Считается, что большинство понятий не только естественного языка, но и языка науки являются неточными, или, как их еще называют, размытыми, нечеткими. На наш взгляд, ВСЕ понятия являются неточными, и «любая поставленная задача» также весьма относительна в части корректности, пока не будет сведена к «задаче, как она понимается». Нередко это оказывается причиной непонимания, споров, а то и просто ведёт к тупиковым производственным и научно-исследовательским ситуациям.
Пример. Пусть на столе лежат 5 яблок сортов антоновка, грушёвка, штрифель, белый налив, «семеренка» (то есть «Симиренко»), а кроме них, ещё яблоко неизвестного сорта, зато надкушенное, яблоко с гнилым боком, половинка яблока, огрызок, яблоко, нарисованное на листе бумаги, карточка на которой написано «яблоко». Попробуйте сосчитать, сколько яблок лежит на столе.
Выполняя задание, вы будете вынуждены ввести некий критерий для того, чтобы определить, что считать яблоком, а что не считать. Но с каждым новым примером, который мы будем предлагать, вам придется менять и уточнять свой критерий, и так будет без конца, ибо в реальности существует бесконечное число способов варьировать объект.
Если понятие неточное, граница области объектов, к которым оно приложимо, лишена резкости, размыта. Возьмем, к примеру, понятие «куча». Одно зерно (песчинка, камень и т. п.) – это ещё не куча. Тысяча зёрен – это уже, очевидно, куча. А три зерна? А десять? С прибавлением какого по счету зерна образуется куча? Не очень ясно. Точно так же, как не ясно, с изъятием какого зерна куча исчезает. Неточными являются эмпирические характеристики «большой», «тяжёлый», «узкий» и т. д. Неточны такие обычные понятия, как «мудрец», «лошадь», «дом» и т. п.
Нет песчинки, убрав которую, мы могли бы сказать, что с её устранением оставшееся уже нельзя назвать домом. Но ведь это как будто означает, что ни в какой момент постепенной разборки дома – вплоть до полного его исчезновения – нет оснований заявлять, что дома нет! Вывод явно парадоксальный и обескураживающий.
Нетрудно заметить, что рассуждение о невозможности образования кучи проводится с помощью хорошо известного метода математической индукции. Одно зерно не образует кучи. Если n зёрен не образуют кучи, то n+1 зерно не образуют кучи. Следовательно, никакое число зёрен не может образовать кучи.
Возможность этого и подобных ему доказательств, приводящих к нелепым заключениям, означает, что принцип математической индукции имеет ограниченную область приложения. Он не должен применяться в рассуждениях с неточными, расплывчатыми понятиями.
В прошлом веке выдающийся польский логик Альфред Тарский отметил, что язык, на котором мы говорим (естественный язык), применяется как для описания окружающего мира, так и для описания самого языка. Такие языки А. Тарский назвал «семантически замкнутыми». В семантически замкнутых языках, по его мнению, неизбежно возникают противоречия. Это, так сказать, плата за мощь и выразительность. Чтобы избежать парадокса, необходимо разделить языки. На первом следует говорить о материальном мире, на втором – о первом языке и его свойствах, на третьем – о втором языке, ну и так далее. Возникает бесконечная иерархия языков. Подобная ситуация имеет место в искусственных языках, например, предназначенных для программирования, которые описывают свою заданную предметную область, но о них самих и их свойствах высказывания строятся на естественном языке.
С одной стороны это восхитительное открытие, ставящее А. Тарского в один ряд с Великими, а с другой стороны ситуация с построением бесконечной иерархии непротиворечивых языков чем-то очень напоминает нам Ахилла и черепаху…
Долгое время считалось, что предложение А. Тарского – единственный путь разрешения «Парадокса лжеца», но сейчас мнение изменилось.
В 1920 году ещё один польский математик Ян Лукасевич предложил многозначные логики, то есть такие, в которых кроме значений «истинно» и «ложно» появляются и другие значения высказываний. Так, первой версией многозначной логики была трёхзначная логика, в которой появились значения «ошибочно» или «неизвестно». Вслед за этим появилось множество различных логик: бесконечнозначные, конечнозначные (чёткие и нечёткие), вероятностные. В них пришлось отказаться от закона «исключения третьего» и даже от «закона противоречия».
Этих законов – три. Лет шестьдесят назад каждый школьник их знал, а сейчас и не всякий выпускник ВУЗа с ними знаком!
Первый – закон тождества, согласно которому в процессе рассуждения каждое осмысленное выражение (понятие, суждение) должно употребляться в одном и том же смысле. Предпосылкой его выполнимости является возможность различения и отождествления тех объектов, о которых идёт речь в данном рассуждении, то есть «мысль о предмете должна иметь определённое, устойчивое содержание, сколько бы раз она ни повторялась. Важнейшее свойство мышления – его определённость – выражается данным логическим законом» (Кириллов, Старченко, 1982).
Второй – закон противоречия (он же закон непротиворечия) гласит, что два несовместимых (противоречащих или же противоположных) суждения не могут быть одновременно истинными. По крайней мере одно из них необходимо ложно. Закон противоречия является фундаментальным логическим законом, на котором построена вся современная математика. Здесь очень важную роль имеет слово «одновременно», так как любой предмет может изменяться и в разные моменты времени, так же, как и в разных местах пространства и в разных отношениях, он может не совпадать сам с собой. Так, если сказать, что «река мелкая» и «река глубокая», то это будет противоречием, до тех пор, пока не дано отношение. То, по отношению к кому или чему она мелкая или глубокая: для взрослого она мелкая, а для маленького ребёнка глубокая.
Третий – закон исключённого третьего («tertium non datur», то есть «третьего не дано») – закон классической логики: из двух высказываний – «А» или «не А» – одно обязательно является истинным, то есть два суждения, одно из которых является отрицанием другого, не могут быть одновременно ложными (либо истинными), одно из них необходимо истинно, а другое ложно.