному ограничению (кроме необходимости заполучить надежную должность), и это логическая последовательность. Пока совокупность аксиом логически последовательна, она описывает возможную структуру. Но если оказывается, что аксиомы непоследовательны, то есть в них таится противоречие, значит, структуры, которые они описывают, невозможны, а следовательно, математики напрасно потратили на них время.

То есть математика – это всего лишь стиль рассуждений, а не наука о трансцендентных объектах? Не слишком ли безрадостна такая картина, чтобы вдохновить работающего математика? Авторы Naming Infinity замечают: «В истории математики со времен Пифагора до наших дней рационализм и мистицизм периодически плавно сменяют друг друга». Сегодня романтика платоновской математической реальности жива-здорова, о чем свидетельствуют приведенные здесь слова Алена Конна и Роджера Пенроуза.

К тому же есть и более яркий случай – Александр Гротендик. В шестидесятые годы Гротендик (сын русского анархиста, погибшего в Освенциме) работал в Париже и создал абстрактную основу для революционно-новой математики, что позволило ученым, работавшим в этой области, выражать идеи, которые до этого было невозможно сформулировать. В работах Гротендика налицо сильный мистический уклон. В своих пространных автобиографических сочинениях он описывает творческий процесс с участием «видений» и «вещих снов». Авторы Naming Infinity отмечают, что Гротендик, подобно русским имяславцам, считал, что называть объекты – это «способ улавливать их до того, как удастся их понять».

Гротендика, пожалуй, можно считать рекламой прагматической мощи мистицизма в математике. Он скончался в 2014 году отшельником в Пиренеях, где, по свидетельству редких гостей, провел последние десятилетия жизни «одержимым идеей дьявола: он считает, что тот не покладая рук разрушает божественную гармонию во всех уголках планеты».

Назад: Часть пятая. Бесконечность большая и малая
Дальше: Глава тринадцатая. Опасная идея бесконечно малого