Убежденный сторонник теории Нильса Бора, невысокий сероглазый двадцативосьмилетний доцент по имени Джон Арчибальд Уилер приехал в Принстонский университет в 1938 году, на год раньше Фейнмана. У него были такие же, как у Бора, закругленные брови, мягкие черты лица и та же манера, разговаривая о физике, вкладывать в свои слова загадочный скрытый смысл. В последующие годы ни одному физику не удалось превзойти Уилера ни в его отношении к непознанному, ни в умении двусмысленно высказываться.
Черные дыры не имеют волос. Это сказал именно он. Фактически ему принадлежит и сам термин «черная дыра».
Нет никакого закона, кроме закона, утверждающего, что нет никакого закона.
Я хожу на двух ногах, и одна из них всегда догоняет другую.
В любой области ищите самое странное и исследуйте это.
Отдельные события. События, не подчиняющиеся законам. События столь многочисленные и столь нарочито разрозненные, с подчеркнутой спонтанностью, при этом все же приобретающие устойчивый облик.
Он одевался как бизнесмен. Галстук всегда туго завязан, манжеты накрахмалены. У него была привычка во время беседы со студентами непринужденно доставать карманные часы, доходчиво намекая, что потратит на них только отведенное им время. Его коллега по Принстону Роберт Уилсон полагал, что за фасадом джентльмена Уилер скрывает еще более безупречного джентльмена, за которым прячется еще более безупречный, и так далее. «Однако, — добавлял Уилсон, — где-то между этими джентльменами затаился тигр, дерзкий разбойник <…> у которого хватает смелости браться за любую, самую сумасшедшую задачу». Лекции Уилер читал очень уверенно, производя впечатление на аудиторию простым изложением и провокационными схемами. В детстве он тщательно изучил книгу под названием Ingenious Mechanisms and Mechanical Devices («Хитрые механизмы и механические устройства»). Он сам конструировал арифмометры и автоматические пистолеты, в которых все детали и рычаги были вырезаны из дерева. Его иллюстрации к самым непонятным квантовым парадоксам, которые он набрасывал на грифельной доске, были столь остроумны и отточены, что казалось, будто весь мир представляет собой не что иное, как удивительный ясный механизм. Сын библиотекарей и племянник горняков, Уилер вырос в Огайо, окончил колледж в Балтиморе, получил степень в Университете Джона Хопкинса. А потом он выиграл стипендию Национального научно-исследовательского совета, что в результате и привело его в 1934 году в Копенгаген. Он отправился туда на грузовом судне, чтобы учиться у Нильса Бора, заплатив за билет пятьдесят пять долларов.
В начале 1939 года Уилер и Бор снова будут работать вместе, на этот раз уже как коллеги. Принстон, чтобы развивать новое направление — ядерную физику, пригласил не только Уилера, но и известного венгерского ученого Юджина Вигнера. МТИ же оставался довольно консервативным учреждением и не спешил бежать впереди паровоза. Слейтер и Комптон придерживались сложившихся представлений о физике и тяготели к развитию на факультете практичных направлений. В Принстоне все было иначе. Уилер все еще помнил то непередаваемое чувство, которое испытал, впервые наблюдая за процессом радиоактивного излучения. Он помнил, как сидел в темной комнате, уставившись в черный экран из сульфата цинка, и подсчитывал периодические вспышки альфа-частиц, испускаемых радоновым источником. Бор к тому времени уже покинул неспокойную Европу, чтобы посетить институт Эйнштейна в Принстоне. Уилер, встречавший Бора, прибывшего в Нью-Йорк на корабле, узнал от него о том, какое пристальное внимание уделяют изучению атомов урана в Европе.
По сравнению с атомом водорода, с изучения ядра которого Бор начал свою квантовую революцию, атом урана был просто монстром. Самый тяжелый, состоящий из 92 протонов и более чем 140 нейтронов атом, редко встречающийся в природе (всего один на семнадцать триллионов атомов водорода), нестабильный, предрасположенный к внезапному распаду на более легкие элементы или — а это были экстраординарные новости, и именно над этим вопросом Бор работал во время своего путешествия через Атлантику, — расщеплению при столкновении с нейтроном на свободные пары более легких атомов бария и криптона или теллура и циркония с высвобождением новых нейтронов и энергии. Как можно было представить эти ядра? Как скопления твердых частиц, скользящих друг на друге? Как гроздья винограда, перемотанные плотной резинкой? Или как «жидкие капли», представлявшие собой мерцающие, отталкивающиеся, постоянно колеблющиеся шаровидные частицы, сжимающиеся в форму песочных часов и растрескивающиеся в их тонкой части? Формулировка «жидкие капли» распространилась, словно вирус, в среде физиков в 1939 году. Именно эта «жидкокапельная» модель позволила Уилеру и Бору сделать одно из самых невероятных и величайших упрощений в науке — выстроить теорию феномена, который позже назовут расщеплением ядра. Сам термин не принадлежал Уилеру и Бору. Они весь вечер пытались придумать вариант получше, что-то вроде раскола или деления, но в конце концов сдались, так и не найдя нужного слова.
Разумно было предположить, что модель жидких капель лишь весьма приближенно описывает скопления частиц в ядре атома, состоящего из более чем двухсот частиц, удерживаемых вместе ядерными силами, действующими на близких расстояниях и отличающимися по своей природе от действующих в молекулах электрических сил, которые изучал Фейнман. Для атомов меньшего размера метафору «жидкие капли» использовать было нельзя, но для описания крупных, таких как атомы урана, она работала. Форма ядра атома, как и форма жидкой капли, зависела от тонкого баланса между двумя противоположными силами. Силы ядерного притяжения (так называемое сильное взаимодействие) в атоме подчиняются тому же принципу, благодаря которому за счет поверхностного натяжения удерживается компактная геометрическая форма капли. Этому притяжению противостоит электрическая сила отталкивания (согласно закону Кулона), действующая между положительно заряженными протонами. Бор и Уилер поняли, насколько важно облучать именно медленными нейтронами, которые Ферми счел совершенно бесполезными, когда работал в своей лаборатории в Риме, и сделали два громких заявления. Во-первых, к взрыву приведет ядерный распад только редкого изотопа урана — урана-235. Во-вторых, бомбардировка нейтронами также приведет и к ядерному распаду и образованию нового вещества с атомным номером (зарядом) 94 и массой 239, не существующего в природе и пока не полученного в лаборатории. На основе этих двух теоретических утверждений вскоре начал развиваться огромный, невиданный ранее технологический проект.
Одна за другой открывались лаборатории ядерной физики. Американский дух изобретательства был теперь направлен на то, чтобы разработать аппарат, позволяющий ускорять пучки заряженных частиц, сталкивать их с атомами металлов или газов и отслеживать частицы, образующиеся в результате их столкновений, используя камеры с ионизированным газом. Один из первых в стране «циклотронов» — такое название этот аппарат получит в будущем — появился именно в Принстоне в 1936 году. Его стоимость была такой же, как и стоимость нескольких автомобилей. В университете имелись и ускорители меньшего размера, которые работали каждый день, что позволяло получать редкие элементы и изотопы и накапливать новые знания. Когда так мало известно, результаты почти каждого эксперимента приобретают особую значимость.
Полученные на новом мощном оборудовании данные становилось все труднее оценивать и интерпретировать. Ранней осенью 1939 года студент по имени Хайнц Баршалл обратился к Уилеру с типичной проблемой. Как и большинство новоиспеченных практиков, Баршалл использовал ускоритель заряженных частиц, чтобы измерить их энергию. Внутри ионизированной камеры происходило рассеяние частиц, и ему надо было оценить зависимость энергии частиц от угла столкновения. Баршалл понял, что эксперимент не будет чистым, так как сама камера будет вносить искажения. Проблема заключалась в том, что некоторые частицы могли начать ускоряться вне камеры, другие — уже в ее цилиндрических стенках, и, следовательно, зафиксированная энергия не будет соответствовать ее истинному значению. Необходимо было найти способ, позволяющий полученное с помощью расчетов значение энергии привести в соответствие энергии реальной. Это была задача, для решения которой требовалось выполнять громоздкие вычисления вероятностей в сложной геометрии. Баршалл понятия не имел, с чего начать. Уилер же ответил, что он сам слишком занят, чтобы вникать, и посоветовал обратиться к новому очень сообразительному аспиранту.
Баршалл послушно разыскал Дика Фейнмана в здании колледжа. Фейнман выслушал его, но ничего не ответил. Баршалл решил, что пришел конец его научной работе. Ричард же только начинал привыкать к этому новому миру, который ему как физику казался гораздо меньше, чем тот научный центр, который он недавно покинул. Он покупал все необходимое в магазине на Нассау-стрит в западной части студенческого городка. Там его и заметил студент магистратуры Леонард Эйзенбад. «Похоже, ты намереваешься стать неплохим физиком-теоретиком, — сказал Эйзенбад, указывая на купленную Фейнманом корзину для мусора и тряпку для стирания мела с доски. — Все, что нужно, у тебя уже есть». В следующий раз, когда Баршалл встретился с Фейнманом, его удивила охапка исписанных листов, которую тот держал в руках. Ричард успел написать решение его задачи, пока был в дороге. Баршалл был впечатлен и стал еще одним молодым физиком в разрастающейся группе единомышленников, способных в полной мере по достоинству оценить способности Фейнмана.
Уилер тоже обратил внимание на Фейнмана, назначенного по непонятным им обоим причинам его ассистентом, так как изначально предполагалось, что Фейнман будет работать с Вигнером. При первой встрече Ричард был удивлен молодостью профессора: тот был чуть старше его самого. Потом он был ничуть не меньше удивлен манерой Уилера сверяться со своими карманными часами. Он понял намек и во время следующей встречи тоже достал из кармана часы, купленные за доллар, и показал их Уилеру. Повисла пауза, после чего оба рассмеялись.
Принстон славился своей аристократичностью. Университетские столовые, аллеи деревьев, каменные кладки и витражные окна, академические мантии за ужином и непременный обмен любезностями за чаем. Ни один другой колледж так не подчеркивал социальный статус своих выпускников как Принстон с его клубными традициями. Хотя XX век уже наложил свой отпечаток — количество выпускников выросло, а Нассау-стрит замостили, — Принстон в довоенные годы все же оставался таким, каким его с обожанием и поклонением описывал Скотт Фицджеральд — «неторопливым, привлекательным и аристократичным». Это был форпост между Нью-Йорком, Филадельфией и Югом. На его факультетах, очень профессиональных, все еще встречались фицджеральдовские «умеренно поэтичные джентльмены». Даже добродушный гений, прибывший в 1933 году и ставший самым знаменитым резидентом, не смог удержаться от насмешки. «Чопорная деревня тщедушных божков на ходулях», — описывал университет Эйнштейн.
Аспиранты, готовящиеся вступить на профессиональную стезю, были несколько отстранены от более праздных проявлений университетской жизни. Кафедра физики, в частности, развивалась в ногу со временем. Со стороны Фейнману казалось, что физики из Принстона составляли основную долю авторов научных журналов. Но даже несмотря на это, ему пришлось приспосабливаться к новому месту, которое, со своими внутренними дворами и множеством входящих в состав колледжей, походило на английские университеты даже больше, чем Гарвард и Йель. У здания аспирантуры, например, стоял «портье». Формальности, как обычно, пугали Фейнмана, но это продолжалось лишь до тех пор, пока он не начал понимать, что под академической мантией, которую нужно было носить обязательно, можно спрятать голые руки или пропитанную потом после игры в теннис спортивную форму. В день, когда он только приехал, осенью 1939 года, во время воскресного чаепития с деканом Эйзенхартом его несдержанные манеры стали настоящей проблемой. Он надел свой лучший костюм, вошел в дверь и увидел там худшее из того, что только мог вообразить, — молодых девушек. Он не знал, разрешалось ли ему присесть. И тут услышал голос позади:
— Вам чай со сливками или с лимоном?
Он обернулся и увидел жену декана, знаменитую светскую львицу Принстона. Поговаривали, что математик Карл Людвиг Зигель, вернувшись в Германию после года обучения в Принстоне, рассказывал друзьям: «Гитлер страшен, но миссис Эйзенхарт страшнее».
— И с тем, и с другим, — выпалил Фейнман.
— Хе-хе-хе-хе-хе, — последовал ответ, — Вы, конечно, шутите, мистер Фейнман!
Фраза, несомненно, означала, что собеседник допустил бестактность. Каждый раз, когда Ричард вспоминал этот случай, слова звенели у него в ушах: «Вы, конечно, шутите». Да, вписаться в этот мир было непросто. Фейнман переживал, что плащ, присланный родителями, был слишком короток. Он попробовал заниматься греблей — спортом, популярным в Лиге Плюща и казавшимся не таким пугающим, учитывая опыт Фар-Рокуэй. Он помнил то беззаботное время, когда они плавали по заливам южного побережья. Однако почти сразу Фейнман плюхнулся в воду, не удержавшись в слишком узкой лодке. Его беспокоил финансовый вопрос. Когда к Фейнману приходили гости, то приносили с собой рисовый пудинг, виноград, крекеры с арахисовым маслом или джемом и ананасовый сок. Фейнман, как и другие начинающие ассистенты, получал пятнадцать долларов в неделю. Обналичивая сберегательные сертификаты, чтобы оплатить счет в 265 долларов, он потратил двадцать минут, подсчитывая, какая их комбинация даст минимальные проценты. Разница составила восемь центов. Внешне Ричард оставался таким же импульсивным. Вскоре после его приезда товарищи по аспирантуре заключили, что Фейнман был на одной волне с Эйнштейном, которого к тому времени он еще не встречал. С восхищением они слушали его телефонные разговоры, полагая, что он беседует именно с этим великим человеком: «Да, я пробовал это <…> да, сделал <…> О, хорошо, проверю». Но чаще всего Ричард, конечно, говорил с Уилером.
Так как Фейнман был ассистентом Уилера, ему часто приходилось подменять преподавателя сначала на занятиях по механике, позже — по ядерной физике. И он вскоре понял, что выступать в аудитории, заполненной студентами, — часть выбранной им профессии. Фейнман и Уилер встречались каждую неделю, чтобы обсудить, как продвигаются исследования. Поначалу задачи ставил Уилер, потом они стали принимать решения вместе.
В первые четыре десятилетия XX века в физике был совершен невероятный прорыв. Теория относительности, квантовая теория, космические лучи, радиация, строение атомного ядра — те направления, к которым были обращены взгляды ведущих ученых. Такие классические разделы физики, как механика, термодинамика, гидродинамика и статическая механика, остались в стороне, и сообразительным аспирантам, открытым новым теориям, эти области представлялись наукой из учебников, уже ставшей частью истории или, в прикладном варианте, машиностроения. Физика была, как выразился ее летописец Абрахам Пайс, «обращена внутрь». Теоретиков интересовало строение ядра атома. Это направление стало приоритетным. Самое дорогостоящее экспериментальное оборудование: его стоимость могла достигать тысяч, а иногда и десятков тысяч долларов. Огромное потребление энергии. Непознанный мир новых веществ и «частиц» (это слово стало приобретать особое значение). Предлагаемые идеи казались странными и непонятными. Теория относительности, существенно повлиявшая на понимание космоса астрономами, практическое применение нашла в атомной физике, где ввиду того, что скорости частиц близки к скорости света, без релятивистской математики просто нельзя было обойтись. При проведении экспериментов использовались все более высокие мощности, что позволяло получать более значимые результаты. Благодаря квантовой механике физика утвердила свое превосходство над химией, которая до этого считалась самой фундаментальной наукой, так как объясняла основные законы природы.
Но в конце 1930-х — начале 1940-х годов физика элементарных частиц еще не считалась среди ученых приоритетным направлением. Так, в качестве темы ежегодной Вашингтонской конференции по физике в 1940 году организаторы рассматривали два варианта: «Элементарные частицы» и «Недра Земли» и выбрали в итоге второй. Но ни у Фейнмана, ни у Уилера не было сомнений в том, какое направление наиболее интересно и перспективно для теоретиков. Самым слабо развитым направлением фундаментальной физики в тот период была квантовая механика. Еще во время учебы в МТИ Фейнман прочел работу Дирака, опубликованную в 1935 году, в которой тот пришел к самому невероятному выводу: «Кажется, здесь нужны принципиально новые физические идеи». Дирак и другие первооткрыватели создали квантовую электродинамику — теорию взаимодействия электричества, магнетизма, света и материи — и развили ее настолько, насколько могли. Тем не менее теория оставалась незавершенной, и Дирак это хорошо знал.
Было непонятно, каким может быть электрон — фундаментальная частица с отрицательным зарядом. В тот период современное представление об электроне еще не вполне сформировалось, хотя в наше время многие школьники могут непосредственно на своих столах проводить эксперименты, которые демонстрируют, что электрический заряд дискретен, то есть заряд любого тела кратен заряду электрона. Но все же, что представляет собой электрон? Вильгельм Рентген, обнаруживший существование высокоэнергетических лучей, названных впоследствии его именем, запретил использовать это неожиданно получившее распространение слово в своих лабораториях еще в 1920 году. В трудах по квантовой механике ученые пытались описать заряд электрона, его массу, импульс, энергию или спин почти в каждом новом уравнении, однако хранили молчание по поводу самой его природы. Особенно остро стоял вопрос: был ли он частицей, имеющей конечные размеры, или бесконечно малой точкой? В модели атома Нильса Бора, уже устаревшей к тому моменту, предполагалось, что электроны, как миниатюрные планеты, вращаются вокруг ядра. Теперь же казалось, что электроны скорее являются гармоническими колебаниями. В некоторых формулировках электрон больше походил на волны, причем волна представляла собой распределение вероятностей их возникновения в конкретном месте в конкретное время. Но возникновение чего? Объекта, элемента, частицы?
Даже до появления квантовой механики классическое представление об электроне вызывало сомнения. Из уравнения, описывающего зависимость энергии (или массы) и заряда электрона и в которое входит еще один параметр — его радиус, следует, что с уменьшением размера электрона его энергия должна возрастать, подобно тому, как давление молотка, сосредоточенное в острие гвоздя, по которому он бьет, увеличивается до тысячи килограммов на квадратный сантиметр. Кроме того, если представлять электрон в виде крошечного шарика определенного размера, то возникает вопрос: почему он не разрушается под воздействием собственного заряда, какая сила удерживает его от этого? Оказалось, что физики манипулируют величиной, называемой «классический радиус электрона». Слово «классический» в данном контексте было своего рода прикрытием. Проблема заключалась в том, что при использовании альтернативного варианта, в котором электроны считаются бесконечно малыми точками, уравнения электродинамики не решаются: при делении на ноль получается бесконечность. Бесконечно маленькие гвозди, бесконечно сильные молотки.
В некотором смысле уравнения оценивали воздействие заряда электрона на самого себя, то есть его «собственную энергию». Это самовоздействие постепенно возрастало при приближении к центру электрона, но было непонятно, что будет, если в расчетах достичь центра электрона. Когда расстояние до центра становилось равным нулю, величина воздействия становилась равной бесконечности. Это казалось невозможным. Волновое уравнение квантовой механики только все усложняло. Чтобы избежать деления на ноль, которое во время учебы в школе вызывает ужас у учеников, физики задумались о создании уравнений, которые позволили бы выйти за пределы этих ограничений, ведь они суммировали бесконечное множество длин волн, бесконечное множество колебаний поля. Но даже тогда Фейнман не до конца понимал эту формулировку задачи, связанную с бесконечностью. Иногда, при решении достаточно простых задач, физикам удавалось получать разумные ответы, если они считали целесообразным отбрасывать те части уравнения, которые расходились с результатами. Как заметил Дирак в выводах к своей работе «Принципы квантовой механики», бесконечности в уравнении означали, что теория была фатально ошибочной. Появилось ощущение, что необходимы принципиально новые физические идеи.
Фейнман склонялся к решению настолько радикальному и простому, что его мог бы принять лишь человек, совершенно незнакомый с научной литературой. Он допустил (пока только для себя), что электроны вообще не могут воздействовать на себя. Такое предположение нуждалось в доказательстве и казалось довольно глупым. Однако, как он и ожидал, если исключить воздействие электрона на себя, то устранялось и воздействие поля как такового. Именно поле, представляющее собой суммарное воздействие зарядов всех электронов, и вызывало «самовоздействие». Заряд электрона оказывал влияние на поле, а поле, в свою очередь, воздействовало на электрон. Если предположить, что поля не существует, можно не учитывать его влияние на электроны. Тогда на каждый электрон будут оказывать влияние только другие электроны. Таким образом, будут осуществляться только непосредственные взаимодействия между зарядами. В этом случае в уравнении необходимо учесть задержку во времени, потому что, в какой бы форме это взаимодействие ни происходило, оно едва ли могло осуществляться со скоростью, превышающей скорость света. Взаимодействие было легким и осуществлялось в виде радиоволн, видимого света, рентгеновских лучей или любых других видов электромагнитного излучения. «Встряхни что-то одно, через какое-то время встряхнется и что-то другое, — сказал Фейнман позже. — Атомы на Солнце приходят в движение, а восемь минут спустя начинают колебаться электроны в моих глазах. Это и есть прямое воздействие».
Никакого поля. Никакого самосогласованного действия. Следуя утверждению Фейнмана, законы природы были не столько открыты учеными, сколько умозрительно выведены. Впрочем, их смысл, переведенный на язык слов, несколько размывался. Фейнмана интересовал не столько сам факт воздействия электрона на самого себя, сколько возможность обоснованно отбросить эту концепцию. То есть не существование поля в природе, а возможность его существования в уме физика. Когда Эйнштейн провозгласил, что эфира не существует, он говорил, что отсутствует что-то реальное, или, по крайней мере, то, что должно было существовать, — представьте хирурга, который вскрыл грудную клетку и не обнаружил там пульсирующего сердца. С полем все было иначе. Оно было придумано, а не существовало в реальности. Английские ученые Майкл Фарадей и Джеймс Максвелл, которые ввели это понятие в XIX веке, полагая, что оно столь же необходимо, как хирургический скальпель, начали чуть ли не извиняться. Они не ожидали, что их слова воспримут буквально, когда писали о «силовых линиях», которые Фарадей наблюдал, разбрасывая металлические опилки вблизи магнита, или о «промежуточных шестернях», псевдомеханических невидимых вихрях, которые, по представлениям Максвелла, заполняли пространство. Они заверяли своих читателей, что это были всего лишь аналогии, хотя и обоснованные математически.
Понятие поля было предложено не просто так. Оно давало возможность свести воедино свет и электромагнетизм и было не чем иным, как преобразованием одного в другое. Как и абстрактный приемник ныне не существующего эфира, поле идеально объясняло распространение волн, а энергия, казалось, действительно волнообразно пульсировала из его источников. Каждый экспериментатор, так же увлеченно изучающий электрические цепи и магниты, как Фарадей и Максвелл, мог почувствовать, как «вибрации» или «волновые движения» движутся циклически, подобно кручению колеса. Но главное, поле позволяло объяснить, почему находящиеся на расстоянии объекты взаимодействуют друг с другом. В поле силы распространялись непрерывно, от одного места к другому. Никаких скачков, никакого волшебного подчинения непонятно откуда поступающим командам. Американский физик и философ Перси Бриджмен сказал: «Гораздо проще принять рациональный взгляд на то, что гравитация Солнца действует на Землю сквозь пространство, чем верить, что воздействующая сила «перескакивает» через разделяющее их расстояние и находит цель благодаря своей телеологической проницательности». К тому времени ученые уже забыли, что поле само по себе тоже несло налет магии: волнообразное нечто, которого не было, и пустое пространство, не вполне пустое и, строго говоря, не совсем пространство. Или, как позже сказал теоретик Стивен Вайнберг, «напряжение в мембране, но без самой мембраны». Понятие поля стало настолько привычным для физиков, что даже материя порой казалась им неким придатком, «точкой» этого поля, «пятном», или, как сказал Эйнштейн, тем местом, где поле было особенно интенсивно.
Принимать гипотезу поля или отрицать ее — так или иначе, к 1930 году это был уже вопрос метода, а не реальности. События 1926–1927 годов многое прояснили. Никто уже не был так наивен, чтобы сомневаться в существовании матриц Гейзенберга или волновых уравнений Шрёдингера. Это два разных взгляда на одни и те же процессы. В поисках новой теории Фейнман обратился к классическим представлениям о взаимодействии частиц. Ему пришлось столкнуться с волнообразным распространением энергии и обманчивым действием на расстоянии. В то же время Уилера заинтересовала абсолютно четкая концепция того, что электроны могут взаимодействовать напрямую, без участия поля.
Во время учебы в аспирантуре Фейнману приходилось чаще общаться с математиками, чем с физиками. Студенты, обучающиеся на двух потоках, собирались каждый полдень в общем холле на чай — опять же, дань английским традициям, — и Фейнман постоянно слышал разговоры математиков на совершенно чуждом ему профессиональном языке. Математика уже переставала развиваться как наука, непосредственно используемая в современной физике, а сами математики все больше и больше склонялись к изучению таких кажущихся непонятными разделов как, например, топология, рассматривающая фигуры в двух-, трех- и многомерных пространствах без учета фиксированных длин или углов. Будущие математики и физики все заметнее отдалялись друг от друга. В последний год обучения их практически ничего не связывало — ни совместные курсы, ни темы для разговоров. Фейнман же во время общих чаепитий, присоединившись к одной из групп или сидя на диване, слушал, что говорили математики о доказательствах. Так или иначе, он интуитивно чувствовал, какая теорема может быть выведена из какой леммы, даже если не понимал толком предмета спора. Ему нравились эти странные беседы. Нравилось угадывать противоречащие логике ответы на не поддающиеся наглядному представлению вопросы. Нравилось, как и всем физикам, подкалывать присутствующих, утверждая, что математики все время пытаются доказать очевидное. И хотя он подшучивал над ними, его восхищало это общество людей, увлеченных непостижимой наукой. Одним из друзей Ричарда был Артур Стоун, терпеливый молодой англичанин, обучавшийся в Принстоне на стипендию. Другим — Джон Тьюки, впоследствии ставший одним из известных в мире статистиков. Эти парни очень серьезно относились к своему свободному времени. Стоун привез из Англии блокноты, в которые можно было вставлять листы, а так как стандартная американская бумага была шире его блокнотов на два с половиной сантиметра, то у него всегда имелся большой запас бумажных полосок, из которых получались разные фигурки. Он попробовал сгибать бумагу по диагонали под углом 60° и получил ряд равносторонних треугольников. А затем, по этим сгибам, он сложил полоски в идеальный шестигранник.
Согнув полоску так, что ее края соединились, он обнаружил, что придумал необычную игрушку. Он зажал противоположные углы шестигранника и получил странную фигуру, напоминающую оригами, — новый шестигранник с другим набором треугольников. При повторном сжатии открывались другие грани. Еще один «флекс» — и фигура принимала изначальный вид. В итоге получалась плоская фигурка, которую можно было выворачивать туда-сюда.
Как сделать гексафлексагон
Стоун занимался этим всю ночь, а утром взял длинную полоску и подтвердил возникшую у него гипотезу: более сложный шестигранник мог бы состоять не из трех, а из шести различных поверхностей. На этот раз цикл процесса изготовления оказался не таким простым. Три грани появлялись снова и снова, в то время как остальные три были скрыты. Нетривиальный вызов его топологическому воображению. Искусство оригами развивалось столетиями, но никому прежде не удавалось воспроизвести столь изящную фигуру. В течение нескольких дней такие флексагоны, в дальнейшем получившие названия гексафлексагоны (шесть сторон, шесть поверхностей), циркулировали по обеденному залу во время обедов и ужинов. А затем появилась Комиссия по изучению флексагонов, в состав которой вошли Стоун, Тьюки, математик Брайант Такерман и их друг физик Фейнман. Оттачивая свое мастерство и ловкость в обращении с листами и полосками бумаги, они сделали гексафлексагоны с двенадцатью поверхностями, скрытыми внутри, потом с двадцатью четырьмя и даже с сорока восьмью. Количество вариаций в каждом виде флексагонов стремительно увеличивалось в соответствии с далеко не очевидным законом. Теория флексагонов развивалась, занимая свое место на стыке топологии и теории сетей. Фейнман же внес в нее свой вклад, придумав диаграмму, впоследствии названную в его честь, которая показывала все возможные конфигурации гексафлексагона.
Семнадцать лет спустя, в 1956 году, в журнале Scientific American будет опубликована статья Мартина Гарднера «Флексагоны» (Flexagons), которая даст старт его карьере как человека, способствовавшего развитию занимательной математики. За двадцать пять лет ведения колонки «Математические игры» он издал более сорока книг. Первая же его статья вызвала настоящий бум у детей. В форме флексагонов изготавливали рекламные флайеры и открытки. Они вдохновили на написание нескольких книг и статей для учащихся младшей и средней школы. Среди сотен писем, пришедших в редакцию, находилось и послание из лаборатории Аллена дю Монта из Нью-Джерси. Оно начиналось так:
«Дорогая редакция, меня очень заинтересовала статья “Флексагоны”, опубликованная в вашем декабрьском номере. Нам потребовалось всего шесть или семь часов, чтобы склеить гексафлексагон для получения нужной фигуры. И с тех пор он не перестает привлекать внимание. Но у нас тут вот какая проблема. Сегодня утром, когда один из сотрудников сворачивал гексафлексагон, кончик его галстука попал между граней. И с каждым следующим сгибом галстук все больше и больше исчезал в фигуре. После шести сгибов он полностью пропал там. Нам безумно нравится изготавливать фигуры, и мы не смогли проследить, как все получилось, но мы нашли шестнадцатую конфигурацию гексафлексагона…»
Игровой настрой и жажда интеллектуальных исследований шли теперь рука об руку. Целые дни Фейнман проводил, сидя на подоконнике в своей комнате, и с помощью бумажных полосок переправлял муравьев к упаковке сахара, подвешенной на веревках. Ему хотелось выяснить, как муравьи общаются между собой и способны ли они воспринимать геометрические образы. Однажды зимой, когда он, как обычно, сидел у окна, один из соседей ворвался к нему в комнату, держа в руках горшочек с «Джелло», распахнул окно, продолжая рьяно помешивать желе в банке, и закричал: «Не мешай мне!» Он пытался установить, как будет застывать желе, когда его перемешивают. Другой студент затеял спор о способностях передвижения человеческих сперматозоидов. Фейнман исчез и вернулся вскоре с готовым образцом. Вместе с Джоном Тьюки Ричард долгое время изучал способность людей контролировать время с помощью счета. Он бегал вверх и вниз по лестнице, чтобы увеличить частоту сердцебиений, и одновременно считал удары сердца и вел отсчет секундам. Они обнаружили, что Фейнман мог одновременно считать про себя и следить за временем, но если начинал говорить, то терял счет минутам. Тьюки же мог вести отсчет времени, декламируя вслух стихи. Они предположили, что, когда дело касалось счета, их мозг задействовал различные функции. Фейнман использовал акустический ритм, слушая числа, а Тьюки представлял что-то вроде ленты с написанными на ней цифрами, проносящимися перед глазами. Годы спустя Тьюки говорил: «Нас интересовал собственный опыт. Мы получали удовольствие от того, что испытывали, и сводили всё к простым вещам, которые могли наблюдать».
Порой что-то, лежащее за пределами научных знаний, привлекало внимание Фейнмана и буквально приставало к нему, как колючка от каштана. Один из студентов увлекся поэзией Эдит Ситуэлл, в то время считавшейся довольно эксцентричной из-за используемых ею вычурных сочетаний звуков и какофонии стихов, напоминавшей джазовые ритмы. Молодой человек продекламировал несколько стихотворений вслух, и внезапно Фейнман что-то уловил. Он взял книгу и принялся восторженно читать.
«Ритм — один из основных проводников между сном и реальностью, — говорила автор о собственных стихах. — В мире звуков ритм — то же самое, что свет в мире визуальных образов». Для Фейнмана ритм был и наркотиком, и инструментом. Его мысли иногда плавно перетекали и двигались, словно под удары барабана. Друзья замечали это, когда он начинал выбивать пальцами такт по столу или тетрадям. Ситуэлл писала:
Вселенная расцветает в моей голове,
Я живу наяву, но словно во сне.
Мысли о мире и мысли о дне,
О том, что все возможно, приходят ко мне.
Какое-то время физики из Принстона и из Института перспективных исследований активно обсуждали за чаем принцип работы спринклера — поливочного разбрызгивателя S-образной формы, приспособления, вращающегося за счет поступающей в него воды. Точнее, физиков-ядерщиков, физиков, разрабатывающих квантовую теорию, и даже математиков волновал вопрос, что произойдет, если этот простой механизм поместить под воду и вместо того, чтобы разбрызгивать жидкость, заставить ее всасывать? Будет ли аппарат вращаться в обратном направлении из-за того, что направление потока воды изменилось на противоположное? Или же оно не изменится, потому что зависит от действия скручивающей силы, которая, в свою очередь, определяется формой изделия, изогнутого в виде буквы S? («Мне все ясно с первого взгляда», — несколькими годами позже сказал Фейнману один из его друзей. «Всем все ясно с первого взгляда, — ответил Фейнман. — Проблема в том, что одним с первого взгляда ясно одно, а другим — совершенно противоположное».)
Даже в век открытий простые вещи все еще могут удивлять. И совсем не обязательно нужно глубоко погружаться в осмысление ньютоновских законов физики, чтобы достичь дна на мелководье. Каждое действие вызывает равное ему по силе противодействие; именно таков был принцип работы спринклера — как и в ракете. Обратная задача заставила физиков задуматься над тем, насколько они понимают принцип работы механизма. Где именно проявляется противодействие? В форсунках? Или где-то в S-образном изгибе, где вода изменяла направление движения? Когда у Уилера спросили, что он думает по этому поводу, он ответил, что Фейнман накануне убедил его, что механизм будет вращаться в обратном направлении, однако сегодня Фейнман убедил его, что направление вращения не изменится, и поэтому он не может с уверенностью сказать, в чем Фейнман убедит его завтра.
Хотя наш ум — наиболее удобная для нас лаборатория, которая всегда под рукой, но, увы, она не самая надежная. Так как мысленный эксперимент не удался, Фейнман решил провести эксперимент с разбрызгивателем в мире физическом, используя металл и воду. Он изогнул отрезок трубы в форме буквы S и просунул через него резиновый шланг. Теперь нужен только удобный источник сжатого воздуха.
Физическая лаборатория Палмера при Принстонском университете была укомплектована самыми разными приборами, однако все же по оснащенности недотягивала до лаборатории МТИ. Она состояла из четырех больших и нескольких маленьких лабораторий, занимавших целый этаж площадью более 8 тыс. кв. м. Мастерские были оборудованы электрическими зарядными устройствами, батареями, распределительными щитами, химическим инвентарем и дифракционными решетками. На третьем этаже располагалась лаборатория для работы с электрическим током при напряжениях до 400 кВ. В лаборатории низких температур стояли установки, позволявшие получать жидкий водород. Но больше всего Палмер гордился новым циклотроном, сконструированным в 1936 году. Фейнман узнал о нем на следующий день после приезда в Принстон, когда после чаепития с деканом бродил по помещениям лаборатории. Ему было любопытно сравнить его с более новым циклотроном Массачусетского технологического, который выглядел как безупречный футуристический шедевр из сверкающего металла с геометрически встроенными кругами. Когда руководство университета приняло решение вложиться в физику высоких энергий, оно ни в чем не ограничивало себя. Циклотрон Принстона поверг Фейнмана в шок. Ричард спустился в подвал Палмеровской лаборатории, открыл дверь и увидел свисающие с потолка, словно паутина, провода. С предохранительных кабелей капала вода. Инструменты валялись на столах. Вряд ли можно было придумать что-то, настолько не соответствующее Принстону. Ричарду вспомнилась его домашняя лаборатория, умещавшаяся в деревянном ящике в доме в Фар-Рокуэй.
Загадка поливочного разбрызгивателя. Распыляя воду, он вращается против часовой стрелки. Но что произойдет, если он будет всасывать воду?
Учитывая беспорядок, царивший в помещении, Фейнман решил, что он вполне может воспользоваться выходным отверстием баллона с сжатым воздухом. Он присоединил к нему резиновый шланг, конец которого пропустил через большую пробку. Затем поместил свой миниатюрный разбрызгиватель в огромную стеклянную емкость, заполненную водой, и запечатал ее пробкой. Вместо того чтобы пытаться высасывать воду из трубки, Ричард решил закачать воздух в верхнюю часть бутылки. В результате давление воды увеличится, и она начнет затекать назад в S-образную трубку, вверх по резиновому шлангу, а затем вытекать из бутылки.
Он повернул клапан, подающий воздух. Аппарат слегка покачнулся, вода начала по каплям вытекать через пробку. Чем больше воздуха, тем сильнее вытекала вода, шланг начал трястись, но не вращался. Фейнман еще больше приоткрыл клапан. Емкость взорвалась. Вода пролилась, осколки стекла разлетелись по всему помещению. С того дня Фейнмана отстранили от работы в лаборатории.
Хотя эксперимент и был весьма отрезвляющим, в течение многих лет Фейнман и Уилер с удовольствием рассказывали историю о том, что, несмотря на тщательное рассмотрение вопроса, так и не нашли ответ на него. Тем не менее эксперимент Ричард провел абсолютно верно. Его интуиция в области, связанной с физическими явлениями, никогда еще не была столь явно выражена, как и способность переходить от реальных физических свойств к формальным математическим расчетам. Поставленный им эксперимент работал. До взрыва. В какую сторону будет вращаться разбрызгиватель? Он не будет вращаться вообще. Когда вода всасывается через форсунки, они сами не двигаются вдоль этого направления, как не перемещается веревка, по которой скалолаз подтягивается вверх, раз за разом подтягиваясь на руках. У них нет выигрыша в силе перед водой. И сама идея о том, что внутри изогнутой трубки будет, как крутящий момент, действовать сила, не имеет оснований. В обычном режиме работы спринклера вода разбрызгивается направленными струями. Действие и противодействие очевидны и измеряемы. Импульс струи воды, разбрызгивающейся в одном направлении, равен импульсу вращающейся в противоположном направлении форсунки (фактически третий закон Ньютона). Но когда вода всасывается, образования водяных струй не происходит. Выделенного потока воды нет; она попадает в форсунку без четкого направления (со всех направлений), поэтому не имеет конкретной точки приложения, и говорить о силе не приходится.
Создание индустрии развлечений в XX веке, в первую очередь это касается киноиндустрии, неожиданно способствовало развитию техники мысленных экспериментов. Вполне естественно, что ученые в своих «ментальных лабораториях» теперь могли прокручивать фильм назад. Однако попытка «прокрутить назад» фильм, показывающий, как работает спринклер, оказалась бы неудачной. Если бы поток воды в нем можно было бы увидеть и мысленно представить, как протекает процесс в обратном направлении, он бы существенно отличался от того, что мы наблюдали бы в случае, когда воздух всасывается. Кинематографисты же были в восторге от новых возможностей, которые открывались перед ними, когда кусок целлулоидной пленки, помещенной в проектор, запускали в обратном направлении. Ноги ныряльщика появлялись из воды вслед за брызгами, которые оставались после прыжка. Огонь превращался в искры, из которых возникал новенький лист бумаги. Кусочки разбитой скорлупы яйца вновь соединялись вокруг дрожащего цыпленка.
Для Фейнмана и Уилера вопрос об обратимости процессов, происходящих внутри атомов, где спины и силы взаимодействия проявлялись более абстрактно, нежели в поливочном разбрызгивателе, оставался спорным. Хорошо известно, что уравнения, описывающие движение и столкновение объектов, решались одинаково, независимо от того, в каком направлении во времени развивается процесс. Они симметричны по отношению ко времени, по крайней мере в тех случаях, когда рассматривается взаимодействие нескольких объектов. Однако в реальной жизни время движется в одном направлении. Разбить яйцо или тарелку не составит труда, а вот сделать так, чтобы скорлупа снова стала целой, или восстановить тарелку из осколков наука не могла. Выражение «стрела времени» уже стало популярным и использовалось в тех случаях, когда требовалось показать, что время течет в одном направлении. И хотя это его свойство кажется столь очевидным для человека, оно совсем неуловимо в уравнениях, описывающих физические процессы. Там, в уравнениях, переход из прошлого в будущее выглядел абсолютно идентично переходу из будущего в прошлое и «нет дорожных указательных знаков, которые сообщали бы, что это улица с односторонним движением», — сетовал Артур Эддингтон. Этот парадокс существовал всегда, по крайней мере со времен Ньютона, но теория относительности выдвинула его на первый план. Математик Герман Минковский, представив время как четвертое измерение, начал сводить понятия прошлого и будущего к статусу любой пары направлений: право-лево, верх-низ, вперед-назад. Физик, строивший его диаграммы, словно смотрел на все с точки зрения Бога. В пространственно-временной картине линия, отражающая движение частицы во времени, просто есть, а прошлое и будущее существуют одновременно. Четырехмерное пространственно-временное многообразие отображает всю бесконечность сразу.
Законы природы — это не правила, контролирующие трансформацию из одного состояния в другое. Они лишь описывают существующие модели во всем их разнообразии. Наше обычное восприятие не позволяет представить общую картину, и тем более нам сложно понять, что время имеет особое значение. Ведь даже у физика есть воспоминания о прошлом и надежды на будущее, и никакая пространственно-временная диаграмма не способна стереть различия между ними.
Философы, в чьей компетенции ранее находилось рассмотрение подобных вопросов, оперировали неизбежно устаревающим набором понятий. Их неспособность разобраться в проблеме проявлялась даже в том, какие наречия они использовали: вечно, гипостатично, вневременно, ретроспективно. Философы оказались совершенно не готовыми к тому, что физики внезапно уничтожили само понятие одновременности (в релятивистской вселенной утверждение о том, что два события произошли в одно и то же время, не означало ровным счетом ничего). С исчезновением одновременности стало терять первоначальный смысл и понятие последовательности, а причинная зависимость — вызывать сомнения, и ученые в большинстве случаев почувствовали, что они вправе рассматривать временные вероятности, которые предыдущим поколениям показались бы надуманными.
Осенью 1940 года Фейнман вернулся к рассмотрению фундаментальной проблемы, которая интересовала его еще в студенческие годы. Можно ли избежать появления опасных бесконечностей при решении уравнения квантовой теории, если исключить вероятность того, что электрон действует сам на себя, то есть, по сути, исключив само понятие поля? К сожалению, к тому времени он выяснил, что что-то с этой идеей не так. Проблема заключалась в том, что обнаружили явление, которое можно было объяснить, только предполагая, что электрон воздействует сам на себя. Когда воздействуют на реальные электроны, они оказывают противодействие: при ускорении электрона его энергия уменьшается за счет излучения.
На самом же деле электрон испытывает сопротивление, называемое радиационной стойкостью или сопротивлением излучению, и, чтобы его преодолеть, требовалось дополнительное усилие. В радиотрансляционной антенне, излучающей энергию в виде радиоволн, сопротивление излучения компенсируется с помощью тока, поступающего извне (по сути, это сопротивление есть коэффициент пропорциональности между квадратом протекающего в антенне тока и мощностью излучения). Сопротивление излучению мы наблюдаем, и когда раскаленные светящиеся предметы остывают. Именно поэтому одиночный электрон в атоме, находящемся в вакууме, теряет энергию, а потерянная им энергия излучается в виде света. Чтобы объяснить такое явление, физикам ничего не оставалось как предположить, что электрон оказывает воздействие сам на себя. Более того, это происходит, даже когда он находится в вакууме!
Однажды Фейнман появился в кабинете Уилера с новой идеей. Идея «нереальна», признался он, заметив, что до смерти устал от бесконечных попыток решить задачу, которую тот перед ним поставил, и поэтому решил действовать самостоятельно. Что будет, если допустить, что электрон в вакууме не излучает энергию, так же как дерево не шумит в пустом лесу? Что излучение возможно лишь в том случае, когда есть не только его источник, но и приемник? Фейнман представил вселенную, в которой имеется всего лишь два электрона: первый испытывает колебания, тем самым воздействуя на второй, в свою очередь, второй тоже начинает колебаться и воздействовать на первый. Он вычислил силу, с которой они воздействуют друг на друга, используя привычное уравнение поля Максвелла, но оказалось, что в такой вселенной с двумя частицами не должно быть никакого поля, если под полем понималась среда, в которой волны свободно распространяются.
Фейнман спросил Уилера: «Может ли такая сила, с которой один электрон воздействует на другой, а потом возвращается к первому, объяснить феномен сопротивления излучения?»
Уилеру идея понравилась. Это был тот самый подход, который позволял свести проблему к рассмотрению двух точечных зарядов и давал возможность попытаться выстроить теорию исходя из основных принципов. Но он сразу предвидел неверные результаты. Сила, с которой второй заряд будет действовать на первый, зависит от величины второго заряда, его массы и расстояния между зарядами (согласно закону Кулона). Но ни один из этих параметров не влияет на сопротивление излучения. Это замечание позже покажется Фейнману очевидным, но тогда его поразила проницательность преподавателя. Но была и еще одна проблема: Фейнман неверно объяснил задержку во времени при передаче силы от одной частицы к другой и обратно. Какое бы воздействие ни оказывалось на первую частицу, оно происходило бы слишком поздно, чтобы соответствовать во времени проявлению эффекта сопротивления излучения. Фактически Фейнман понял, что он просто описывал разные явления, одно из которых — обычное отражение света. Он почувствовал себя глупцом.
Отставание во времени не учитывалось в общей теории электромагнетизма. Когда Максвелл ее разрабатывал, еще до появления теории относительности, казалось естественным предполагать (как и в теории Ньютона), что силы действуют мгновенно. Необходимо творческое воображение, чтобы понять, что Земля отклоняется от своей орбиты не потому, что Солнце находится в определенной точке сейчас, а из-за того, что Солнце находилось там восемь минут назад — время, необходимое для прохождения гравитационным полем сотен миллионов километров пространства. Таким образом, если Солнце исчезнет, то Земля будет двигаться по своей орбите еще восемь минут. Чтобы учесть идеи теории относительности, в уравнение поля следует внести изменения. Теперь, принимая во внимание, что скорость света конечна, в уравнениях следовало учитывать запаздывающие волны.
Вот тут-то и возникала проблема симметрии времени. Электромагнитные уравнения работали безупречно, если запаздывающие волны учитывались правильно. Они одинаково справедливы, когда знак времени изменялся с плюса на минус. Если представить физическое проявление такого математического выражения, то получалось, что существуют опережающие волны, то есть волны, которые принимались до того, как были излучены. Естественно, что физики предпочли иметь дело с запаздывающими волнами. Опережающие волны, распространяющиеся назад во времени, казались непонятными. При ближайшем рассмотрении они вели себя как обычные волны, но не распространяющиеся от источника, а сходящиеся в нем, как если бы круги от брошенного в воду камня двигались по направлению к центру, а не от точки, где камень погрузился в озеро. Снова фильм, проигрываемый назад. Поэтому, несмотря на математическую обоснованность, решение уравнений поля с учетом опережающих волн оставалось задачей не только не решенной, но и не особо актуальной.
Уилер сразу же предложил Фейнману учесть в его модели с двумя электронами наличие опережающих волн. Что будет, если серьезно отнестись к тому, что уравнения симметричны по отношению ко времени? В этом случае излучение колеблющегося электрона будет симметрично во времени. Подобно маяку, посылающему световой сигнал одновременно на юг и на север, электрон может излучать волны как вперед, так и назад, как в будущее, так и в прошлое. Уилеру казалось, что благодаря комбинированию с опережающими и запаздывающими волнами, которые смогли бы компенсировать друг друга, удалось бы объяснить отсутствие задержки во времени в феномене сопротивления излучения. (Подавление волн было хорошо изучено. В зависимости от того, совпадали ли они по фазе или нет, волны одинаковой частоты либо усиливали, либо ослабляли друг друга. Если их гребни и впадины точно совпадали, амплитуда волн удваивалась. Если гребень одной волны соответствовал впадине другой, тогда волны взаимно гасились. Это явление известно как интерференция волн.) Уилер с Фейнманом погрузились в расчеты и уже через час обнаружили, что и другие затруднения, похоже, также устранились. Энергия, возвращающаяся к исходному источнику, больше не зависела от массы, заряда или расстояния до другой частицы. По крайней мере, в первом приближении выполненные на доске Уилера черновые расчеты создавали такое впечатление.
Учитывая возможности, которые предоставляла разработка этого варианта, Фейнман погрузился в работу. Его не смущала ее кажущаяся бессмысленность. По его первоначальным представлениям в нем не было ничего экстраординарного: воздействие на один заряд отразится на другом чуть позже. Новый подход, выраженный словами, казался парадоксальным: воздействие на один заряд отражалось на другом заряде раньше, чем происходило воздействие. Из этого определенно следовало, что действия по времени направлены вспять. Что же тогда будет причиной, а что следствием? Если бы Фейнман заподозрил, что он продирается сквозь эти дикие дебри только для того, чтобы в результате исключить самовоздействие электрона, он не стал бы развивать это направление. В конце концов, понятие самовоздействия создавало неопровержимое противоречие в квантовой механике, и буквально все физики считали эту задачу нерешаемой. Во всяком случае, возможность столкнуться с еще одним парадоксом в эпоху Эйнштейна и Бора никого не удивила. Фейнман же знал, что хороший физик никогда не говорит: «Ой, да ладно, как это может быть?»
Для выполнения работы требовалось проводить сложные вычисления, выводить и выверять уравнения, постоянно проверять их, чтобы убедиться, что очевидный парадокс не вылился в реальное математическое противоречие. Постепенно в основной модели стала рассматриваться не система из двух частиц, а система, в которой электрон взаимодействовал со множеством других «поглощающих» частиц. Это должна была быть вселенная, где любое излучение в конечном итоге достигало поглощающей его частицы. Оказалось, что благодаря этому сгладились самые непонятные проявления обратного течения времени. Тем же, кто с предубеждением относился к тому, что следствия могут проявиться раньше, чем причины, их вызвавшие, Фейнман предлагал более приемлемую формулировку: энергия мгновенно «заимствуется» из вакуума и позже возмещается в таком же объеме. Излучало и поглощало эту энергию хаотичное множество частиц, двигающихся в разных направлениях таким образом, что практически всё их влияние друг на друга компенсировалось. Приемник излучения проявлял себя только тогда, когда электрон двигался с ускорением; в этом случае воздействие источника на абсорбер (приемник) и абсорбера на источник происходили бы одновременно и с одинаковой силой (с учетом сопротивления излучения). Таким образом, выдвинув только одно космологическое утверждение, что во вселенной во всех ее участках достаточно материи, способной поглотить исходящее излучение, Фейнман обнаружил, что система уравнений, в которой учитывались в равной степени опережающие и запаздывающие волны, выдерживала любые возражения.
Волны, распространяющиеся вперед и назад во времени. Уилер и Фейнман предприняли попытку разработать приемлемую схему взаимодействия частиц, но столкнулись с противоречием понятий «прошлое» и «будущее». На частицу оказывается действие, влияние которого распространяется подобно волнам от брошенного в воду камня. Для симметричности теории им пришлось бы использовать внутринаправленное волновое действие, идущее вспять во времени.
Они обнаружили, что неприятные парадоксы устранялись, потому что обычные и отложенные во времени волны («запаздывающие» и «опережающие») могли погасить друг друга, но лишь в том случае, если гарантировалось, что любое излучение будет где-нибудь когда-нибудь поглощено. Луч света, бесконечно распространяющийся в вакууме и никогда не достигающий абсорбера, перечеркнул бы все их теоретические расчеты. Таким образом, космологи и философы еще довольно долго придерживались своих представлений о времени, пока их место не заняли понятия, вытекающие из квантовой теории.
Фейнман описал теорию своим друзьям-аспирантам и предложил им найти парадокс, который сам не мог объяснить. Например, создать устройство с мишенью, которое закрывало бы ворота перед мишенью при попадании в нее частицы, но при этом опережающая волна закрывала бы эти ворота перед попаданием частицы, тогда частица не могла бы попасть в мишень, следовательно, опережающая волна не закрыла бы ворота… Он представил машину Руба Голдберга, которая вполне могла оказаться на страницах старинной книги Уилера о хитрых механизмах.
Согласно расчетам Фейнмана, это идеальная модель. Пока в теории учитывались вероятности, в ней, казалось, не было критических несоответствий. До тех пор, пока существовали частицы, способные поглощать излучение, не имело значения, где располагался поглотитель и какую форму имел. Только при наличии в окружающей среде «дыр» — таких участков, в которых излучение могло распространяться вечно (то есть без поглощения), — могли возникнуть эффекты, когда излучение возвращалось к источнику до того, как было излучено.
У Уилера были свои причины продолжать развивать эту утопическую теорию. В представлении большинства физиков атом тогда состоял из трех несовместимых частиц: электронов, протонов и нейтронов, — а при изучении космических лучей ученые замечали признаки существования и других элементарных частиц. Это увеличивающееся количество частиц разрушало представление Уилера о простоте мира. Он хранил веру в теорию столь странную, что даже не решался ее с кем-либо обсуждать. Идея заключалась в том, что когда-нибудь теоретически можно будет доказать, что в конечном счете все состоит из одних только электронов. Он знал, что это безумие. Но если бы электроны были конечными строительными элементами нашей вселенной, свойства их излучения могли бы дать ключ к объяснению того, чего существующая теория объяснить не могла. На протяжении нескольких недель он настаивал, чтобы Фейнман написал предварительную статью. На случай создания великих теорий Уилер хотел быть уверенным, что они с Фейнманом изложили всё должным образом. В начале 1941 года он попросил Фейнмана выступить на февральском заседании кафедры, на которое обычно приглашались видные физики. Для Ричарда этот доклад стал бы первым профессиональным выступлением, и он очень нервничал.
Незадолго до заседания председатель Вигнер остановил Фейнмана в коридоре и сказал, что услышанного им от Уилера о теории поглощения достаточно для оценки ее важности, и так как он отдает себе отчет о ее значении для космологии, то пригласил на заседание великого астрофизика Генри Норриса Расселла. Математик Джон фон Нейман также собирался приехать. Свое присутствие подтвердил бесподобный Вольфганг Паули, прибывший с визитом из Цюриха. И даже сам Альберт Эйнштейн, редко проявлявший интерес к подобного рода семинарам, выразил интерес и собирался посетить заседание.
Уилер пытался успокоить Фейнмана, заверяя, что возьмет на себя вопросы аудитории. Вигнер давал советы. Если профессор Расселл вдруг уснет, говорил Вигнер, не волнуйся, профессор Расселл всегда засыпает на подобных мероприятиях. Если Паули начнет кивать, это не значит, что он согласен — он кивает из-за нервного тика. Паули способен был безжалостно разгромить работу, которую счел бы поверхностной или недостаточно убедительной. Ganz falsch, — говорил он, что означало «совершенный бред»; или еще хуже: not even false — «это не только неправильно, это даже не дотягивает до ошибочного!»
Фейнман тщательно готовился. Он собрал все записи и сложил их в коричневый конверт. Пришел в аудиторию заранее и исписал всю доску формулами. Когда писал, услышал позади мягкий голос. Это был Эйнштейн. Он пришел на лекцию и перед этим решил уточнить, не подскажет ли молодой человек, где здесь можно выпить чаю.
После выступления Фейнман почти ничего не помнил — только то, что руки его дрожали, когда он доставал записи из конверта. А потом сознание будто освободилось от всего лишнего, сконцентрировавшись на физике, и уже ничего больше не имело значения: ни важные персоны, ни повод, по которому они собрались. Паули действительно возразил, возможно, чувствуя, что использование опережающих потенциалов лишь вызывает нечто вроде математической тавтологии. И потом вежливо добавил: «Разве вы не согласны, профессор Эйнштейн?» И вновь Фейнман услышал этот мягкий, такой приятный голос, говорящий с немецким акцентом: «Нет, теория выглядит вполне вероятной, возможно, она не очень стыкуется с теорией гравитации, но и сама теория гравитации, в общем-то, не совсем ясно определена…»
Время от времени Ричард испытывал нечто вроде «приступов чрезмерной рациональности». Когда это происходило, он начинал считать, что недостаточно только продолжать успешно заниматься наукой, проверять мамину чековую книжку, выверять собственный шаткий баланс (восемнадцать долларов на прачечную, десять долларов отправить домой…) или, пока ремонтируешь велосипед, читать друзьям лекции о том, как глупо верить в Бога или в сверхъестественное. Во время одного из таких «приступов» Фейнман («чтобы плодотворно использовать свое время», как написал он родным) стал составлять почасовой график всей своей деятельности, как научной, так и относящейся к отдыху, и обнаружил, что, как бы скрупулезно он ни подходил к задаче, все равно в графике оставались свободные от дел и занятий часы. «Часы, на которые не запланированы определенные занятия, но которые я собираюсь посвятить тому, что в тот момент будет мне необходимо или интересно; и не важно, буду я обдумывать решение определенной проблемы или изучать кинетическую теорию газов». Если существует заболевание, симптомом которого является вера в то, что можно логически контролировать непредсказуемую жизнь, то Фейнман страдал им наравне с хроническим несварением желудка. Даже Арлин Гринбаум, при всей ее разумности, могла вызвать в нем вспышки рациональности. Он с детства знал, насколько эмоциональны порой споры между мужем и женой. Даже его родители временами ссорились. Фейнману претило подобное выяснение отношений. Он не понимал, почему двое умных, любящих друг друга людей, жаждущих открытого общения, должны ссориться и спорить, и поэтому разработал план. Но прежде чем поведать о нем Арлин, изложил его своему другу-физику за гамбургером в закусочной около кольцевой развязки. План заключался в следующем. Когда Дик и Арлин разойдутся во мнениях по какому-то важному вопросу, они обсудят его, например, в течение часа. Если за это время они не придут к согласию, вместо того чтобы продолжать спор, кто-то один из них примет решение. И так как Фейнман старше и опытнее (как он объяснил), решение должен будет принимать он.
Его друг взглянул на него и рассмеялся. Он знал Арлин и знал, как всё произойдет на самом деле. Они поспорят час, Дик сдастся, и решать будет Арлин. План Фейнмана — отрезвляющий пример работы теоретического ума на практике.
Арлин стала чаще приезжать к нему. Они ужинали с Уилерами и гуляли под дождем. Она как никто другой могла смутить Ричарда. Зная о его хрупком самолюбии, она его безжалостно дразнила, когда замечала, как он начинал волноваться из-за того, что могут подумать окружающие, как всё будет смотреться со стороны. Она прислала ему коробку карандашей с выбитой надписью «Дорогой Ричард, я люблю тебя! Путси», и как-то поймала Фейнмана за ее соскабливанием. Он боялся случайно оставить один из карандашей на столе профессора Вигнера. «Какое тебе дело до того, что подумают другие?» — говорила Арлин снова и снова. Она знала, как Ричард гордится своей честностью и независимостью, и старалась поддерживать эти чувства на том высоком уровне, который он сам установил для себя. Это стало краеугольным камнем их отношений. Как-то Арлин отправила ему открытку, написав на обратной стороне:
Если не нравлюсь тебе, дорогой,
Что ж тут сказать, черт с тобой.
Если карандаш злит тебя новизной,
Что ж, милый друг, ну и черт с тобой.
…
Если условности отнимают покой,
Если вдруг разум трубит отбой
И ведет тебя вслед за толпой,
Несчастный мой друг, черт с тобой.
Ее слова задевали за живое. Однако Арлин стало беспокоить состояние ее здоровья. Временами ее лихорадило, а на шее то появлялась, то исчезала какая-то припухлость. Ее дядя, врач, порекомендовал втирать в нее универсальное средство — омега-масло (именно такой способ лечения пользовался популярностью сто лет назад).
На следующий день после выступления на заседании кафедры Ричард отправился в Кембридж на собрание Американского физического общества. Арлин же поехала туда на поезде из Нью-Йорка. Ее встретил старый приятель Фейнмана по студенческому братству. По пути в МТИ они прошли по мосту и поймали конный экипаж. Ричарда они нашли в холле физического корпуса № 8. Он прошел мимо, оживленно беседуя с профессором. Арлин встретилась с ним взглядом, но он не признал ее. Она поняла, что лучше его не беспокоить.
Когда в тот вечер Фейнман вернулся в здание братства, он обнаружил Арлин в гостиной. Полный энтузиазма, он подхватил ее и закружил в танце. «Он определенно верит в общность физиков», — заметил как-то один из его товарищей. С подачи Уилера Фейнман представил их работу по пространственно-временной электродинамике во второй раз, теперь перед более широкой аудиторией. Все прошло хорошо. После выступления перед Эйнштейном, Паули, фон Нейманом и Вигнером Американское физическое общество Ричарда не пугало. Но все же он опасался, что наскучит слушателям, читая с листа заготовленный текст. В конце выступления прозвучало несколько уместных вопросов, и Уилер помог ответить на них.
Фейнман сформулировал ряд принципов теории взаимодействия частиц и записал их:
1 Ускорение точечного заряда определяется только суммой его взаимодействий с другими заряженными частицами… Заряд не действует сам на себя.
2 Силу взаимодействия, с которой один заряд действует на другой, можно рассчитать по формуле силы Лоренца, в предположении, что поля создаются первым зарядом, в соответствии с уравнением Максвелла.
Сформулировать третий принцип оказалось сложнее. Фейнман попробовал:
3 Фундаментальные уравнения инвариантны относительно изменения знака времени.
И потом, более точно:
3 Фундаментальные (микроскопические) явления в природе симметричны (инвариантны) по отношению к чередованию прошлого и будущего.
Паули, несмотря на свой скептицизм, оценил важность третьего принципа. Он обратил внимание Фейнмана и Уилера на то, что еще Эйнштейн упоминал о симметрии прошлого и будущего в своей малоизвестной работе 1909 года. Уилер действовал решительно. Он позвонил и договорился о встрече в отделанном белым сайдингом доме № 112 по Мерсер-стрит.
Эйнштейн благожелательно встретил двух молодых амбициозных физиков, как принимал и большинство ученых, посещавших его. Они прошли в кабинет, где Эйнштейн сидел за столом. Фейнман поразился, насколько точно реальность соответствовала легендам. Перед ними сидел приятный мягкий человек. На нем был свитер без рубашки и туфли без носков. Все знали, что Эйнштейна огорчали не имеющие явно выраженных причин нестыковки в квантовой механике. Сам же он последнее время по большей части писал длинные нудные письма мировым лидерам, в которых выглядел скорее чудаком, чем почитаемым ученым. Неприятие новой физики выставляло его, как он сам говорил, «упрямым еретиком» и «человеком закостенелым, оглохшим и ослепшим с годами». Но теория, представленная Уилером и Фейнманом, тогда еще не была квантовой теорией. В ней использовались только классические уравнения поля без квантово-механических поправок, которые, и Уилер с Фейнманом знали это, потребуется ввести в дальнейшем. Так что Эйнштейн не увидел никаких нестыковок и заметил, что и сам признавал существование запаздывающих и опережающих волн, и даже припомнил небольшую статью, опубликованную в 1909 году, в которой выразил свое несогласие со швейцарским коллегой Вальтером Ритцем. Ритц утверждал, что правильная теория поля должна учитывать только запаздывающие волны, а опережающие волны следует признать недопустимыми, какими бы безобидными ни выглядели уравнения. Эйнштейн же не видел никаких причин исключать опережающие волны. Он считал, что основные уравнения не позволяют объяснить существование стрелы времени, которое на самом деле было обратимым.
Этого же мнения придерживались и Фейнман с Уилером. Их утверждение о симметрии прошлого и будущего привело к тому, что опережение и запаздывание стало казаться возможным. Но и в их теории присутствовал элемент асимметрии: запаздывающие поля играли более важную роль, чем опережающие. Однако эта асимметрия никак не проявлялась в уравнениях. Ее появление обусловливалось тем, что близлежащие абсорберы располагались беспорядочно и хаотично, а стремление к беспорядку — самое универсальное проявление стрелы времени (согласно второму закону термодинамики). Фильм, показывающий, как капля чернил растворяется в стакане воды, казался нелепым, когда его прокручивали назад.
Но в то же время фильм, отслеживающий микроскопическое перемещение любой молекулы чернил, будет смотреться одинаково, независимо от того, как он воспроизводится — как обычно или в обратном направлении. Случайные движения каждой отдельной молекулы чернил обратимы, но общая диффузия — нет. То есть система обратима на микроскопическом уровне и необратима на макроскопическом. Все дело в хаосе и вероятностях. В принципе, можно допустить, что отдельные, свободно перемещающиеся молекулы чернил могут сформировать каплю. Однако вероятность этого события ничтожно мала. Во вселенной Фейнмана и Уилера точно таким же невероятным стало предположение, что беспорядок в абсорбере определяет направление течения времени. Фейнман попытался обстоятельно объяснить эту гипотезу, изложив ее на 22 страницах работы, написанной в начале 1941 года. Он отметил, что необходимо различать два вида необратимости. Последовательность природных явлений будет считаться микроскопически необратимой, если последовательность явлений в обратном временном порядке не может осуществиться с точностью до мельчайших деталей. Если же в макромасштабе вероятности возникновения исходной последовательности и последовательности, обратной ей во времени, различаются на порядок, то явление будет считаться макроскопически необратимым… Авторы этой работы считают, что все физические явления микроскопически обратимы и что все явно макроскопические — необратимы.
Даже сейчас принцип обратимости ошеломляет и кажется сомнительным, потому что идет вразрез с ощущением однонаправленного течения времени, которое ввел в науку Ньютон. Фейнман же последним своим предложением привлек внимание Уилера. «Профессор Уилер, — написал он, после чего самонадеянно зачеркнул слово “профессор”, — это довольно масштабное утверждение. Возможно, вы с ним не согласитесь. Р. Ф. Ф.».
Уилер тем временем проштудировал литературу и обнаружил несколько неявных прецедентов их модели поглощения. Сам Эйнштейн отмечал, что немецкий физик Хьюго Тетрод предположил в работе, опубликованной в журнале Zeitschrift für Physik в 1922 году, что излучение следует рассматривать в контексте взаимодействия источника и поглотителя: нет поглотителя, нет излучения.
«Солнце не сияло бы, если бы оно было единственным космическим телом и никакие другие тела не могли поглотить его излучение… Если, например, я вчера вечером рассматривал через телескоп звезду, находящуюся на расстоянии 100 световых лет, то получается, что не только свет, который достиг моих глаз, был излучен сто лет назад, но и сама звезда или ее отдельные атомы уже сто лет назад знали, что тот, кто тогда даже не существовал, будет рассматривать ее вчера вечером в определенное время».
Более того, невидимое послание от далекой сверхзвезды (что в 20-х годах прошлого века казалось совершенно невероятным), излучение, произошедшее даже не десять, а сотни миллиардов лет назад, свободно преодолевающее Вселенную в течение большей части периода ее существования до момента столкновения с полупроводниковым приемником гигантского телескопа, также не могло произойти без взаимодействия с поглотителем. Тетрод заметил: «На последних страницах мы позволили нашим гипотезам выйти далеко за рамки математических доказательств». Уилер нашел в литературных источниках и другое странное, но довольно провокационное замечание, принадлежавшее Гилберту Льюису, специалисту в области физической химии, который придумал слово фотон. Льюиса тоже беспокоило, что в физике не рассматривается симметрия прошлого и будущего, подразумеваемая ее фундаментальными уравнениями. А с его точки зрения такая симметрия давала основание предполагать, что в процессе излучения источник и поглотитель симметричны.
«Рискну предположить, что атом никогда не излучает свет, если не существует другой атом, — писал Льюис. — Представить испускаемый атомом свет, если нет другого атома, поглощающего этот свет, так же абсурдно, как представить, что существует атом, поглощающий свет, без источника излучения. Я предлагаю отказаться от представления о том, что происходит просто излучение света, и вместо него ввести понятие трансмиссии или процесса обмена энергиями между двумя атомами».
Фейнман и Уилер продолжали развивать теорию. Они хотели понять, где еще можно ее применить. Многие попытки ни к чему не привели. Они работали над проблемой гравитации, надеясь свести гравитацию к аналогичному взаимодействию. Они попытались создать модель без пространства как такового: никаких координат, расстояний, геометрии или размерности, — только непосредственно взаимодействия. Все эти направления оказались тупиковыми. Однако один из параметров по мере развития теории приобрел исключительное значение. Оказалось, что можно вычислять взаимодействие между частицами, используя принцип наименьшего действия.
Фейнман, когда еще учился на первом курсе в МТИ, считал ниже своего достоинства применять именно этот подход. В соответствии с принципом наименьшего действия можно не вычислять траекторию летящего мяча в последовательные моменты времени, а исходить из утверждения, что мяч будет двигаться по траектории, при которой действие, то есть разница между кинетической и потенциальной энергиями мяча, будет минимальным. В теории поглощения, так как поле более не являлось независимым физическим объектом, действие частицы становилось параметром, который можно определить, рассчитать, учитывая движение частицы. И снова, как по волшебству, частицы выбирали путь с наименьшим действием. Чем чаще Фейнман использовал метод наименьшего действия, тем больше убеждался, насколько оригинальна физическая точка зрения. При традиционном подходе течение времени описывается дифференциальными уравнениями, отражающими его изменения в каждый момент. Использование принципа наименьшего действия позволяло сразу же «с высоты птичьего полета» увидеть весь путь, пройденный частицей. «У нас есть нечто, — позже говорил Фейнман, — что позволяет описать характерные особенности траектории частицы во времени и пространстве. Поведение природы в целом определяется тем, что у пространственно-временной траектории есть определенные особенности». Если во время учебы этот принцип казался слишком примитивным, слишком далеким от настоящей физики, то теперь он выглядел невероятно прекрасным и не таким уж абстрактным. Но концепция света в тот период еще не сформировалась окончательно — вроде бы и не частица, но и не вполне волна — и продолжала вызывать споры из-за теоретически нерешенных вопросов квантовой механики. Физики стали знать намного больше с тех пор, как Евклид записал первый принцип своей «Оптики»: «Лучи, испускаемые человеческим глазом, распространяются по прямой».
Представление физиков о пустом пространстве как о чистой грифельной доске, на которой каждое движение, каждая сила, каждое взаимодействие оставляли отпечаток, претерпело значительную трансформацию менее чем за одно поколение. Мяч перемещался по траектории в обычном трехмерном пространстве. Фейнмановские частицы выбирали траекторию своего движения не просто в четырехмерном пространстве-времени, без которого не могла обойтись теория относительности, но в пространстве более абстрактном, оси координат которого учитывали не расстояние и время, а другие параметры.
В четырехмерном пространстве-времени даже неподвижная частица двигалась по траектории от прошлого к будущему. Для такой траектории Минковский ввел понятие мировой линии — «своеобразного изображения бесконечного движения фундаментальной точки, кривой в мире… И вся Вселенная в итоге сводилась к этим мировым линиям». Писатели-фантасты уже начали представлять странные последствия переплетения мировых линий, идущих из будущего в прошлое, но все же никому из них не удалось в своих фантазиях зайти так далеко, как Уилеру. Однажды он позвонил Фейнману на телефон, установленный в холле аспирантуры. Позднее Ричард так вспоминал их разговор:
— Фейнман, я знаю, почему у всех электронов одинаковый заряд и масса.
— Почему?
— Потому что они все — один и тот же электрон! Предположим, что все мировые линии, которые мы обычно рассматривали во времени и пространстве, связаны в огромный узел. Но если взять плоское сечение этого узла, соответствующее фиксированному времени, мы увидим огромное множество мировых линий, которые будут отражать много электронов, за исключением одного. И если в одном сечении обычному электрону соответствует одна мировая линия, то в том сечении, где он двигается в противоположном направлении и возвращается из будущего, мы получим другой знак… и поэтому на этой части линии он будет вести себя как позитрон.
Позитрон, двойник-античастицу электрона, обнаружили (в космических лучах) в последнее десятилетие: он получил свое название от сокращения выражения «позитивно заряженный электрон». Это первая античастица, подтверждающая предположение Дирака, верившего, что за красотой уравнений что-то стоит. Согласно волновому уравнению Дирака, энергия частицы составляла ±√чего-то. Вот из этого знака плюс-минус и возникло предположение о существовании позитрона. Решение этого уравнения для знака плюс позволяло рассчитать характеристику электрона. Дирак упрямо противостоял искушению опустить решение с минусом перед корнем как математический нюанс. Как и Уилер, следовавший своей концепции опережающих волн, он придерживался мнения, что зеркальное изменение знаков имеет под собой физическое обоснование.
Фейнман обдумал это услышанное по телефону более чем странное предположение о том, что все сущее — это срез длинной макаронины, по которой движется электрон, и предложил встречные аргументы. Движения вперед и назад, казалось, не совпадали. Вышивальная игла, просовывающая нить туда-сюда через ткань, должна пройти равное количество движений в оба направления.
— Но, профессор, позитронов не так много, как электронов.
— Ну, возможно, они скрыты в протонах или еще где.
Уилер по-прежнему пытался представить электрон как основу всех остальных частиц. Фейнман пропустил это мимо ушей. Разговор о позитронах, тем не менее, кое-что напомнил ему. В своей первой работе (опубликованной за два года до этого) он рассматривал вопросы, связанные с рассеянием звездами космических лучей, и уже проводил эту аналогию, представляя античастицы как обычные частицы, но движущиеся в противоположном направлении в пространстве. Так почему бы во вселенной Минковского не существовать обратному направлению во времени, если есть обратное направление в пространстве?