Все богатство цветов в природе впервые объяснил все тот же гениальный Ньютон. Здесь мы даем описание одного из экспериментов Ньютона в его собственных словах:
«В начале 1666 года (в это время я занимался шлифовкой стекол иных форм, чем сферические) я достал треугольную стеклянную призму, чтобы с нею произвести опыты над знаменитым явлением цветов. Для этой цели, затемнив свою комнату и проделав небольшое отверстие в оконных ставнях для пропускания в нужном количестве солнечного света, я поместил призму там, где входил свет, так что он мог преломляться к противоположной стене. Зрелище живых и ярких красок, получавшихся при этом, доставляло мне приятное удовольствие».
Солнечный свет – «белый». После прохождения через призму в нем обнаруживаются все цвета, которые существуют в видимом мире. Сама природа воспроизводит тот же самый результат в прекрасной цветной дуге – радуге. Попытки объяснить это явление очень стары. Библейская легенда о том, что радуга – это божественный знак примирения с человеком, – это, в некотором смысле, тоже «теория». Но она не дает удовлетворительного объяснения, почему радуга время от времени повторяется и почему ее появление всегда связано с дождем. Вся загадка цвета впервые подверглась научному обсуждению, и разрешение ее было намечено в великой работе Ньютона.
Один край радуги всегда красный, а другой – фиолетовый. Между ними расположены все другие цвета. Приведем ньютоновское объяснение этого явления. Каждый цвет уже присутствует в белом свете. Все цвета передаются через межпланетное пространство и атмосферу совместно и дают эффект в виде белого света. Белый свет – это, так сказать, смесь разнородных корпускул, принадлежащих к разным цветам. В эксперименте Ньютона призма разделяет их в пространстве. Согласно механистической теории, рефракция (преломление) обязана силам, которые происходят от частиц стекла и действуют на частицы света. Эти силы различны для корпускул, принадлежащих к различным цветам, они наибольшие для фиолетового и наименьшие для красного. Путь корпускул каждого отдельного цвета будет преломляться по-своему и будет отделяться от других, когда свет покидает призму. В радуге роль призм играют капли воды.
Субстанциональная теория света теперь более усложнена, чем прежде. Мы имеем уже не одну световую субстанцию, а множество, и каждая из них относится к отдельному цвету. Однако, если в теории имеется доля правды, ее следствия должны согласоваться с наблюдением.
Серии цветов в белом солнечном свете, обнаруженные экспериментом Ньютона, называются солнечным спектром или, точнее, его видимым спектром. Описанное здесь разложение белого света на составляющие его компоненты называется дисперсией света. Разделенные цвета спектра можно было бы смешать снова вместе с помощью второй, должным образом приспособленной, призмы, если только данное объяснение не является ложным. Процесс был бы как раз обратным предыдущему. Мы получили бы белый свет из цветов, разделенных ранее. Ньютон экспериментально подтвердил, что в самом деле возможно этим путем получить белый свет из его спектра, а спектр из белого света столько раз, сколько захочется. Эти эксперименты создали строгую основу для теории, в которой корпускулы, принадлежащие каждому цвету, ведут себя как неизменяемые субстанции. По этому поводу Ньютон писал:
«…эти цвета не порождены вновь, а лишь стали видными благодаря разделению, ибо, если их снова полностью смешать вместе, то они вновь составят тот свет, который они составляли до разделения. По той же причине изменения, которые получаются при соединении различных цветов, нереальны, ибо, если различные лучи вновь разъединить, они будут проявлять точно те же цвета, как и до вхождения в смесь. Как вы знаете, синие и желтые порошки при тонком смешивании кажутся невооруженному глазу зелеными, и все же цвета составляющих корпускул не изменились в действительности, а лишь смешались. Ибо, если посмотреть в хороший микроскоп, они по-прежнему будут казаться только синими и желтыми».
Предположим, что мы выделили очень узкую полосу спектра. Это означает, что из всего множества цветов мы позволили лишь одному пройти сквозь щель, другие же задержали экраном. Луч, который проходит сквозь щель, будет состоять из однородного света, т. е. света, который не может быть разделен на дальнейшие компоненты. Это следствие теории и его легко можно проверить экспериментально. Такой луч однородного цвета никаким путем нельзя разделить дальше. Имеется простой способ получения источников однородного света. Например, натрий, будучи раскален, испускает однородный желтый свет. Производить обычные оптические эксперименты с однородным светом часто очень удобно, ибо легко понять, что в этом случае результат будет гораздо проще.
Представим себе, что внезапно произошло очень странное событие: наше Солнце стало испускать только однородный свет некоторого определенного цвета, скажем, желтого. Тогда огромное многообразие цветов на земле немедленно исчезло бы. Все выглядело бы либо желтым, либо черным! Это предсказание есть следствие субстанциональной теории света, ибо новые цвета не могут быть созданы. Справедливость его можно проверить экспериментально: в комнате, где единственным источником света является раскаленный натрий, все кажется либо желтым, либо черным. Богатство красок в мире отражает многообразие цветов, из которых состоит белый свет.
Субстанциональная теория света во всех этих случаях действует блестяще, хотя необходимость введения стольких субстанций, сколько имеется цветов, может нас несколько обеспокоить. Предположение, что все корпускулы света имеют одну и ту же скорость в пустом пространстве, также кажется очень искусственным.
Вполне можно представить себе, что другой ряд положений, теория совершенно другого характера, действовала бы столь же хорошо и давала бы все необходимые объяснения. В самом деле, скоро мы станем свидетелями развития другой теории, основанной на совершенно иных понятиях и все же объясняющей ту же самую область оптических явлений. Однако, прежде чем сформулировать положения, лежащие в основе этой новой теории, мы должны осветить вопрос, никак не связанный с этими оптическими явлениями. Мы должны вернуться к механике и спросить: