Книга: Энергия и цивилизация
Назад: 6. Цивилизация ископаемого топлива
Дальше: Последствия и проблемы

Беспрецедентная мощность и ее использование

Рост потребления энергии, даже прерванный двумя мировыми войнами и худшим в истории экономическим кризисом (в 1930-х годах), шел с беспрецедентной скоростью в первые семь десятилетий двадцатого века. После этого случилось замедление, вызванное тем, что ОПЕК в 5 раз увеличила цены на нефть между октябрем 1973-го и мартом 1974 года, но замедление произошло бы и так, поскольку абсолютные величины повышались слишком быстро, чтобы поддерживать рост, возможный при более низких агрегированных уровнях. Но (при более низком темпе) громадные количественные изменения продолжились, и они сопровождались новыми и заметными качественными выигрышами. Лучшие компиляции глобальных статистических данных показывают постоянный экспоненциальный рост производства ископаемого топлива с того времени, когда началась его крупномасштабная добыча в девятнадцатом веке (Smil 2000а, 2003, 2010а; ВР 2015; рис. 6.1).
Добыча угля выросла в 100 раз, с 10 Мт до 1 Гт, между 1810 и 1920 годами; она достигла 1,53 Гт в 1950 году, 4,7 Гт в 2000-м и 8,25 Гт в 2015 году, и только потом начала уменьшаться до 7,9 в 2015-м (Smil 2010с; ВР 2016). Добыча сырой нефти выросла в 300 раз, с менее 10 Мт в конце 1880-х до свыше 3 Гт в 1988 году; в 2000 году она составила 3,6 Гт и почти 4,4 Гт в 2015-м (ВР 2016). Производство природного газа выросло в 1000 раз, с менее 2 Гм3 в конце 1880-х до 2 Тм3 к 1991 году, оно составило 2,4 Тм3 в 2000 году и 3,5 Тм3 в 2015-м. На протяжении XX века глобальное извлечение ископаемой энергии выросло в 14 раз в терминах агрегированной энергии.

 

Рисунок 6.1. Производство трех принципиальных видов ископаемого топлива: в целом и годовая добыча для крупнейших производителей. Основано на данных из United Nations Organization (1956), Smil (2010a) и BP (2015)

 

Но лучший способ продемонстрировать экспансию состоит в том, чтобы выразить ее в терминах полезной энергии, реально произведенного тепла, света и движения. Как мы уже видели, ранние способы конверсии ископаемого топлива были очень неэффективными (менее 2 % для ламп накаливания, менее 5 % для паровых локомотивов, менее 10 % для тепловой генерации электричества, менее 20 % для маленьких угольных печей), но усовершенствование угольных котлов и печей вскоре удвоило эффективность, и в этой области до сих пор остается потенциал для движения вперед. Жидкие углеводороды, сжигаемые для домашнего отопления, а также с промышленными целями и для генерации энергии, конвертируются с более высокой эффективностью, и только бензиновые двигатели внутреннего сгорания в пассажирских автомобилях сравнительно неэффективны. Сжигание природного газа в топках, котлах или турбинах отличается высокой эффективностью, обычно она превосходит 90 %, и таковы же показатели конверсий первичного электричества.
Вследствие этого в 1900 году средняя взвешенная эффективность глобального использования энергии была не выше 20 %, к 1950-му – выше 35 %, и к 2015 году глобальное среднее конвертации ископаемого топлива и первичного электричества достигло 50 % от общей коммерческой потребляемой мощности. Международное агентство по энергии (IEA 2015а) считает, что в 2013 году мировое производство составило 18,8 Гт в нефтяном эквиваленте, а окончательное потребление – 9,3 Гт в нефтяном эквиваленте, с самыми высокими потерями в тепловой генерации энергии и на транспорте, что предсказуемо. Особенно примечательным выглядит тот факт, что в ключевом секторе потребления, домашнем отоплении, население целых стран совершило переход к полной эффективности на протяжении нескольких десятилетий (примечание 6.1).
Примечание 6.1. Эффективность домашнего отопления
Менее чем за 50 лет я успел пожить в домах, которые обогревались четырьмя разными видами топлива, и видел, как эффективность конверсии этого ключевого энергетического процесса утроилась (Smil 2003). В конце 1950-х годов, в деревне, окруженной лесами, на чешско-баварской границе, мы обогревали наш дом, как и большинство соседей, дровами. Отец заказывал уже спиленную и лишенную ветвей ель или пихту, и мне приходилось летом колоть дрова, чтобы получился готовый материал для печи (а также более тонкая растопка) и складывать их под навесом, чтобы они высохли. Эффективность нашей дровяной печи была не выше, чем 30–35 %. Когда я учился в Праге, все энергоемкие операции – отопление, приготовление пищи, генерация энергии – зависели от лигнита, а угольная печка в моей комнате, в бывшем монастыре, здание которого отличалось толстыми стенами, имела эффективность около 45 %. После переезда в США мы сняли верхний этаж пригородного дома, он обогревался нефтью, которую привозили в цистерне и сжигали в котле с эффективностью не более 60 %. Наш первый дом в Канаде имел газовый котел с эффективностью 65 %, и когда я спроектировал новый, суперэффективный дом, то поставил котел с показателем 94 %, а потом заменил на другой, дающий 97 %.
В то время как общее производство всех ископаемых энергий выросло в 14 раз на протяжении XX века, постоянный прогресс эффективности дал нам в 30 раз больше полезной энергии, чем было доступно в 1900 году. В результате богатые страны, где ископаемое топливо преобладало уже к 1900-му, сейчас получают в два или даже в три раза больше полезной энергии на единицу первичного поступления, чем столетие назад, и поскольку традиционные энергии биотоплива конвертировались с очень низкой эффективностью (<1 % для света, <10 % для тепла), то бедные страны, где современные энергии начали доминировать только на протяжении второй половины двадцатого века, теперь получают от пяти до десяти раз больше на единицу первичного поступления, чем сто лет назад. Если перевести все на душу населения – с населением в 1,65 миллиарда в 1900 году и 6,12 миллиарда в 2000-м – то глобальный рост в поставках полезной энергии будет более чем восьмикратным, но эта цифра прячет значительные национальные различия (больше об этом будет сказано в этой главе позже, в дискуссии об экономическом росте и стандартах жизни).

 

Рисунок 6.2. Глобальная добыча ископаемого топлива превзошла общие поставки энергии традиционной биомассы перед самым концом XIX века (слева). Рост полезной энергии был более чем двукратным по сравнению с ростом общих первичных поставок (справа). Основано на данных из United Nations Organization (1956) и Smil (1983,2010а)

 

Другой способ оценить агрегированный размер современных потоков энергии – сравнить их с традиционными, как в абсолютных, так и в относительных показателях. Лучшие оценки демонстрируют, что потребление растительного топлива поднялось с 700 Мт в 1700 году до примерно 2,5 Гт в 2000-м. Это дает приблизительно 280 Мт и 1 Гт в нефтяном эквиваленте, менее чем учетверение за три века (Smil 2010а). За то же самое время добыча ископаемого топлива поднялась с менее 10 Мт до 8,1 Гт в нефтяном эквиваленте, то есть примерно в 800 раз (рис. 6.2). В терминах валовой энергии глобальные поставки биотоплива и ископаемого топлива были почти одинаковыми в 1900 году (оба примерно 22 ЭДж); к 1950-му ископаемое топливо давало примерно в три раза больше энергии, чем дерево, пожнивные остатки и навоз; и к 2000 году разница была почти в восемь раз. Но с учетом реально потребленной, полезной энергии разница к тому же году достигла 20 раз.
Всплески в использовании энергии подняли уровень среднего потребления на душу населения на беспрецедентную высоту (рис. 6.3). Энергетические потребности кочевых обществ определялись в основном добычей пищи, их годовое потребление в среднем составляло не выше 5–7 ГДж на человека. Высокие культуры древности добавили медленно растущий расход энергии на лучшие убежища и одежду, на транспорт (приводимый в движение энергией пищи, фуража и ветра) и некоторое количество производства (на древесном угле в первую очередь). Египет времен Нового царства потреблял не более 10–12 ГДж на душу населения, моя лучшая оценка для ранней Римской империи – около 18 ГДж на человека (Smil 2010с). Ранние индустриальные общества с легкостью удвоили традиционное использование энергии на душу населения. Большая часть этого роста приходилась на производство на каменном угле и новые средства транспорта. Среднее по Европе оценивается (Malanima 2013b) как около 22 ГДж на душу населения в 1500 году, затем наблюдалась стагнация на уровне 16,6-18,1 ГДж на человека до 1800 года.
После этого появилась уже упомянутая разница между индустриальными странами и теми, чья экономика так и осталась в основном аграрной. Оценки для Англии и Уэльса показывают (Kander 2013), что среднее потребление выросло с 60 ГДж на душу населения в 1820 году до 153 ГДж на душу в 1910-м, а в Германии показатель за то же время увеличился в пять раз (с 18 до 86 ГДж на душу населения), но зато в Италии рост составил всего 20 % (с 10 до 22 ГДж на душу). Для сравнения, средняя величина в США поднялась с менее 70 ГДж до около 150 ГДж на душу населения между 1820 и 1910 годами (Schnurr and Netschert 1960). Столетием позже все богатые европейские страны превысили 150 ГДж на душу населения, а США – 300 ГДж на душу, и по мере того как росло среднее потребление, изменялся его состав (рис. 6.3).
В кочевых обществах пища была единственным источником энергии; мои оценки показывают, что пища и фураж составляли около 45 % всей энергии в ранней Римской империи (Smil 2010с). В доиндустриальной Европе их доля колебалась от 20 до 60 %, но в 1820 году среднее было уже не более 30 %; к 1910-му – менее 10 % в Великобритании и Германии. К 1960-м годам энергия фуража уменьшилась до пренебрежимо малой величины, а на пищу осталось 2–3% общего потребления энергии в наиболее обеспеченных обществах, где ведущие роли стали принадлежать промышленному, транспортному и домашнему использованию топлива и электричества (рис. 6.3). Потребление электричества на душу населения выросло на два порядка в богатых странах, к 2010 году оно составило около 7 МВт/г. в Западной Европе и 13 МВт/г. в США. Контрасты между энергетическими потоками, находящимися под прямым контролем человека, впечатляют ничуть не меньше.

 

Рисунок 6.3. Сравнение типичного годового потребления энергии на разных стадиях человеческой эволюции. Большой рост абсолютного потребления сопровождался ростом долей энергии, предназначенных для домашнего хозяйства, промышленности и транспорта. Все данные до XIX века являются приближениями, основанными на 5 тН (1994; 2010с) и Malanima (2013а); более поздние цифры взяты из национальных статистических источников

 

Когда в 1900 году фермер на Великих равнинах держал поводья шести больших лошадей во время вспашки пшеничного поля, он контролировал – прикладывая значительные физические усилия, сидя на стальном сиденье, часто в облаке пыли – не более 5 кВт одушевленной энергии. Столетием позже его праправнук, расположившийся в кондиционированной кабине трактора, без усилий направлял больше 250 кВт мощности дизельного двигателя. В 1900 году машинист, ведущий угольный локомотив с вагонами по трансконтинентальному маршруту со скоростью около 100 км/ч, повелевал около 1 МВт пара, максимальной мощностью, которую давала ручная подача угля (Bruce 1952; рис. 6.4). К 2000 году пилот «Боинга-747», идущего по межконтинентальному маршруту на высоте 11 км, мог использовать автопилот большую часть путешествия, а четыре газовых турбины давали до 120 МВт мощности и скорость 900 км/ч (Smil 2000а).

 

 

Рисунок 6.4. Управление паровозом конца XIX века (вверху) и пилотирование реактивного «Боинга» (внизу). Два пилота контролируют на два порядка больше мощности, чем машинист и его помощник в локомотиве. Локомотив взят из VS archive, кокпит «Боинга» с

 

Подобная концентрация мощности требует намного более высоких стандартов безопасности, поскольку возрастает цена ошибки. Экипажи, которые до конца девятнадцатого века использовались в городском транспорте, развивали постоянную мощность не более 3 кВт (четыре запряженные лошади) и перевозили от 4 до 8 человек. Пилоты реактивного лайнера контролируют 30 МВт и перевозят 150–200 пассажиров. Временная невнимательность или ошибка в оценке ситуации приведут к совершенно разным последствиям, когда у того, кто ошибется, «в руках» 3 кВт и 30 МВт, то есть разница в четыре порядка. Очевидный способ снизить такие риски – использовать электронный контроль.
Самая безопасная система транспорта в мире – японский shinkansen («новая магистраль») между Токио и Осакой, 50 лет его работы без происшествий отпраздновали 1 октября 2014 года – использует централизованный электронный контроль с самого своего появления. Автоматический контроль поддерживает нужное расстояние между поездами и пускает в ход тормоза, если скорость превышает обозначенный максимум; централизованный контроль движения следит за выполнением маршрутного расписания; детекторы землетрясений фиксируют первые сейсмические волны, достигшие поверхности Земли, и могут остановить или замедлить составы до того, как начнется собственно землетрясение (Noguchi and Fujii 2000). Современные реактивные самолеты автоматизированы много десятилетий назад, и продвинутый контроль все больше проникает в автомобилестроение. Электронный контроль и постоянный мониторинг – применение которых сейчас варьируется от комнатных термостатов до больших плавильных печей, от антиблокировочных тормозных систем до повсеместного CCTV в городах – появились с широким распространением компьютеров и переносных электронных устройств и стали новой категорией спроса на электричество.
Рост глобального производства электричества в XX веке был даже быстрее, чем расширение добычи ископаемого топлива, чья средняя величина в год составила около 3 % (рис. 6.5). Менее 2 % всего топлива превращали в электричество в 1900 году, менее 10 % в 1945-м, но к концу века доля поднялась до 25 %. Новые гидроэлектростанции (в большом масштабе начали строить после Первой мировой войны) и новые ядерные мощности (с 1956 года) еще увеличили производство энергии. В результате глобальные поставки электричества росли примерно на 11 % в год между 1900-м и 1935-м, и затем на более 9 % в год до начала 1970-х. В оставшейся части века рост уменьшился до 3,5 % в год, в основном потому, что спрос в богатых экономиках понизился, а эффективность конверсии возросла. Новые способы генерации электричества от возобновляемых источников, таких как солнечная энергия и ветер, показали значительный рост с конца 1980-х годов.
Никакой другой выигрыш, обеспеченный этой новой мощностью, не был столь фундаментальным, как значительный рост в глобальном производстве продовольствия, который сделал возможным предоставить адекватное питание почти 90 % мирового населения (FAO 2015b). Никакое изменение не определило вид современного общества в большей степени, чем процесс индустриализации, и никакое новое улучшение не внесло больший вклад в появление глобальной цивилизации, чем эволюция массового транспорта и громадное увеличение нашей возможности по накоплению информации и вовлечению в коммуникации с частотой и интенсивностью, не имеющей исторических прецедентов. Но эти впечатляющие достижения не были разделены между всеми людьми в равной степени, и я напишу о том, как выгоду от глобального экономического роста непропорциональным образом получила небольшая часть человечества, и отмечу значительные внутринациональные различия. Но даже при всем при этом имели место многие универсальные усовершенствования.

 

Рисунок 6.5. Глобальная генерация электричества росла значительно быстрее, чем добыча ископаемого топлива. Ведущие экономики мира всегда были его крупнейшими производителями, и тепловая генерация (в данный момент большей частью на угле и природном газе) продолжает доминировать на глобальном уровне (слева). Гидроэлектричество и ядерная энергетика остаются на втором и третьем месте соответственно. Ветровая и солнечная энергетика начали быстро расти после 2000 года. Основано на данных из United Nations Organization (1956), Ра I grave Macmillan (2013) и BP (2015)

 

Энергия в сельском хозяйстве
Ископаемое топливо и электричество стали незаменимыми ресурсами в современном земледелии. Они использовались прямо, чтобы приводить в движение механизмы, и косвенно, чтобы строить эти машины, добывать минеральные удобрения, синтезировать азотистые вещества и защитные химикалии (пестициды, фунгициды, гербициды и др.), чтобы создавать новые разновидности растений. А с недавнего времени – чтобы приводить в действие электронику, берущую на себя многие функции и поддерживающую аккуратное земледелие. Ископаемое топливо обеспечило рост объема и стабильности урожаев, оно заменило практически всех тягловых животных в богатых странах и значительно уменьшило их использование в бедных, а замена мускулов двигателями внутреннего сгорания и электромоторами продолжила снижение интенсивности труда, начатое доиндустриальными достижениями в сельском хозяйстве.
Непрямое влияние ископаемого топлива на сельское хозяйство началось уже (пусть и в небольшом масштабе) в XVIII веке, когда плавку железной руды перевели с древесного угля на кокс. Оно расширилось с распространением стальных механизмов во второй половине XIX века и достигло новых высот с появлением новых, более мощных полевых машин, оросительных насосов, а также различного оборудования в XX веке. Но объем вложенной в машины энергии – всего лишь доля энергии, прямо использованной на управление тракторами, комбайнами и другими, на то, чтобы качать воду, сушить зерно и обрабатывать злаки. Из-за присущей им высокой эффективности дизельные двигатели стали доминировать во всех этих областях, но на долю бензина и электричества тоже осталось немало.
Использование двигателей внутреннего сгорания в сельскохозяйственных механизмах началось в США, в то же десятилетие, когда легковые машины стали массово производимым товаром (Dieffenbach and Gray 1960). Первый тракторный завод был заложен в 1905 году, устройство отвода мощности для навесного оборудования появилось в 1919-м, а мощные подъемники, дизельные двигатели и резиновые шины – в начале 1930-х. До 1950-х годов механизация в Европе шла несколько медленно, в густонаселенных странах Азии и Латинской Америки она началась только в 1960-х, а в некоторых бедных государствах идет прямо сейчас. Механизация полевых работ была главной причиной роста производительности труда и снижения доли занятого в сельском хозяйстве населения. Сильная западная лошадь начала XX века работала с мощностью шести человек, но даже первые тракторы выдавали эквивалент 15–20 тяжелых лошадей, а сегодняшние машины, работающие в Канадских прериях, выдают до 575 л. с. (Versatile 2015).
В главе 3 я показал, как рост производительности снизил средние трудовые вложения в выращивание пшеницы в Америке с 30 часов на тонну в 1800 году до менее 7 часов на тонну в 1900-м; к 2000 году показатель уменьшился до 90 минут на тонну. Высвободившаяся трудовая сила начала перемещаться в города, вызвав мировое сокращение сельского населения и продолжающийся до сих пор рост урбанизации (рассмотрен дальше в этой главе). Американская статистика позывает результаты перемещения. Процент трудящихся на селе уменьшился с более 60 % от всей рабочей силы в 1850 году до менее 40 % в 1900-м; эта доля составила 15 % в 1950 году, а в 2015-м она была всего 1,5 % (USDOL 2015). Для сравнения, сельским трудом в ЕС сейчас занято 5 % работающих, а в Китае все еще около 30 %.
Максимальная численность американских тягловых лошадей составила 21,4 миллиона в 1915 году, а количество мулов достигло пика в 1925–1926 годах: 5,9 миллиона особей (USBC 1975). На протяжении второго десятилетия XX века общая тягловая сила была в десять раз больше, чем у только что появившихся тракторов; в 1927 году эти два первичных движителя сравнялись по объемам, а к 1940-му тракторы уже в два раза превосходили животных. Но сама по себе механизация не могла высвободить такое большое количество сельского труда. Более высокие урожаи новых разновидностей злаков, лучшие удобрения, эффективные гербициды и пестициды, усовершенствованная ирригация – все это внесло свой вклад.
Важность хорошо сбалансированного питания растений определил Юстус фон Либих (1803–1873). В 1843 году он сформулировал «закон минимума»: питательное вещество, которого меньше всего, определит уровень конечного урожая. Из трех макронутриентов (веществ, которые требуются в сравнительно больших количествах), а именно, азота, фосфора и калия – два последних довольно просто обеспечить. В 1842 году Джон Беннет Лоус (1814–1900) предложил обработку фосфатных пород растворенной серной кислотой, чтобы получать обычный суперфосфат, и позже этот способ использовался на крупных месторождениях фосфатов во Флориде (1888) и Марокко (1913). Калий в виде КС1 можно добывать во многих шахтах в Европе и Северной Америке (Smil 2001).
Но вот обеспечение азотом, который всегда требуется растениям в большом количестве, было самой сложной задачей. До 1890-х годов единственный вариант сводился к импорту чилийских нитратов (открыты в 1809 году). Затем сравнительно малое количество сульфата аммония начали получать из новых коксовальных печей; дорогой цианамидный процесс (кокс, вступающий в реакцию с известняком, производит карбид кальция, комбинация которого с чистым азотом дает цианамид кальция) поставили на коммерческую основу в 1898 году; в самом начале XX века электрическую дугу (процесс Биркеланда-Эйде, 1903 год) начали использовать для получения оксида азота, который можно было превратить в азотную кислоту и нитраты. Ни одна из этих технологий не могла стать основой массового производства, и прорыв на мировой уровень произошел только в 1909 году, когда Фриц Габер (1868–1934) изобрел каталитический процесс при высоком давлении, синтез аммиака из его элементов (Smil 2001; Stolzenberg 2004).
Быстрая коммерциализация (к 1913 году) имела место на заводе BASF в Людвиг-схафене, где руководил Карл Бош (1874–1940). Но сначала этот процесс использовали не для изготовления удобрения, а для того, чтобы делать нитрат аммония, необходимый для взрывчатки на полях Первой мировой войны. Первые синтетические азотные удобрения поступили в продажу в начале 1920-х годов. Их производство оставалось ограниченным до Второй мировой, и даже к 1960 году больше трети американских фермеров не использовали синтетических удобрений (Schlebecker 1975). Синтез аммиака и последующее его превращение в жидкие и твердые удобрения – энергоемкий процесс, но технический прогресс снизил общие энергетические затраты, и азотистые соединения вышли на мировой рынок, так что их производство в 2000 году достигло эквивалента 100 Мт азота (они составили 80 % от всех синтезированных веществ, примечание 6.2., рис. 6.6).
Примечание 6.2. Энергетические затраты на производство азотистых удобрений
Энергетические расходы на синтез по схеме Габера – Боша включаюттопливо и электричество, используемые в процессе, и энергию, воплощенную в сырье. Процесс, базирующийся на коксе, с которого все начиналось на заводе BASF, требовал более 100 ГДж/т NH3 в 1913 году; перед Второй мировой войной показатель уменьшился до около 85 ГДж/т. После 1950 года процесс, основанный на природном газе, снизил энергетические издержки до 50–55 ГДж/т аммиака; центрифугальные компрессоры, более эффективные катализаторы и паровая конверсия под высоким давлением уменьшили сначала до менее 40 ГДЖ/т к 1970-м годам, затем до 30 ГДЖ/т к 2000-му, когда лучшим заводам требовалось всего 27 ГДЖ/т, близкое значение к стехиометрическим энергетическим расходам (20,8 ГДж/т) для синтеза аммиака (Kongshaug1998; Smil 2001). Обычно новый завод на природном газе тратит около 30 ГДж/т, примерно на 20 % больше в случае использования тяжелых нефтепродуктов, и до 48 ГДж/т при синтезе на основе угля (Rafiqul et al. 2005; Noelker and Ruether 2011).
Средняя производительность составляла около 35 ГДж/т в 2015 году; последний показатель соотносится с 43 ГДж/т азота. Но большинство фермеров не применяют аммиак (газ при обычном давлении), они предпочитают жидкости или твердые вещества, особенно мочевину, содержащую больше всего азота (45 %) среди всех твердых веществ, которые легко использовать даже на небольших участках. Превращение аммиака в мочевину, упаковка и транспорт увеличивают общие энергетические затраты до 55 ГДж/т. Используя этот показатель в качестве глобального среднего, можно подсчитать, что в 2015 году, когда около 115 Мт азота было использовано в сельском хозяйстве, на синтез азотистых удобрений ушло 6,3 ЭДж энергии, или чуть более 1 % глобального потока энергии (Smil 2014а).
Никакое другое использование энергии не предлагает такую отдачу в виде роста урожая, как использование синтетического азота: потратив, грубо, 1 % глобальной энергии, можно обеспечить около половины всех питательных веществ, потребляемых ежегодно злаками всего мира. Поскольку около трех четвертей всего азота в пищевых белках поступают из обрабатываемой земли, почти 40 % текущих поставок пищи зависят от процесса синтеза аммиака Габера-Боша. Если перевернуть данные, можно сказать, что без синтеза по схеме Габера-Боша число людей, получающих удовольствие от современного рациона, составило бы 40 % от сегодняшнего.
Западные страны, использующие большую часть зерна в качестве пищевого сырья, могут с легкостью уменьшить зависимость от синтетического азота, снизив высокое потребление мяса. Бедные страны с большим населением имеют куда меньшую свободу выбора. Особенно стоит отметить, что синтетический азот обеспечивает около 70 % всех энергетических вложений в Китае. Более 70 % белка в стране происходит из злаков, и поэтому, грубо говоря, половина всего азота в пище Китая поступает из синтетических удобрений. В его отсутствие обеспечение продуктами упадет до полуголодного уровня, или текущий уровень питания будет доступен только для половины населения.

 

Рисунок 6.6. Экспоненциальный рост глобального производства азотистых удобрений (слева) сопровождался впечатляющим падением энергетических затрат при синтезе аммиака (справа). Основано на данных из Smil (2001,2015b) и FAO (2015а)

 

Добыча поташа (10 ГДж/т К) и фосфатов и разработка фосфатных удобрений (вместе 20 ГДж/т Р) добавляют 10 % к общей сумме. Общие энергетические расходы на другие сельскохозяйственные химикалии много ниже. Послевоенный рост применения удобрений сопровождался введением в использование и расширением спектра гербицидов и пестицидов, химикалий, которые уменьшают заражение посадок сорняками, насекомыми и грибками. Первый коммерческий гербицид поступил на рынок в 1945 году (2,4-D), и он убивает многие широколиственные растения, не нанося вреда злакам. Первым инсектицидом был ДДТ, выпущенный в 1944-м (Friedman 1992). В списке гербицидов и пестицидов сейчас тысячи соединений, большей частью получаемых из нефтехимического сырья: их синтез куда более энергоемок, чем производство аммиака (обычно более 100 ГДЖ/т, а для некоторых – более 200 ГДж/т), но количества, используемые на гектар, на порядки ниже.
Территория орошаемых земель за XX век увеличилась в пять раз, с менее 50 Мга до более 250 Мга, а к 2015 году достигла 275 Мга (FAO 2015а). В относительных терминах это значит, что около 18 % сельскохозяйственных земель сейчас орошаются, около половины из них – водой, качаемой из колодцев, 70 % всей орошаемой земли находится в Азии. Там, где вода добывается из водоносных слоев, энергетические затраты на ее подкачку (используются обычно дизельные или электрические насосы) неизменно составляют самую большую часть от общих (прямых и косвенных) энергетических затрат на выращивание злаков. Оросительная система все еще подает большую часть выкачанной воды в бороздки, но гораздо более эффективные и дорогие разбрызгиватели (особенно вращающиеся) тоже используются во многих странах (Phocaides 2007).
Только приблизительные расчеты можно сделать, чтобы отследить подъем прямого и косвенного использования ископаемого топлива и электричества в современном сельском хозяйстве. На протяжении XX века, когда население мира выросло в 3,7 раза, а обрабатываемая площадь расширилась на 40 %, антропогенный энергетический вклад поднялся с 0,01 ЭДж до почти 13 ЭДж. В результате в 2000 году средний гектар земли получал в 90 раз больше энергии, чем в 1900-м (рис. 6.7). Или, отстранясь от цифр, мы можем просто сказать вместе с Говардом Одумом (Odum, 1971, 115–116):
«Целое поколение граждан думало, что текущий объем нашей планеты пропорционален площади обрабатываемой земли и что мы с большей эффективностью используем солнечную энергию. Но это печальное заблуждение, поскольку человек индустриальной эпохи не ест картофель, сделанный из солнечной энергии, сейчас он ест картофель, частично изготовленный из нефти».
Но эта трансформация изменила общую доступность пищи несколькими способами. В 1900 году валовое производство злаков (не считая потерь при хранении и перевозке) давало только крохотный выигрыш над человеческими потребностями в пище, что означает – большая часть человечества питалась скудно, и доля урожая, которую можно было использовать для прокорма животных, оставалась минимальной. Значительно выросшие вложения энергии позволили новым сортам растений (гибридная кукуруза, появившаяся в 1930-х годах, пшеница с коротким стеблем, новые разновидности риса в 1960-х) реализовать их потенциал полностью, результатом чего стали рост урожаев всех культур и увеличение энергии пищи в шесть раз (Smil 2000b, 2008; рис. 6.7).
В начале XXI века глобальные урожаи обеспечивают дневную норму в среднем (для популяции в 4 раза больше, чем в 1900 году) около 2800 ккал на человека, более чем достаточно, если бы она была доступна для всех (Smil 2008а). Примерно 12 % мирового населения до сих пор недоедают по той причине, что доступ к пище у них ограничен, но не потому что ее вообще нет, а потому что она распределяется неравномерно.

 

Рисунок 6.7. Общие (прямые и косвенные) вложения энергии в современное сельское хозяйство (слева), общие размеры жатвы и рост урожая пшеницы (справа). Основано на данных из Smil (2008b), Palgrave Macmillan (2013) и FAO (2015a)

 

В обеспеченных странах поставки пищи на 75 % выше реальной потребности, результатом чего становится ненормально большое количество пищевых отходов (30–40 % всей пищи в розничной продаже) и высокий уровень ожирения у населения (Smil 2013а). Более того, немало зерна (50–60 %) в богатых странах скармливают домашним животным. Курица – самый эффективный конвертер корма (около трех единиц концентрированного корма на единицу мяса); для свинины это соотношение девять к одному, производство говядины самое затратное, оно требует 25 единиц корма на единицу мяса.
Это не самое лучшее соотношение также является функцией пропорции мясо/живой вес: для курицы она равняется 0,65, для свиньи – 0,53, для крупного рогатого скота всего 0,38 (Smil 2013d). Но энергетические потери при получении мяса (и молока) имеют собственную питательную отдачу: рост потребления животной пищи обеспечивает высокобелковый рацион во всех богатых странах (проявляется в увеличении роста) и в среднем адекватное питание большинству даже самых бедных стран. Интересно, что среднее потребление энергии пищи на душу населения в Китае сейчас около 3000 ккал/сут., то есть на 10 % выше, чем в Японии (FAO 2015а).

Индустриализация

Индустриализация подразумевает многочисленные связанные друг с другом изменения (Blumer 1990), и так дело обстоит, в каком бы масштабе не рассматривался процесс. До сегодняшнего времени самое важное изменение на уровне фабрики – введение электрических моторов, приводящих в движение отдельные машины, что обеспечило точный и независимый контроль, позволило ликвидировать ненадежную систему трансмиссий, кожаных приводов и валов, которые требовались паровой машине. Но даже эта фундаментальная трансформация имела бы ограниченное воздействие, если бы высокоскоростные станки и сталь лучшего качества не были доступны для производства более качественных машин и финальных компонентов. Как уже отмечалось, интенсификация международной торговли не произошла бы без новых, более мощных первичных движителей, но их развитие в свою очередь зависело не только от продвижения в конструктивной области, но также от огромных объемов нового жидкого топлива, получать которое стало возможно благодаря добыче сырой нефти и ее дальнейшей очистке.
Схожим образом, растущая доля механического производства, сконцентрированного на фабриках, потребовала размещения работников поблизости от мест производства (отсюда различные формы урбанизации) и развития новых навыков и целых профессий (отсюда беспрецедентный рост сферы профессионального обучения и технического образования). Использование монетарной экономики, мобильности труда и капитала установило новые контрактные отношения и привело к росту миграции и расширению банковского сектора. Погоня за массовым производством и низкими издержками на единицу продукции создали новые большие рынки, чье существование опиралось на надежный и недорогой транспорт.
В противоположность общему мнению, рост доступности полученных с помощью угля и паровых двигателей тепла и механической мощности вовсе не был нужен для того, чтобы инициировать этот комплекс перемен. Производство в загородных мастерских, основанное на дешевом сельском труде и обслуживавшее не только национальный, но и международные рынки, существовало за поколения до того, как началась угольная индустриализация (Mendels 1972; Clarkson 1985; Hudson 1990). Такая протоиндустриализация имела место не только в отдельных районах Европы (Ульстер, Костуолдс, Пикардия, Вестфалия, Саксония, Силезия и многие другие). Масштабное ремесленное производство товаров для внутреннего и внешнего рынков существовало также в Китае династий Мин и Цинь, в Японии сегуната Токугава, в отдельных районах Индии.
Отличным примером является карбонизация сыродутного железа для получения индийской стали wootz, качества которой лучше всего известны по дамасским клинкам (Mushet 1804; Egerton 1896; Feuerbach 2006). Ее производство в некоторых регионах Индии (Лахор, Амритсар, Агра, Джайпур, Мисор, Малабар, Голконда) имело почти индустриальные масштабы, экспорт шел в Персию и Турецкую империю. Частично механизированное и сравнительно крупное производство тканей, опирающееся на энергию воды, часто становилось следующим шагом европейского перехода от сельских мастерских к централизованным мануфактурам. Во многих регионах промышленные водяные мельницы и турбины успешно конкурировали с паровыми машинами на протяжении десятилетий после появления нового неодушевленного первичного движителя.
Да и массовое потребление не было таким уж новшеством.
Мы привыкли думать о материализме как о последствии индустриализации, но в Западной Европе, особенно в Нидерландах и Франции, он являлся значимой социальной силой уже в XV и XVI веках (Mukerji 1981; Roche 2000). Схожим образом в Японии эпохи Токугава (1603–1868) богатые жители городов, особенно Эдо, столицы, начали развлекаться совершенно необычным для того времени образом: покупать иллюстрированные книги (ehon), ходить по ресторанам (тогда стали популярны суши), посещать театральные представления, коллекционировать цветные изображения (ukiyoe) ландшафтов и актеров (Sheldon 1958; Nishiyama and Groemer 1997). Вкусы и стремления растущего числа состоятельных людей обеспечили важный культурный импульс для индустриализации. Им требовался доступ к товарам: от посуды для ежедневной готовки до экзотических специй и тонких тканей, от искусно выгравированных карт до чайных наборов.
Термин «индустриальная революция» столь же привлекательный и глубоко въевшийся, как и ошибочный. Процесс индустриализации был скорее комплексом отдельных и постепенных, часто неравномерных шагов вперед. Дело обстояло так даже в регионах, которые сравнительно быстро перешли от ремесленных мастерских к крупномасштабному производству на экспорт. Иллюзорно аккуратное размещение этих изменений на временной шкале (Rostow 1965) игнорирует сложность и истинную эволюционную природу процесса целиком. Его начало в Англии можно проследить как минимум до конца XVI века, но полную мощность он набрал только после 1850 года (Clapham 1926; Ashton 1948). Даже к этому времени традиционные ремесленники значительно превосходили числом рабочих механизированных фабрик: перепись 1851 года показала, что в Великобритании все еще было больше сапожников, чем шахтеров на угольных шахтах, больше кузнецов, чем металлургов (Cameron 1985).
Взгляд на мировую индустриализацию как на серию волн, имитирующих английские достижения, (Landes 1969) ничуть не более правилен. Даже Бельгия, чей прогресс наиболее сильно напоминал британский, шла собственным путем. Намного большее значение имела металлургия, и меньшее – текстильная промышленность. По причине значительных национальных отличий не было общих шаблонов индустриализации. Во Франции активно использовали энергию воды, Америка и Россия очень долго полагались на древесину, а Япония – на искусных ремесленников. Уголь и пар были изначально вовсе не революционными новшествами. Постепенно они стали давать тепло и механическую мощность на невиданном ранее уровне и с высочайшей надежностью.
Индустриализация могла расширяться и ускоряться в одно и то же время, в конечном итоге становясь причиной еще более высокого потребления ископаемых энергий. Добыча угля вовсе не является необходимой для индустриальной экспансии, но она определенно важна для ее ускорения; сравнение Бельгии и Нидерландов показывает этот эффект. Высоко урбанизированное голландское общество, с прекрасным флотом и сравнительно продвинутыми торговыми и финансовыми возможностями, осталось позади богатой углем, но бедной всем остальным Бельгии, которая стала передовой индустриальной страной континента в середине девятнадцатого века (Mokyr 1976). В число других регионов Европы, где рано сформировалась основанная на угле экономика, входили Рейн-Рур, Богемия и Моравия в империи Габсбургов, прусская и австрийская части Силезии.
Этот шаблон повторился и за пределами Западной и Центральной Европы. Пенсильвания с ее высококачественным антрацитом и Огайо с прекрасным битуминозным углем стали лидерами в США (Eavenson 1942). В России до Первой мировой войны разработка богатых запасов угля в Донецком бассейне и нефтяных залежей в Баку в 1870-х годах открыла дорогу быстрой индустриальной экспансии (Falkus 1972). Японская погоня за модернизацией в эпоху Мейдзи основывалась на угле из месторождений северного Кюсю (Yonekura 1994). Крупнейшая коммерческая империя в Индии выросла из домны Дж. Тата, которая использовала бихарийский кокс (Джамшедпур) с 1911 года (Tata Steel 2011).
Получив в свое распоряжение энергию угля и пара, традиционные производители смогли обеспечить большие объемы более качественной продукции по более низким ценам. Это достижение было необходимым условием для массового потребления. Доступность недорогой и надежной механической энергии также позволила использовать все более сложные машины. И соответственно увеличилась специализация в производстве компонентов, инструментов и механизмов. Новые отрасли, живущие за счет угля, кокса и пара, возникали с невероятной скоростью из-за необходимости обеспечивать национальные и международные рынки. Изготовление котлов высокого давления и труб к ним началось после 1810 года, производство рельсов и локомотивов выросло после 1830-го, а изготовление водяных турбин и корабельных винтов – после 1840 года. Стальные корпуса и подводные телеграфные кабели нашли новый большой рынок после 1850 года, а коммерческие способы изготовления недорогой стали – сначала в конвертерах Бессемера после 1856-го, затем в мартеновских домнах (Siemens-Martin) в 1860-х (Bessemerl905; Smil 2016) – открыли новые большие рынки, от кухонной утвари до рельс, от плугов до несущих балок.
Рост потребления топлива и замена ручных инструментов машинами сделали человеческие мускулы несущественным источником энергии. Труд сравнительно быстро превратился в поддерживающий, контролирующий и управляющий процесс. Эту тенденцию хорошо показывает анализ переписей в Англии и Уэльсе за полтора столетия (Stewart, De and Cole 2015). В 1871 году около 24 % всех работающих занимались физическим трудом (в сельском хозяйстве, строительстве и промышленности), и только 1 % составляли люди «заботящихся» профессий (медицина и обучение, забота о детях и социальное обеспечение). Но к 2011 году доли составили соответственно 8 % и 12 %, и некоторая часть сегодняшнего физического труда, вроде уборки или рутинных операций на фабриках, включает немало механизированных задач.
Но хотя важность человеческого труда упала, новые систематические исследования отдельных задач и полных фабричных процессов продемонстрировали, что производительность труда значительно увеличилась после оптимизации, перестройки и стандартизации мускульной активности. Фредерик Уинслоу Тейлор (1856–1915) был пионером в области подобных исследований. Начиная с 1880 года, он потратил 26 лет на количественные оценки всех ключевых переменных, задействованных при резке стали, свел находки к простому набору вычислений и вывел общие заключения по управлению эффективностью в книге «Принципы научного менеджмента» (Taylor 1911). Столетием позже эту книгу продолжают использовать некоторые из наиболее успешных изготовителей товаров широкого потребления (примечание 6.3).
Радикально новый период индустриализации начался, когда паровые машины превзошла электрификация. Электричество – совершенная форма энергии, и не только по сравнению с паровой. Оно сочетает мгновенный и легкий доступ со способностью очень надежно обслуживать почти любой сектор экономики, кроме авиации. Щелчок выключателя превращает электричество в свет, тепло, движение или в химический потенциал. Легко контролируемый поток обеспечивает ранее недостижимые точность, скорость и контроль процессов. Более того, оно чисто и бесшумно в точке потребления. И как только нужная проводка проложена, электричество может решать почти бесконечное количество растущих или меняющихся задач.
Примечание б. З. От экспериментов с резкой стали до японского экспорта автомобилей
Главной заботой Фредерика Уинслоу Тейлора были потери труда, иными словами, непродуктивное использование энергии, эти «неловкие, неэффективные или неточно нацеленные движения человека», которые «не оставляют ничего видимого или ощутимого после себя», и он пытался оптимизировать физические усилия. Критики Тейлора увидели в этом всего лишь особенно жестокий способ эксплуатации (Copley 1923; Kanigel 1997), но усилия Тейлора базировались на понимании реальной энергетики труда. Он возражал против слишком больших рабочих квот («если человек переутомлен работой, тогда задача поставлена неверно и такой подход далек от научного менеджмента настолько, насколько это возможно») и подчеркивал, что совместное знание управляющих уступает «в значительной степени совместному знанию и умению рабочих людей, которые им подчиняются». Естественно, что он призывал к «доверительной кооперации управляющих с рабочими» (Taylor 1911,115).
Рекомендации Тейлора были сначала отвергнуты (компания Bethlehem Steel уволила его в 1901 году), но «Принципы научного менеджмента» стали в конечном итоге учебником для менеджеров всего мира. В особенности, глобальный успех японских компаний был основан на постоянных усилиях по устранению непродуктивного труда, излишней загрузки и неравной скорости работы, на привлечении рабочих к участию в производственном процессе, например, путем внесения предложений по его улучшению, и на минимизации конфликтов между управляющими и трудящимися. Знаменитая производственная система фирмы «Тойота» – аллитерирующее трио muda mura muri (ликвидация не имеющих ценности видов деятельности, неравномерного ритма производства и чрезмерной загруженности) – представляет собой чистый тейлоризм (Ohno 1988; Smil 2006).
Эти свойства делают электрификацию промышленности по-настоящему революционным сдвигом. В конечном итоге паровые машины, заменившие водяные мельницы, не изменили способ передачи механической энергии, с помощью которой выполняются различные производственные работы. Поэтому такая замена мало повлияла на общую фабричную производительность. Пространство под крышей фабрики осталось загроможденным главными валами, связанными с параллельными распределительными валами, передающими движение отдельным машинам с помощью ременных приводов (рис. 6.8). В случае перебоев в функционировании первичного движителя (низкий уровень воды, поломка машины) или повреждения трансмиссии (вала или привода) останавливалась вся работа. Подобный комплекс также характеризовался высокими потерями на трение и допускал лишь ограниченный контроль мощности на отдельных рабочих местах.

 

Рисунок 6.8. Внутреннее устройство токарной мастерской в Стотт-Парк-Боббин-Милл в Финстуэйте, графство Камбрия, показывает типичную подпотолочную трансмиссию, с помощью ремней передававшую мощность от большой паровой машины к отдельным станкам. Мастерская производила деревянные катушки, которые использовались в прядильной и ткацкой промышленности Ланкашира (Corbis)

 

Первые электрические моторы вращали более короткие валы для меньших групп машин. После 1900 года персональные приводы постепенно сделались нормой в производстве. Между 1899 и 1929 годами общая номинальная механическая мощность американской промышленности примерно учетверилась, а мощность индустриальных электромоторов выросла почти в 60 раз и достигла почти 82 % общей доступной мощности, по сравнению с менее чем 5 % в конце XIX века (USBC 1954; Schnurr et al. 1990). После этого доля электрической мощности изменялась мало: замещение паровых и приводимых в движение водой механизмов на моторы было практически завершено всего через три десятилетия после начала этого процесса в конце 1890-х годов. Этот эффективный и надежный источник энергии не только удалил постоянный грохот над головой и повышенную опасность несчастных случаев. Устранение древней трансмиссии освободило потолок для установки лучшего освещения и вентиляции, обеспечило возможность роста производственных площадей и гибкую организацию производства. Высокая эффективность электрических моторов в комбинации с точным, гибким, индивидуальным контролем мощности в лучшей рабочей среде привела к росту производительности труда.
Электрификация также открыла дорогу для множества специализированных отраслей. Первой стало производство ламп, динамо и проводки (после 1880 года), а также паровых и водяных турбин (после 1890-го). Котлы высокого давления на измельченном в порошок угле появились после 1920 года; создание огромных плотин, использующих большое количество железобетона, началось десятилетием позже. Широкое распространение приборов контроля за загрязнением воздуха началось после 1950 года, а первые атомные электростанции появились до 1960-го. Рост спроса на электричество также стимулировал геофизические исследования, добычу топлива и расширение транспортной сети. Немалый объем фундаментальных исследований в материаловедении, автоматизации и метрологии потребовался для того, чтобы получить лучшую сталь, другие металлы и сплавы, увеличить надежность и срок службы дорогих устройств для извлечения, транспортировки и конвертации энергии.
Доступность надежного и дешевого электричества преобразовала буквально каждый вид промышленной деятельности. Вне всяких сомнений, самое большое воздействие на производство оказало широкое распространение сборочных линий (Nye 2013). Классическая, ныне устаревшая, негибкая разновидность, использованная Фордом, базировалась на конвейере, изобретенном в 1913 году. Современная, гибкая японская разновидность полагается на доставку комплектующих «строго вовремя», и на рабочих, способных выполнять ряд различных задач. В системе, представленной на фабриках «Тойоты», скомбинированы элементы американской практики с новыми хитроумными подходами и оригинальными идеями (Fujimoto 1999). Производственная система «Тойоты» (kaizen) базируется на постоянном совершенствовании продукта и самоотверженном стремлении к лучшему контролю качества. И снова фундаментальная унификация всех этих действий минимизирует потери энергии.
Доступность недорогого электричества также способствовала появлению новых металлургических и электрохимических отраслей. Электричество обеспечило масштабную плавку алюминия электролизом глинозема (А12O3), растворенного в электролите, обычно криолите (Na3AlF6). С 1930-х годов электричество незаменимо в синтезе все растущего набора различных пластмасс, а с недавнего времени – в освоении производства новых композитных материалов, в первую очередь углеродных волокон. Энергетические затраты на эти материалы примерно в три раза выше, чем на алюминий, но их первым полем приложения стало как раз вытеснение алюминиевых сплавов из авиастроения: новейший «Боинг-787» почти на 80 % состоит из композитов.
В то время как новые легкие материалы заменяют сталь в различных отраслях, производство самой стали тоже не стоит на месте. Используются дуговые плавильные печи, и новые, более легкие и прочные стали находят другие области применения, особенно в автостроении (Smil 2016). И перед тем как закончить этот перечень, который может затянуться на много страниц, я должен подчеркнуть, что без электричества невозможна крупномасштабная микрообработка деталей с достаточной точностью для таких сфер промышленности, как изготовление реактивных двигателей и медицинской диагностической аппаратуры. Ну и само собой, не появилось бы ни точного электронного контроля, ни вездесущих компьютеров, ни миллиардов телекоммуникационных устройств, которые сейчас используются по всему миру.
Хотя доля промышленности (в процентах занятого населения или ВВП) постоянно уменьшается в практически всех богатых странах – в 2015 году в США в производстве было занято чуть более 10 % работающих, и оно давало около 12 % ВВП США (USDOL 2015) – индустриализация продолжается, но ее конфигурация изменилась. Мощные потоки энергии и материалов по-прежнему лежат в ее основе; металлы остаются наиболее существенными промышленными материалами; железо, используемое сейчас обычно в виде стали, сохраняет ведущую роль среди металлов. В 2014 году производство стали было почти в 20 раз больше, чем производство четырех ведущих цветных металлов вместе: алюминия, меди, цинка и свинца (USGS 2015). Плавка железной руды в домнах, за которой следует плавка стали в основных кислородных конвертерах, и использование металлолома в дуговых печах доминируют в производстве стали. Значительный рост этого производства был бы невозможным без более крупных и эффективных домен (примечание 6.4, рис. 6.9).
Примечание 6.4. Увеличение объема домн и баланс массы и энергии в них
Немногие производственные структуры со средневековой родословной остаются столь же важными для функционирования современной цивилизации, как доменные печи. Как отмечено в главе 5, новый дизайн Белла в 1840 году увеличил в пять раз их внутренний объем, доведя его до 250 м3. К 1880 году крупнейшие домны превзошли 500 кубометров, достигли 1500 м3 к 1950-му, а к 2015 году рекорд внутреннего объема находился между 5500 и 6000 м3 (Smil 2016). В результате рост продуктивности привел к тому, что выход горячего металла поднялся с 50 т/сут. в 1840 году до более 400 т/сут. к 1900-му. Отметка в 1000 т/день была достигнута перед Второй мировой войной, а сегодняшние крупнейшие домны производят около 15 000 т/сут., с рекордным показателем для печи Pohang-4 компании POSCO (Южная Корея) 17 000 т/день.
Для функционирования больших домен требуются колоссальные потоки массы и энергии (Geerdes, Toxopeus and Van der Vliet 2009; Smil 2016). Для домны, производящей 10 000 тонн железа вдень, чтобы загружать сырьем прилегающий кислородный конвертер, потребуется 5,11 Мт руды, 2,92 Мт угля, 1,09 Мт флюсового сырья и около 0,5 Мт стального скрапа. Большой интегрированный сталелитейный завод, таким образом, каждый день потребляет около 10 Мт материалов. Современные домны производят горячий металл непрерывно 15–20 лет, а затем их отражательная кирпичная поверхность и горн из углеродистых блоков обновляют.
Выигрыш в продуктивности сопровождался снижением потребления кокса. В 1900 году типичные потребности в коксе составляли 1–1,5 тонн на одну тонну горячего металла, к 2010 году национальные показатели составили около 370 кг/т в Японии и менее 340 кг/т в Германии (Юпдеп 2013). Энергетические затраты при плавке железа на коксе упали с около 275 ГДж/т в 1750 году до около 55 ГДж/т в 1900-м, приблизились к 30 ГДж/т в 1950-м, а в 2010 году лежали между 12 и 15 ГДж/т.
Рисунок 6.9. Изменения конструкции доменных печей, 1830–2004 годы. Основные тенденции включают более широкую и высокую шахту, большие горны и более низкие и отвесные заплечики. Самые крупные домны производят сейчас больше 15 тысяч тонн горячего металла в день. Воспроизведено из Smil (2016)

 

Схожим образом технологии изготовления стали сделались более эффективными не только из-за снижения использования энергии, но также из-за роста продуктивности (Takamatsu et al. 2014). Первые конвертеры Бессемера превращали сначала менее 60 %, а позже – более 70 % железа в сталь. Мартеновская печь в конечном итоге превращала около 80 %, современные кислородные конвертеры, появившиеся в 1950-х годах, дают 95 %, а электродуговые печи – до 97 %. Последние потребляют сейчас менее 350 кВт/т стали, по сравнению с более 700 кВт/т в 1950 году; более того, этот выигрыш сопровождался снижением вредных выбросов: между 1960 и 2010 годами выбросы в США упали (на тонну горячего металла) на 50 % для CO2 и на 98 % для пыли (Smil
2016). Энергетические затраты на производство стали уменьшились благодаря непрерывному литью горячего металла. Эта инновация устранила традиционное производство слитков, которые требовали нагревания перед дальнейшей обработкой.
Финальный рост продуктивности оказался достаточно значительным, чтобы она увеличилась на порядки даже в расчете на душу населения: в 1850 году, до начала современного производства стали, изготовлялось менее 100 тысяч тонн металла, ремесленным способом, всего 75 г на душу населения в год. В 1900-м годовой показатель был 30 Мт, среднее по миру значение 18 кг на душу населения; в 2000-м 850 Мт, 140 кг на душу населения; в 2015-м 1,65 Гт, около 225 кг/душу, грубо, в 12 раз больше, чем в 1900 году. Мои расчеты показывают, что в 2013 году всемирное производство железа и стали требовало приблизительно 35 ЭДж топлива и электричества, или менее 7 % от первичной выработки энергии, и это сделало отрасль самой энергоемкой в мире (Smil 2016), в сравнении с 23 % для всей прочей промышленности, 27 % для транспорта и 36 % для бытового и служебного пользования. Если бы интенсивность потребления энергии в секторе осталась той же, какой была в 1960-х годах, тогда индустрия потребляла бы как минимум 16 % мировой первичной выработки энергии в 2015-м. Это впечатляющий образец продолжающегося роста эффективности.
Самой важной инновацией в цветной металлургии оказалось развитие плавки алюминия. Элемент был выделен в 1824 году, но экономически оправданный процесс его крупномасштабного производства разработали только в 1866-м. Независимые изобретения Чарльза М. Холла в США и Поля Эру во Франции базировались на электролизе оксида алюминия. Минимальная энергия, которая требуется, чтобы отделить металл, в шесть с лишним раз превышает необходимую для плавки железа. По этой причине плавка алюминия эволюционировала очень медленно даже после начала массовой генерации электричества. На протяжении 1880-х годов электрические требования составляли более 50 000 кВт на тонну алюминия, последующее совершенствование процесса Холла-Эру снизило это значение на две трети к 1990 году (Smil 2014b).
Потребность в алюминии стала увеличиваться по мере прогресса авиации. Металлические корпуса заменили деревянные и сделанные из ткани в конце 1920-х годов, спрос резко вырос во время Второй мировой войны, когда понадобилось много истребителей и бомбардировщиков. После 1945 года алюминий и его сплавы использовались вместо стали в тех случаях, когда конструкция требовала сочетания легкости и прочности. Такое применение варьировалось от легкового автомобилестроения и саморазгружающихся вагонов до космических аппаратов, но последний рынок сейчас обслуживается также новыми легкими сталями. С 1950-х годов титан стал заменять алюминий там, где речь шла о высоких температурах, прежде всего в сверхзвуковой авиации. Производство титана по меньшей мере в три раза более энергоемко, чем алюминия (Smil 2014b).
Хотя фундаментальная важность массового производства металлов часто ускользает из поля зрения общества, озабоченного последними достижениями в телекоммуникациях, нет сомнений, что современное производство было трансформировано его продолжающимся слиянием с современной электроникой. Этот союз в значительной степени увеличил набор конструктивных опций, обеспечил беспрецедентный контроль точности и гибкость, изменил маркетинг, дистрибуцию и контроль эффективности. Сравнение на международном уровне показывает, что в США в 2005 году услуги, приобретенные производителями у сторонних фирм, составили 30 % от добавленной стоимости конечного товара, и показатели в ведущих экономиках ЕС сравнимы (23–29 %). В 2008 году связанная с услугами занятость составила большинство (53 %) в США, от 44 до 55 % в Германии, Франции, Великобритании, до 32 % в Японии (Levinson 2012). И хотя многие товары на вид не отличаются от своих предшественников, они на самом деле гибридны (примечание 6.5).
Примечание 6.5. Автомобили как мехатронные устройства
Нет лучшего примера объединения электронных и механических компонентов, чем современный легковой автомобиль. Oldsmobile Tornado, выпущенный «Дженерал Моторе» в 1977 году, был первой машиной, снабженной электронным блоком управления (ЭБУ), способным контролировать зажигание. Четырьмя годами позже «Дженерал Моторе» имела около 50 тысяч строк кода в программном обеспечении контроля двигателя, собранного на главном производстве (Madden 2015). Сейчас даже в дешевых автомобилях установлено до 50 ЭБУ, а некоторые машины класса «премиум» (включая «Мерседес-Бенц» S-класса) содержат до 100 соединенных в сеть ЭБУ, и поддерживающее их ПО имеет до 100 миллионов строк кода. И это по сравнению с 5,7 миллиона строк ПО, необходимых для функционирования F-35, ударного истребителя ВВС США, или 6,5 миллиона строк для «Боинга-787», самой последней версии коммерческого авиалайнера (Charette 2009).
Автомобильная электроника становится более сложной, но сравнение количества строк ведет к неверным выводам. Главная причина, почему ПО для автомобилей более объемное, состоит в том, что требуется обеспечивать большее количество опций и конфигураций, предлагаемых в роскошных моделях, включая информационно-развлекательный центр и систему навигации, которые не имеют ничего общего с автомобильным делом; также присутствует значительная доля повторно используемого, автоматически сгенерированного и излишнего кода. Электроника и ПО сейчас составляют до 40 % затрат на производство автомобилей класса «премиум»: машины превратились из чисто механических устройств в мехатронные гибриды, и каждое дополнение в области полезных контрольных функций – система слежения за разметкой, система автоматического торможения или продвинутый комплекс диагностики – расширяет требования к ПО и увеличивает цену машины. Тренд очевиден, но полностью автономные, самоуправляемые автомобили не появятся так быстро, как ожидают многие некритично настроенные обозреватели.
Автомобили – идеальный образец отрасли, в которой исследования, дизайн, маркетинг и обслуживание играют не менее важную роль, чем реальное производство товаров. Независимо от того, как изменилось использование воплощенной энергии (на автомобиль, компьютер или заводской узел): выросло (благодаря более энергоемким материалам, большей массе или лучшей выработке), осталось тем же самым или уменьшилось, – кроме объема выпуска стали очень важны внешний вид, заметность бренда и качество. Этот тренд имеет значительные импликации как для использования энергии в будущем, так и для структуры занятости, но мы пока не можем знать, каково будет его влияние (больше на эту тему – в главе 7).

Транспорт

Несколько атрибутов характеризуют все виды транспорта на ископаемом топливе и электрического транспорта. По контрасту с традиционными способами перевозки людей и товаров они много быстрее, иногда просто невероятно: каждый год десятки миллионов людей пересекают Атлантику за 6–8 часов, хотя столетием ранее на это уходило шесть дней (Hugill 1993), а половину тысячелетия назад задача была решена за пять недель. Транспорт стал несравнимо более надежным: даже лучшая упряжка с сильнейшими лошадьми встретилась бы с трудностями при попытке пересечь альпийские перевалы, ее ждали бы сломанные оси, изувеченные животные и ослепляющие шторма; сейчас сотни полетов совершаются над теми же горами, а поезда идут по туннелям. Что до цен, то перед Первой мировой войной пересечь Атлантику стоило в среднем 75$ (Dupont, Keeling and Weiss 2012), или около 1900$ в ценах 2015 года. Дорога туда-обратно обошлась бы почти в 4000$, и это по сравнению со средней (без скидок) ценой в 1000 долларов на перелет Лондон – Нью-Йорк.
Начало XIX века ознаменовалось важным прогрессом в общей мощности, в эффективности и в стационарном использовании природной кинетической энергии водяных и ветряных мельниц, но наземный транспорт, приводимый в движение теми же мускулами, очень мало изменился со времен древности. Тысячелетиями не было более быстрого способа путешествовать по земле, чем на спине хорошей лошади. Столетиями не было транспорта менее утомительного, чем экипаж на хорошей подвеске. К 1800 году некоторые дороги получили лучшее твердое покрытие, и многие экипажи обзавелись хорошими рессорами, но все это были различия в степени, но не в принципе. Железные дороги преобразили транспортную систему на протяжении всего лишь десятилетий. Благодаря им не только сжалось и изменило свою конфигурацию пространство, повысился и уровень комфорта для путешественников. Скорость миля в минуту (96 км/ч) была первый раз достигнута на краткое время рядовым английским поездом в 1847 году; этот год также отмечен величайшей активностью в постройке железных дорог в Великобритании, которая получила плотную сеть нового транспорта всего за два поколения (O’Brien 1983).
Крупномасштабная постройка железных дорог, по которым двинулись поезда, снабжаемые все более мощными паровыми машинами на угле, была завершена в Европе и Северной Америке менее чем за 20 лет: 1820-е годы стали десятилетием экспериментов; к 1890-м самые быстрые поезда проходили отрезки маршрута со скоростью более 100 км/час. Очень быстро после своего появления пассажирские вагоны, поначалу просто телеги на рельсах, обзавелись отоплением и удобствами. Пассажиры, способные заплатить больше, получали соответствующий комфорт, питание и спальные принадлежности. Быстрые и более удобные поезда возили не только путешественников и мигрантов в города, они привносили городской стиль жизни в сельскую местность. Туристическое агентство «Томас Кук» начало предлагать поездки выходного дня на поездах с 1841 года. Линии электричек обеспечили первую большую волну субурбанизации. Растущая емкость грузовых поездов позволила ускорить доставку ресурсов и готовых товаров.
Общая протяженность британских железных дорог вскоре была превзойдена американскими, которые начали сооружать в 1834 году в Филадельфии. К 1860 году в США было 48 тысяч километров путей, в три раза больше, чем в Соединенном Королевстве. К 1900 году разница увеличилась почти в 10 раз. Первая трансконтинентальная ветка была закончена в 1869 году, и к концу века построили еще четыре таких линии (Hubbard 1981). В России железнодорожный транспорт тоже развивался очень быстро: к 1860 году было менее 2000 км путей, но цифра выросла до более 30 тысяч к 1890-му и до почти 70 тысяч в 1913-м (Falcus 1972). Трансконтинентальную ветку через всю Сибирь до Владивостока начали строить в 1891 году, но полностью закончили только в 1917-м. Когда англичане ушли из Индии в 1947 году, они оставили после себя 54 тысяч километров железных дорог (и 69 тысяч на всем субконтиненте). Никакая другая материковая страна Азии не строила железные дороги в значительных объемах до Второй мировой войны.
После войны конкуренция со стороны автомобилей, автобусов и самолетов снизила сравнительную важность железных дорог в большинстве промышленных стран, но на протяжении второй половины XX века СССР, Бразилия, Ирак и Алжир были в числе стран, энергично строивших новые ветки, а Китай стал лидером в Азии, он добавил более 30 тысяч километров между 1950 и 1990 годами. Но самая успешная инновация послевоенного периода – быстрые электрифицированные поезда дальнего следования. Японские shinkasen, начавшие ходить в 1964 году между Токио и Осакой, достигали максимума скорости в 250 км/ч, а появившиеся позже nozomi достигли 300 км/ч (Smil 2014а; рис. 6.10).

 

Рисунок 6.10. Shinkasen серии N700у станции Киото в 2014-м, году, когда отмечали 50 лет бесперебойного функционирования японских скоростных поездов на линии Токайдо. Фотография Вацлава Смила

 

Французские trains a grand vitesse (TVG) начали ходить с 1983 года; быстрейший маршрут подразумевает скорость почти 280 км/ч. Похожие скоростные линии сейчас существуют в Испании (AVE), Италии (Frecciarossa) и Германии (Intercity), но Китай стал вотчиной новых рекордов в общей протяженности высокоскоростного железнодорожного транспорта: в 2014 году там было 16 тысяч километров подобных дорог (Xinhua 2015). И по контрасту единственный в Америке Acela (Бостон – Вашингтон, средняя скорость всего 100 км/ч) нельзя даже отнести к числу современных высокоскоростных поездов.
Если вести отсчет от появления первых практичных бензиновых двигателей в конце 1880-х годов, тогда вторая наземная транспортная революция, развитие сети дорог для машин с двигателями внутреннего сгорания, потребовала не меньше времени. В богатых странах Европы и Северной Америки ее развитие было дважды прервано мировыми войнами. Соединенные Штаты имели большое количество автомобилей в личном пользовании уже в конце 1920-х годов, но в Европе и Японии сравнимые показатели были достигнуты только в 1960-х, а в Китае эра массового использования автомобилей началась в 2000 году. Благодаря огромному населению и большим инвестициям в новые фабрики и торговлю легковыми машинами Китай превысил показатели США в 2010 году. К этому времени на весь мир приходилось около 870 миллионов легковых машин и более миллиарда других автомобилей (рис. 6.11).

 

Рисунок 6.11. Общее количество автотранспорта в мире выросло с 10 000 в 1900 году до более чем миллиарда в 2010-м (слева). По числу регистраций новых машин Европа обошла США в конце 1980-х годов, но Америка все еще может похвастаться наибольшим количеством автомобилей на душу населения, около 1,25 человека на машину в 2010-м (справа! Основано на данных из ежегодных отчетов Ассоциации производителей автотранспорта и World Bank (2015b)

 

Экономические, социальные и экологические изменения, которые повлекло за собой появление автомобиля, относятся к числу наиболее глубоких трансформаций нового времени (Ling 1990; Womack, Jones and Roos 1991; Eckermann 2001; Maxton and Wormald 2004). В разных странах (первыми стали США в середине 1920-х годов) автомобилестроение постепенно становилось ведущей отраслью промышленности в терминах стоимости продукции. Автомобили также стали одной из главных статей международной торговли. Их экспорт из Германии (после 1960 года) и даже больший из Японии (после 1970-го) позволил этим двум экономикам процветать десятилетиями. Большие сегменты других отраслей – в первую очередь производство стали, резины, стекла, пластика, нефтепереработка – зависят от автомобилестроения. Строительство скоростных шоссе невозможно без участия государства, и подразумевает огромные капитальные инвестиции. Автобаны Гитлера 1930-х предшествовали системе автострад между штатами Эйзенхауэра (начало положено в 1956 году, общая протяженность сейчас свыше 77 тысяч километров), и последнюю превзошла китайская Система национальных автодорог, достигшая 112 тысяч километров в 2015 году.
Определенно самым очевидным процессом, начавшимся благодаря автомобилям, стала всемирная реорганизация городов вокруг разрастающихся дорог и парковочных площадок. Там, где позволяло пространство, произошел быстрый рост субурбанизации (а в Северной Америке также эксурбанизации), изменилось размещение и формы служб торговли и сервиса. Социальные воздействия оказались еще более впечатляющими: владение автомобилем стало важной частью жизни среднего класса, и некоторые удачные конструкции, запустившие этот тренд, прожили удивительно долгую жизнь. Первым был «Модель Т» Форда, цена которого упала до 265$ в 1923 году, и чье производство продолжалось 19 лет (McCalley 1994). Другие известные модели – «Остин 7», «Моррис Майнор», «Ситроен 2CV», «Рено 4CV», «Фиат Тополино», и самый популярный, появившийся в рамках политики Гитлера «Фольксваген» Фердинанда Порше (примечание 6.6).
Примечание 6.6. «Фольксваген» и другие долгоживущие модели
В терминах общего количества произведенных машин и долговечности (посредством новых модификаций) никакой автомобиль, разработанный для широкого спроса, не подходит и близко к тому, что Адольф Гитлер назвал «народным автомобилем» (Nelson 1998; Patton 2004). Осенью 1933 года он объявил характеристики машины – предел скорости в 100 км/ч, расход 7 л/км, возможность перевозить двух взрослых и трех детей, воздушное охлаждение и цена ниже 1000 рейхсмарок. Фердинанд Порше (1875–1951) сумел изготовить такой автомобиль, пусть не особенно красивый, прозванный «жуком», к 1938 году. Из-за войны производство остановилось, и серийная сборка «Фольксвагена» началась только в 1945 году под наблюдением британской армии, а точнее – майора Айвана Хирста (1916–2000), сумевшего сохранить поврежденный завод (Volkswagen AG 2013).
В первые годы западногерманского Wirtschaftswunder (до того, как «Мерседес», «Ауди» и «БМВ» стали пользоваться массовым спросом), «жуки» заполонили немецкие дороги. В 1960-х «Фольксваген» стал наиболее популярным импортным автомобилем в США, и только позже его вытеснили «Хонды» и «Тойоты». Производство оригинального «жука» прекратилось в Германии в 1977 году, но продолжалось в Бразилии до 1996-го и в Мексике до 2003 года; последний автомобиль, выпущенный заводом в Пуэбла, имел номер 21529464. «Новый Жук», получивший новый дизайн от Дж. Мейса и двигатель спереди, производился между 1997 и 2011 годами; с 2012 модельного года имя самой последней конструкции (А5) превратилось в «Фольксваген Битл».
«Рено 4CV», втайне сконструированный во время Второй мировой войны, стал французским конкурентом «жука»; более миллиона машин было выпущено между 1945 и 1961 годами. Самым же известным французским автомобилем стал «Ситроен 2СV», изготовлявшийся между 1940 и 1990 годами: deux cheveaux обозначает просто количество цилиндров; мощность двигателя на самом деле была 29 л. с. (Siuru 1989). «Маленькая мышь», как прозвали «Фиат Тополино», двуместный автомобиль с колесной базой всего 2 метра, изготавливался между 1936 и 1955 годами, и британский «Морис Майнор» – между 1948 и 1971 годами. Все эти модели были вытеснены японскими: после сравнительно малого экспорта в 1960-х и 1970-х они стали лидерами продаж по всему миру в 1980-х.
Свобода личного передвижения оказала громадное воздействие на мобильность населения. Обнаружилось, что переезжать с места на место не только просто, но и приятно. Аналогия автомобиля как механического боевого коня (Boulding 1974), а водителя как рыцаря, наделенного мобильностью аристократа, который с презрением смотрит на пешеходов-простолюдинов (и для него немыслимо к ним присоединиться), все же несколько преувеличена. В 2010 году приходилось только 1,25 человека на единицу автотранспорта (включая автобусы и грузовики) в США, и показатель составил 1,7 в Германии и в Японии (World Bank 2015b). Широко распространенная зависимость от такой мобильности превратилась в трудно преодолеваемую привычку: после индуцированного рецессией спада 2009–2011 годов продажи автомобилей в США достигли нового рекордного уровня в 16,5 миллиона единиц в 2015-м.
Мы зашли очень далеко, чтобы сохранить привилегию пользования автомобилем (в Северной Америке все еще проще, поскольку более 90 % машин продаются в кредит), и нет ничего удивительного в том, что китайцы и индийцы хотят повторить североамериканский опыт. Но подобно любой зависимости, эта тоже обходится дорого. В 2015 году на дорогах мира находилось 1,25 миллиарда автомобилей, а продажи новых легковых машин достигли цифры в 73 миллиона (Bank of Nova Scotia 2015). В то же время дорожные происшествия приводят к 1,3 миллиона смертей ежегодно, 50 миллионов человек получают ранения, а загрязнение воздуха выхлопными газами стало главной причиной распространенного по миру феномена сезонного (или полупостоянного) фотохимического смога в мегаполисах (USEPA 2004). Продолжительность жизни среднего автомобиля варьируется сейчас от почти 11 лет в богатых странах до более 15 в бедных. Сталь, медь и некоторая доля резины большей частью возвращаются в производство, но за все это мы платим смертями, ранами и загрязнением окружающей среды.
Перевозка товаров грузовиками тоже имела много глубоких социоэкономических последствий. Ее массовое распространение началось в 1920-х годах в сельской Америке, она снизила затраты и ускорила передвижение фермерских продуктов на рынок. Этот способ вскоре стали применять в Европе и Японии, а в последние два десятилетия также во многих странах Латинской Америки и Азии. В богатых государствах тяжелые дальнобойные грузовики стали основой доставки продуктов питания, ключевым элементом в дистрибуции деталей и промышленных товаров, и их использование упростилось благодаря универсальным контейнерам, которые можно с помощью кранов перегружать прямо с океанских кораблей на платформы грузовиков. Во многих быстро растущих экономиках грузовики сделали ненужными железные дороги (Бразилия – лучший пример) и открыли отдаленные регионы для торговли и развития, но и для разрушения окружающей среды тоже. Автобусы в бедных странах стали главным средством дальнего транспорта.

 

Рисунок 6.12. Увеличение размера судов, соединявших Европу и Северную Америку (слева), и повышение мощности двигателей постепенно уменьшили время на пересечение Атлантики от более двух недель до приблизительно трех дней (справа). Основано на данных из Fry (1896), Croil (1898) и Stop ford (2009)

 

Первые пароходы пересекали Северную Атлантику не быстрее, чем лучшие парусники той же эпохи, если последним благоприятствовал ветер. Но уже в конце 1840-х годов превосходство пара было очевидным, и время пути сократилось до 10 дней (рис. 6.12). К 1890 году путешествия менее чем в шесть дней стали нормой, как и стальные корпуса кораблей. Сталь ликвидировала ограничения по размеру: структурные соображения лимитировали длину деревянного корпуса 100 м. Большие корабли таких знаменитых линий как «Кунард», «Коллинз» или «Гамбург-
Америка» стали гордыми символами технической эпохи. Они были снабжены мощными двигателями и двойными винтами, каюты на них поражали роскошью, а сервис превосходил отельный.

 

Рисунок 6.13. Первые регулярные коммерческие перелеты (Havillcmd D. Н. 16 в 1919 году) осуществлялись со средней скоростью 150 км/ч, а максимальная дальность составляла около 600 км (слева). К концу 1950-х «Боинг-707» имел крейсерскую скорость около 1000 км/ч, а в конце 1990-х годов «Боинг-777» мог пролететь без посадки 15 000 км (справа). «Конкорд», летавший в два раза быстрее скорости звука, был затратным исключением, а вовсе не предшественником нового поколения лайнеров. Основано на данных из Taylor (1989) и Gunston (2002), а также по техническим спецификациям на сайте «Боинг»

 

Богатство этих больших лайнеров контрастировало с вонью и толчеей, царившими в третьем классе. К 1890-му пароходы привозили более полумиллиона пассажиров в год только в Нью-Йорк. К концу 1920-х общий траффик через Северную Атлантику превосходил один миллион пассажиров в год, и вскоре после этого лайнеры достигли максимального тоннажа (рис. 6.12). Но к 1957 году самолеты перевозили больше людей через океан, чем корабли, а появление дальних реактивных лайнеров в том же году определило судьбу океанских пассажирских перевозок: десятилетием позже регулярные трансатлантические рейсы прекратились. Торговые пароходы пережили ранний расцвет после открытия Суэцкого канала в 1869 году и после появления эффективных рефрижераторов в 1880-х. Позже их использование было простимулировано открытием Панамского канала (1914) и появлением мощных дизельных двигателей (после 1920 года), а также возникновением рынка сырой нефти. С 1950-х большие специализированные корабли требовались, чтобы перевозить не только нефть, но и громоздкие твердые грузы (руду, древесину, зерно, химикалии) и все большее количество автомобилей, станков и потребительских товаров.
Регулярный международный воздушный транспорт начался с ежедневных перелетов Лондон – Париж в 1919 году, когда скорости были менее 200 км/ч, и развился до трансокеанских рейсов перед Второй мировой войной: Clipper компании PanAm долетел до Гонконга из Сан-Франциско за шесть дней в марте 1939 года (рис. 6.13). Эра массовых воздушных путешествий наступила с появлением реактивных самолетов в конце 1950-х (британский Comet начал летать в 1952-м, закончил в 1954-м после трех катастроф). «Боинг-707» совершил первый полет в 1957 году, в регулярном использовании находится с октября 1958-го. За ним вскоре последовал «Боинг-727» средней дальности (в эксплуатации с февраля 1964-го, производился до 1984 года), и рассчитанный на краткие и средние дистанции «Боинг-737». Этот самый маленький из реактивных лайнеров «Боинг» стал наиболее популярным продуктом корпорации: к середине 2015 года поставлено более 8600 штук (по сравнению с 9200 для всех моделей Airbus). На протяжении 50-х и 60-х годов «Макдоннелл Дуглас» (DC-9, трехмоторный DC-10), General Dynamics (Convair), «Локхид» (Tristar) и Sud Aviation (Caravelle) представили собственные реактивные самолеты, но (если не учитывать российских) к концу века осталось только два производителя: американский «Боинг» и европейский Airbus (примечание 6.7).
Примечание 6.7. «Боинг» и Airbus
«Боинг» – старая американская компания, была основана Уильямом Э. Боингом (1881–1956) в 1916 году. Именно ей принадлежат такие классические конструкции, как «Боинг 314 Клипер» и «307 Стратолайнер» (оба 1938 года), «Боинг-707» (первый успешный реактивный самолет, 1957 год), и «Боинг-747», первый широкофюзеляжный лайнер, созданный в 1969 году (Boeing 2015). Последней инновацией компании стал «Боинг-787», в котором более легкие и прочные углеродные волокна составляют 80 % корпуса, что увеличивает эффективность использования топлива на 20 % по сравнению с «Боингом-767» (Boeing 2015). Компания Airbus была создана в декабре 1970 года при участии французов и немцев, позже к консорциуму присоединились испанские и британские компании. Первый реактивный самолет с двумя двигателями, «Аэробус А300» (226 пассажиров) был выпущен в октябре 1972 года, и за ним последовали самые разнообразные модели, от предназначенных для коротких рейсов А319, 320 и 321 до дальнего широкофюзеляжного А340. В 2000 году Airbus первый раз превзошел «Боинг» по количеству проданных самолетов. Величайшей инновацией компании стал А380, двухпалубный широкофюзеляжный самолет, летающий с 2007 года, имеющий емкость в 853 пассажира одного класса, но до сих пор выпускаемый только в трехклассной конфигурации для 525 человек (сравним с 416 в трехклассной и 524 в двуклассной конфигурации «Боинга-747»).
Эти компании постоянно очень тесно конкурировали друг с другом, например, между 2001 и 2015 годами «Боинг» поставил 6803 самолета, a Airbus произвел 6133 реактивных машины. Обе компании имеют значительный предзаказ на много лет вперед, чтобы обеспечить растущий спрос, особенно в Азии. Обе компании заключили множество кооперативных соглашений с разработчиками двигателей и самолетов, а также с поставщиками компонентов в Европе, Северной Америке и Азии, и обе сталкиваются с растущей конкуренцией снизу. Канадская компания Bombardier и бразильская Embraer понемногу увеличивают размеры производимых самолетов: канадский CRJ-900 имеет 86 сидений, бразильский ЕМВ-195 берет до 122 пассажиров. Обе эти компании, как и российский «Сухой», китайский СОМАС и японский «Мицубиси» в данный момент пытаются войти на рынок узкофюзеляжных лайнеров, сейчас обслуживаемый «Боингом-737» и «Аэробусом А319/320».
Скорость и дальность этих самолетов, расширение сети авиасообщения, почти универсальное сращение систем резервирования обеспечили возможность путешествия между практически всеми основными городами планеты за один день (рис. 6.13). К 2000 году максимальная дальность широкофюзеляжных авиалайнеров достигла 15 800 км, и в 2015-м самый длинный регулярный перелет (Даллас – Сидней и Йоханнесбург – Атланта) продолжался почти 17 часов, а многие крупные города сейчас соединены частыми челночными рейсами (в 2015 году было почти 300 дневных рейсов между Рио-де-Жанейро и Сан-Паоло, почти 200 между Нью-Йорком и Чикаго). Более того, затраты на перелеты постоянно уменьшались в реальном выражении, частично за счет более низкого потребления топлива. Эти достижения открыли перспективы для бизнеса и породили массовый дальний туризм как в большие города, так и на пляжи тропиков и субтропиков. Новые возможности также появились у мигрантов и беженцев, у торговцев наркотиками и у международных террористов, которые в том числе угоняют самолеты.

Информация и коммуникация

С любой точки зрения, общества, живущие за счет ископаемого топлива, производят, запасают, распределяют и используют несравнимо большее количество информации, чем их предшественники. В Восточной Азии и в Европе ранней современности печать обрела коммерческое значение за столетия до того, как начали добывать ископаемое топливо, но ручной набор был трудоемким, и объемы издаваемых текстов ограничивались производительностью медленных печатных машин. Железные рамы ускорили работу. Но даже продвинутая версия машины Гуттенберга не могла давать больше 240 оттисков в час (Johnson 1947). Однако уже первый пресс на паровой тяге – разработан Фридрихом Кёнигом и Андреасом Фридрихом Бауэром и продан Times в 1824 году – делал 1100 оттисков в час. К 1827 году эта цифра поднялась до 5000, и первые ротационные печатные машины 1840-х выдавали 8000 оттисков в час; двумя десятилетиями позже нормой было 25 тысяч в час (Kaufer and Carley 1993).
Массовое издание дешевых газет стало ежедневной реальностью, новости начали путешествовать быстрее благодаря телеграфу (коммерческое использование с 1838 года), а через два поколения и телефону (1876). До конца XIX века появились две новых информационно-коммуникационных технологии: звукозапись и воспроизведение, а также кино. За исключением книгопечатания, все эти технологии родились в век высокой энергии, базирующейся на ископаемом топливе. Кроме фотографии и первых фонографов, все они не могли существовать без электричества. И опять же, за исключением книгопечатания, которое сейчас в упадке, поскольку электронные форматы чтения потеснили его, все остальные продолжают развиваться, искать новые способы получения, сохранения, записи, воспроизведения и разделения информации в современном мире.
Недорогая, надежная и в самом деле глобальная телекоммуникация стала возможна только с появлением электричества. В первое столетие его развития доминировали сообщения, передаваемые по проводам. Десятилетия экспериментов в различных странах закончились появлением первого практичного телеграфа: его продемонстрировали Уильям Кук и Чарльз Уитстоун в 1837 году (Bowers 2001). Его успех зависел от надежного источника электричества, который появился в виде батареи Алессандро Вольта, разработанной в 1800 году. Принятие системы кодирования Сэмюэла Морзе в 1838-м и быстрое расширение наземных линий связи в комплексе с железными дорогами стало одним из первых важных достижений. Строительство подводных линий (через Ла-Манш в 1851 году, через Атлантику в 1866-м) и изобилие технических инноваций (включая некоторые ранние изобретения Эдисона) способствовали тому, что телеграф приобрел глобальное значение всего за два поколения. К 1900 году мультиплексная проводка с автоматическим кодированием передавала миллионы слов в день. Послания варьировались от личных до дипломатических, включали колебания цен на фондовом рынке и деловые распоряжения.
Телефон, запатентованный Александром Грэхемом Беллом в 1876 году всего на несколько часов раньше, чем альтернативную заявку подал Элиша Грей (Hounshell 1981), распространился еще быстрее телеграфа в местном и региональном масштабе. Надежная и дешевая связь на больших дистанциях развивалась очень неспешно. Первая трансатлантическая линия была проложена только в 1915 году, а телефонный кабель под океаном появился в 1956-м. Радиотелефонные линии, доступные с конца 1920-х, не были ни дешевыми, ни надежными. Крупные телефонные монополии обеспечивали хороший сервис, но не стремились к инновациям: классический черный телефон с диском появился в конце 1920-х и оставался единственным вариантом четыре десятилетия: первый кнопочный аппарат был принят в США только в 1963 году.
Технологии хранения, воспроизводства и передачи звука и изображения развивались одновременно с прогрессом в телефонии. Фонограф Томаса Эдисона 1877 года был простой ручной машиной, как и более сложный граммофон Эмиля Берлинера (1851–1929), появившийся в 1888 году (Gronowand Saunio 1999). Электрические проигрыватели разработали только в 1920-х. Технология создания изображений развивалась достаточно медленно, начиная с работ французов Ж. Н. Ньепса и Л. Ж. М. Дагерра на протяжении 1820-х и 1830-х годов. (Newhall 1982; Rosenblum 1997). Первая недорогая камера «Кодак» появилась в 1888 году, развитие ускорилось после 1890-го с прорывом в кинематографе: первые короткометражки братьев Люмьер увидели свет в 1895 году. Звуковое кино появилось в 1920-х (первым игровым полнометражным фильмом стал The Jazz Singer в 1927 году), первый полнометражный цветной фильм (после многих лет цветных короткометражек) вышел в 1935-м, а изобретение ксерографии Честером Карлсоном (1906–1968) произошло двумя годами позже (Owen 2004).
Поиск способов беспроводной передачи информации начался с опытов Генриха Герца (1857–1894), который сгенерировал электромагнитные волны в 1887 году, а предсказала их существование теория электромагнитного излучения Джеймса Максвелла (1831–1879) (Maxwell 1865; рис. 6.14). Дальнейший прогресс в области практического применения был быстрым. В 1899 году Гильермо Маркони (1874–1937) передал сигналы через Ла-Манш, а двумя годами позже – через Атлантику (Hong 2001). В 1897 году Фердинанд Браун (1850–1918) изобрел катодно-лучевую трубку, устройство, благодаря которому появились телекамеры и телеприемники. В 1906 году Ли де Форест (1873–1961) создал первый триод, ставший незаменимым для радиовещания, дальней телефонной связи и для компьютеров до появления транзистора.
Регулярные радиопередачи начались в 1920 году, Би-Би-Си предложила первую программу телепередач в 1936-м, а американская RCA последовала за ней в 1939 году (Huurdeman 2003). Механические калькуляторы – начиная с конструкций Чарльза Бэббиджа и Эдварда Шойца после 1820 года (Lindgren 1990; Swade 1991) и заканчивая продукцией IBM в 1911-м – наконец ушли в прошлое с появлением первых электронных компьютеров во время Второй мировой войны. Но эти машины – британский Mark, американские Harvard Mark 1 и ENIAK были уникальными, сложными и массивными (размером с комнату, чтобы уместились тысячи стеклянных вакуумных трубок) устройствами, не имевшими очевидного коммерческого потенциала.
Эта впечатляющая взаимосвязь значительно улучшенных и совершенно новых коммуникативно-информационных технологий и служб оказалась затушевана прогрессом, начавшимся после Второй мировой войны. Его основанием стал рост твердотельной электроники, который начался с изобретением транзистора, миниатюрного твердотельного полупроводника, эквивалента вакуумной трубки, способной усиливать и переключать электронные сигналы. Юлий Эдгар Лилиенфельд запатентовал свой транзистор в Канаде в 1925-м, и годом позже в США (Lilienfeld 1930); в бумагах на патент был четко очерчен способ контроля и усиления тока между двумя точками электроцепи. Однако Лилиенфельд не попытался сам создать это устройство, и практический успех пришелся на долю исследователей из Bell Lab, Уолтера Браттейна и Джона Бардина; 16 декабря 1947 года они использовали в своих опытах кристалл германия (Bardeen and Brattain 1950). Но, как признает сейчас сайт Bell System Memorial: «Совершенно очевидно, что Bell Labs не изобретала транзистор, он был переизобретен», хотя при этом вовсе не замечает значительной доли пионерских исследований и конструкторских достижений, случившихся в первом десятилетии двадцатого века (Bell System Memorial 2011). В любом случае, не грубое точечно-контактное устройство Браттейна и Бардина, а более практичный вариант биполярного транзистора, запатентованный в 1951 году Уильямом Шокли (1910–1989) оказал революционное влияние на компьютерную отрасль. В тот же год Гордон К. Тил и Эрнест Билер преуспели в создании более крупных кристаллов кремния и улучшении методов вытягивания кристаллов и внесения присадок в кремний (Shokley 1964; Smil 2006).

 

Рисунок 6.14. Портрет Джеймса Клерка Максвелла. Гравюра, основанная на фотографии Фергюса (Corbis). Сформулированная Максвеллом теория электромагнетизма открыла путь для освоения так и не раскрытых до конца возможностей современной беспроводной электроники. Мгновенные коммуникации и глобальное информационное пространство, весь электронный мир двадцать первого века стоит на озарениях Максвелла

 

Очень важный теоретический шаг был сделан в 1948 году, когда Клод Шеннон открыл способ количественной оценки энергетических затрат при коммуникации (Shannon 1948). Несмотря на впечатляющий прогресс, достигнутый за предшествующие годы (рост на три порядка в плотности информационного потока по единственному проводу, ныне толщиной в человеческий волос), теоретический лимит Шэннона показывал, что эффективность можно поднять еще на несколько порядков. Но после Второй мировой войны не случилось немедленного прорыва в области ЭВМ, и созданный компанией Remington Rand первый UNIVAC (Universal Automatic Computer, выросший из ENIAC «Eckert-Mauchly») был продан Бюро переписи населения США только в 1951 году.
Скорость работы новых вычислительных машин начала расти по экспоненте только после того, как транзистор вытеснил вакуумные трубки. Использование компьютеров в бизнесе началось в США в конце 1950-х, когда Fairchild Semiconductor, Texas Instruments (они вывели на рынок первый кремниевый транзистор в 1954 году) и IBM были самыми успешными разработчиками материальной и программной частей (Ceruzzi 2003; Lecuyer and Brock 2010). В 1958–1959 годах Джек С. Килби (1923–2005) из Texas Instruments и Роберт Нойс (1927–1990) из Fairchild Semiconductor независимо друг от друга изобрели микросхему, интегрированную в тело полупроводникового материала (Noyce 1961; Kilby 1964). Планарный транзистор Нойса открыл новую эпоху твердотельной электроники (примечание 6.8).
Примечание 6.8. Изобретение интегральных микросхем
В свою бытность директором по исследованиям в Fairchild Semiconductor (Санта-Клара, Калифорния) Роберт Нойс записал в рабочем блокноте, что было бы желательно разместить многочисленные устройства на одном куске кремния, чтобы получить возможность объединить взаимодействия между устройствами в единой процесс и тем самым уменьшить размер, вес и в конечном итоге цену активного элемента (Reid 2001, 13). Заявка на патент, поданная Нойсом в 1959 году, описывала «полупроводниковую схему со средствами изоляции», иными словами, планарный транзистор. Его особые «чашеобразные соединения простирались до поверхности тела примесного полупроводника, изолирующий слой состоял в сущности из оксида того же самого полупроводника, закрывающего соединения, а концевые выводы в форме содержащих вакуум или другим образом сформированных металлических полосок выходили за пределы изоляции и прилегали к слою изолирующего оксида для создания электрических соединений с и между различными областями тела проводника без укорачивания соединений» (Noyce 1961,1).
Патент Нойса (US 2981877) был выдан в апреле 1961 года, патент Килби (US 3138743) – только в июле 1964-го, а судебные разбирательства продолжались до 1971 года, когда Верховный суд вынес решение в пользу Нойса. Победа оказалась несущественной, поскольку летом 1966-го две компании согласились разделить производственные лицензии и потребовать от других производителей заключить сепаратные соглашения с каждой из них. В принципе идеи Килби и Нойса были идентичными, но Нойс умер от сердечного приступа в 1990-м, а Килби прожил достаточно долго, чтобы разделить Нобелевскую премию 2000 года «за участие в изобретении интегральной микросхемы».
Вооруженные силы США стали первыми пользователями интегральных микросхем. В 1965 году, когда количество транзисторов на микрочипе увеличилось до 64 с 32 в предыдущий год, Гордон Мур предсказал, что это удвоение будет продолжаться (Moore 1965), и это правило, ныне известное как закон Мура, работает до нашего времени (рис. 6.15). Первым в мире коммерческим продуктом под контролем микропроцессоров был программируемый калькулятор, разработанный Busicom, маленькой японской компанией; набор из четырех чипов был создан только что основанной фирмой «Интел» в 1969-70 годах (Augarten 1984). Busicom продал лишь несколько больших калькуляторов на чипе MCS-4 и обанкротился в 1974 году. К счастью, «Интел» заранее выкупил права на процессор и сумел выпустить первый в мире универсальный микропроцессор Intel 4004 размером 3 на 4 мм, содержавший 2250 металл-оксидных полупроводниковых транзисторов и стоивший 200$ (ноябрь 1971 года). Он выполнял 60 тысяч операций в секунду и был функциональным эквивалентом ENIAC размером с комнату из 1945 года (Intel 2015).

 

Рисунок 6.15. Закон Мура в действии. Первый появившийся на рынке микрочип (Intel 4004) содержал 2250 металл-оксидных полупроводниковых транзисторов, в последних устройствах содержится более двух миллиардов компонентов, что показывает рост на шесть порядков (в миллион раз). Основано на данных из Smil (2006) и Intel (2015)

 

Универсальное применение все более и более мощных микропроцессоров в сочетании с все более емкими устройствами памяти оказало воздействие на все сектора современного производства, транспорта, сферы услуг и коммуникации. Впечатляющий рост возможностей сопровождался постоянно падающими затратами и растущей надежностью (Williams 1997; Ceruzzi 2003; Smil 2013с; Intel 2015). Микрочипы стали наиболее широко распространенными комплексными артефактами современной цивилизации. Больше 200 миллиардов производится каждый год, и найти их можно в чем угодно, от повседневно используемых домашних предметов (термостаты, печи, духовки, любой электронный гаджет) до автоматизированных средств производства, в том числе и тех, которые сами делают микропроцессоры. Они управляют временем воспламенения топлива в двигателях автомобилей, оптимизируют работу турбин реактивного самолета, ведут ракеты, которые выносят спутники на заданную орбиту.
Но наиболее персонализированное влияние микропроцессоры оказали посредством массового распространения переносных электронных устройств, в первую очередь – сотовых телефонов. Этому шагу предшествовал прогресс персональных компьютеров, удивительно медленное развитие Интернета и период сравнительно неспешного распространения мобильных телефонов. Xerox Palo Alto Research Center (PARC) изобрел персональные компьютеры в 1970-х годах, скомбинировав вычислительную мощность микрочипов с мышью, графическим пользовательским интерфейсом, иконками, выпадающими меню, лазерной печатью, редактированием текстов, проверкой орфографии и доступом к принтерам и файлам на сервере по принципу «наведи и щелкни» (Smil 2006; рис. 6.16). Без этих достижений Стивен Возняк и Стивен Джобс не смогли бы создать первую коммерчески успешную модель компьютера Apple II с цветной графикой (1977 год) (Moritz 1984). IBM выпустила свою машину в 1981-м, и количество собственников ПК в США выросло с двух миллионов в 1983 году до почти 54 миллионов в 1990-м (Stross 1996). Более легкие переносные машины, ноутбуки и планшеты, появились в конце 1990-х, a iPad от Apple – в 2010-м.
Коммуникация с помощью компьютеров была впервые предложена в 1962 году Джозефом Ликлайдером, первым директором Управления перспективных исследовательских проектов Министерства обороны США. Началась же она на практике в 1969-м в рамках ARPANET, каковая сеть сводилась всего к четырем сайтам: Стэнд-фордского исследовательского института, университета Калифорнии в Лос-Анджелесе, Калифорнийского университета в Санта-Барбаре и университета Юты. В 1972 году Рэй Томлинсон из BBN Technologies разработал программу для отправки сообщений на другие компьютеры и выбрал символ @ в качестве локализующего для адресов электронной почты (Tomlinson 2002). В 1982 году ARPANET конвертировала протокол, который сделал возможной коммуникацию через систему сетей, и к 1989 году, когда закончилось его действие, он содержал более 100 тысяч хостов. Годом позже Тим Бернерс-Ли создал основанный на гипертексте World Wide Web в женевском ЦЕРН, чтобы упорядочить обмен научной информацией онлайн (Abbate 1999). Ранняя версия Web не была простой для навигации, но положение быстро улучшилось с появлением эффективных браузеров, первым из которых стал Netscape в 1993 году.

 

Рисунок 6.16. Утилитарно, но революционно: настольный компьютер PARC, выпущенный в 1973 году. Был первым практически полным воплощением всех базовых характеристик более поздних персональных компьютеров (фотография из Wikimedia)

 

Первым важным электронным достижением в телефонии стала возможность недорогих межконтинентальных звонков, появившаяся благодаря автоматическому вызову через геостационарные спутники. Эта инновация стала результатом комбинации прогресса в микроэлектронике и появления мощных ракетных двигателей в 1960-х годах, и по мере того, как затраты падали, звонки становились дешевле. Но радикальное изменение в телефонии пришло только с мобильными телефонами: впервые они были продемонстрированы в 1973 году, дорогой сервис с использованием громоздкой модели «Моторолы» стал доступен в США в 1983-м, но количество пользователей начало быстро расти (Япония и ЕС обошли тут США) только в конце 1990-х годов. Глобальные продажи сотовых превзошли 100 миллионов штук в 1997-м, и в этот же год «Эриксон» представил первый смартфон.
Продажи достигли отметки в миллиард к 2009 году, и к концу 2015-го около 7,9 миллиарда устройств находилось в использовании, а общие годовые поставки мобильных гаджетов, включая планшеты, ноутбуки и нетбуки, увеличились до почти 2,2 миллиарда единиц, среди них 1,88 миллиарда сотовых телефонов (Gartner 2015; mobiForge 2015). Это впечатляющее и быстрое изменение системы коммуникации, развлечений и контроля информации, а также необходимого для нее ПО потребовало значительного количества энергии, воплощенного в высокоэнергоемких электронных устройствах, и на сто процентов зависело (и зависит) от постоянного, очень надежного поступления электричества в соответствующие инфраструктуры, от центров обработки данных до вышек сотовой связи (примечание 6.9).
Примечание 6.9. Энергия, воплощенная в мобильных телефонах и автомобилях
Даже компактная легковая машина весит в 10 тысяч раз больше, чем смартфон (1,4 т против 140 г), и поэтому в ней воплощено гораздо больше энергии. Но различие в воплощенной энергии намного меньше, чем расхождение в массе, и сводный подсчет позволяет сделать сравнение. В мобильном телефоне воплощено около 1 ГДж энергии, в то время как на производство типичного легкового автомобиля требуется около 100 ГДж, всего в сто раз больше. В 2015 году продажи сотовых по всему миру приблизились к 2 миллиардам единиц, и следовательно, на их производство ушло около 2 ЭДж (эквивалент около 48 миллионов метрических тонн сырой нефти). Около 72 миллионов автомобилей были проданы по миру в 2015 году, в их производство было вложено, грубо, 7,2 ЭДж, то есть всего почти в четыре раза больше, чем на производство мобильных.
Мобильные телефоны имеют очень краткий срок жизни, в среднем два года, и их производство сейчас воплощает глобально около 1 ЭДж на средний год использования. Легковые автомобили могут служить десятилетиями, их производство воплощает глобально около 0,72 ЭДж на средний год использования – на 30 % меньше, чем изготовление сотовых! Что означает, даже если в этом приближении агрегатные показатели отклоняются в противоположных направлениях (в реальности автомобили воплощают больше, а мобильные – меньше энергии), то общие показатели будут не только одного порядка, но и не так уж далеки друг от друга. Операционные энергетические затраты, конечно, различаются очень сильно. Смартфон потребляет в год всего 4 КВт электричества, менее 30 МДж за два годы службы, то есть 3 % от воплощенных энергетических затрат. По контрасту, небольшому автомобилю за время жизни потребуется в 4–5 раз больше энергии (в виде бензина или дизеля), чем воплощено в нем самом. Но издержки на электрификацию мировых сетей информации и коммуникации растут: они потребили почти 5 % мировой генерации электричества в 2012 году и могут достигнуть 10 % к 2020-му (Lannoo 2013).
Специального упоминания заслуживает колоссальный прогресс, достигнутый с 1960-х годов в области диагностических, измеряющих технологий и средств дистанционного зондирования. Этот прогресс принес невообразимое ранее количество информации. Рентгеновские лучи, открытые В. Рентгеном (1845–1923) в 1895 году, оставались единственным способом бесконтактной диагностики с 1900-го. К 2015 году спектр методов расширился невероятно, от ультразвуковых устройств (используемых как в медицине, так и в инженерном деле) до технологий создания изображений высокой четкости (МРТ, компьютерная томография), от радара (разработанного накануне Второй мировой войны и ныне ставшего незаменимым инструментом в области транспорта и предсказания погоды) до большого набора размещаемых на спутниках сенсоров, получающих данные в различных участках электромагнитного спектра и позволяющих куда лучше предсказывать погоду и управлять природными ресурсами.

Экономический рост

Разговор об энергии и экономике не более чем тавтология: любой вид экономической активности в основе своей не более чем превращение того или иного вида энергии, а деньги – лишь удобный (и часто нерепрезентативный) заменитель, позволяющий оценить потоки энергии. Ничего удивительного, что Фредерик Содди, обладатель Нобелевской премии по физике, взглянувший на вопрос со своей точки зрения, заявил, что «поток энергии должен быть главным предметом экономики» (Soddy 1933, 56). Но поток энергии – плохое средство измерения интеллектуальной активности: образование определенно воплощает немалое количество энергии в собственной инфраструктуре и работниках, однако отличные идеи (которые ни в коей степени не связаны с интенсивностью обучения) не требуют значительного роста в скорости метаболизма мозга.
Этот очевидный факт объясняет многое в недавнем отделении роста ВВП от общих энергетических потребностей: мы приписываем большую денежную ценность нефизическим областям деятельности, которые сейчас составляют значительную долю в экономике. В любом случае, энергии уделялось крайне мало внимания в современных экономических исследованиях; только экономисты-экологи рассматривали ее как важный компонент (Ayres, Ayres and Warr 2003; Stern 2010). Общественное беспокойство по поводу энергии и экономики было диспропорционально сфокусировано на ценах в целом, и в особенности на ценах на сырую нефть, самый важный товар в мировой торговле на данный момент.
На Западе два повышения цен на нефть, предпринятых ОПЕК в 1970-х годах, – оба стали источником избытка потребления на Ближнем Востоке и угрозы для региональной стабильности – сделались объектом критики, их назвали первопричиной экономических неурядиц и социального хаоса. Но повышение цен ОПЕК имело оздоровительное (и весьма запоздалое) влияние с точки зрения эффективности, с которой страны, импортировавшие нефть ОПЕК, потребляли очищенное топливо. В 1973 году, после четырех десятилетий медленного ухудшения, среднее потребление топлива новыми американскими автомобилями превысило уровень начала 1930-х, 17,7 л/100 км против 14,8 л/100 км, или, в американской терминологии, 13,4 миль на галлон против 16 миль на галлон (Smil 2006) – удивительный пример, когда современный вид конверсии энергии становится менее эффективным.
Повышение цен на нефть изменило тенденцию, и между 1973 и 1987 годами среднее потребление топлива новыми автомобилями на североамериканском рынке снизилось вдвое по мере того, как стандарт CAFE (Corporate Automobile Fuel Efficiency) уменьшился до 8,6 л/100 км (27,5 мили на галлон). К сожалению, падение цен на нефть после 1985 года остановило, а затем и вовсе повернуло в обратную сторону (с распространением пикапов и внедорожников) прогресс в эффективности, и возвращение к рациональности произошло только в 2005 году. Повышение цен ОПЕК имело благоприятный эффект для мировой экономики, поскольку снизило средний показатель интенсивности использования нефти (количество нефти на единицу ВВП). Электростанции прекратили сжигать жидкое топливо; производители железа заменили топливную нефть в домнах на порошковый уголь; реактивные двигатели стали более эффективными; многие промышленные процессы перешли на природный газ. Результаты оказались достаточно впечатляющими. К 1985 году экономика США потребляла на 37 % нефти меньше, чтобы произвести доллар ВВП, чем в 1970-м; к 2000 году интенсивность использования нефти снизилась на 53 %, и к 2014-му требовалось на 62 % сырой нефти меньше, чтобы создать доллар ВВП, чем в 1970 году (Smil 2015с).
Любопытный, но обычно не замечаемый факт: западные правительства получают больше денег с нефти, чем ОПЕК. В 2014 году налоги в странах Большой семерки составляли порядка 47 % от цены литра нефти, и это по сравнению с 39 %, которые приходились на долю производителя; национальные доли в разных странах были соответственно 60/30 в Великобритании, 52/34 в Германии и 15/61 в США (ОРЕС 2015). Более того, чтобы обеспечить стабильные поставки, многие правительства (в том числе в странах с рыночной экономикой) активно участвуют в регуляции отрасли, а правительства в странах, производящих нефть, покупают политическую поддержку, субсидируя цены на энергию (GSI 2015). Субсидии в Саудовской Аравии составили более 20 % от всех затрат правительства в 2010 году, угольные субсидии Китая привели к тому, что цены зафиксировались на уровне ниже производственных издержек.
Рост – его истоки, уровень и продолжительность – остается ведущей проблемой современных экономических исследований (Kuznets 1971; Rostow 1971; Barro 1997; Galor 2005), и поэтому связь между потреблением энергии и ростом валовых экономических показателей (либо внутреннего валового продукта, ВВП, для отдельных экономик, либо валового мирового продукта, ВМП, для изучения глобальных тенденций) привлекла большое внимание (Stern 2004, 2010: World Economic Forum 2012; Ayres 2014). Традиционные экономики доиндустриальной эпохи были либо в основном неизменными, либо росли на несколько процентов за десятилетие, среднее потребление энергии на душу населения увеличивалось еще медленнее: имеется достаточно свидетельств из первых десятилетий XIX века, показывающих, что условия жизни многих бедных групп населения не особенно отличались от того, что наблюдалось два, три или даже четыре столетия ранее.
По контрасту, экономики на ископаемом топливе показывают беспрецедентные уровни роста, хотя на них влияет циклическая природа экономической экспансии (van Duijn 1983; ECRI2015), и часто рост прерывается значительными внутренними или внешними конфликтами. Индустриализированные общества XIX века видели экономический рост на 20–60 % за десятилетие. Например, продуктивность британской экономики в 1900 году была почти в десять раз выше, чем в 1800-м. ВВП США удвоился за двадцать лет между 1880 и 1900 годами, японское производство за эру Мейдзи (1868–1912) увеличилось в 2,5 раза. Экономический рост в первую половину XX века оказался под воздействием двух мировых войн и большого экономического кризиса 1930-х, но никогда в истории не было периода столь быстрого и широко распространенного роста производительности и процветания, как между 1950 и 1973 годами.
Постоянное падение цен на сырую нефть до 1970-х годов было важнейшим компонентом этого беспрецедентного процесса. ВВП на душу населения в США, и так самый высокий в мире, вырос на 60 %. В Западной Германии он более чем утроился, в Японии увеличился больше чем в шесть раз. Ряд бедных, густонаселенных стран Азии и Латинской Америки также вошли в фазу энергичного экономического роста. Первый раунд повышения цен на нефть в ОПЕК (1973–1974) временно приостановил этот рост. Второй раунд повышения цен, в 1979 году, был вызван низвержением монархии в Иране и приходом к власти режима аятолл. Глобальное замедление роста в начале 1980-х сопровождалось рекордной инфляцией и уровнем безработицы, но на протяжении 1990-х годов стабилизация цен на нефть обеспечила другой период роста, и он закончился только в 2008-м, когда наступила худшая в период после Второй мировой войны рецессия, за которой последовало слабое восстановление.
Исследователи (Ayres, Ayres and Warr 2003) определили уменьшение цены полезной работы как двигатель роста экономики США на протяжении XX века, при этом полезная работа является продуктом энергии (максимальная работа, возможная при идеальном процессе конверсии энергии) и эффективности конверсии. Как только появилась возможность получать надежные данные об экономической производительности (где значения ВВП выражаются в постоянных, учитывающих инфляцию денежных единицах, и где национальные значения ВВП рассчитываются в терминах сравнительной покупательной способности, а не исходя из официальных курсов обмена валют), очевидным сделалась очень жесткая корреляция между экономическим ростом и использованием энергии как на глобальном, так и на национальном уровне. Между 1900 и 2000 годами использование всей первичной энергии (после вычитания потерь при переработке и нетопливного использования ископаемого топлива) выросло почти в восемь раз, с 44 до 382 ЭДж, а ВМП вырос более чем в 18 раз, с около 2 триллионов долларов до около 37 триллионов долларов в ценах 1990 года (Smil 2010а, Maddison Project 2013), откуда выводится эластичность менее 0,5. Высокий уровень корреляции между двумя переменными можно найти где и когда угодно, но степень эластичности отличается: на протяжении XX века ВВП Японии вырос в 52 раза, а использование энергии – в 50 (эластичность близка к 1), в то время как показатели для США составили соответственно 10 и 25 раз (эластичность меньше 0,4), а для Китая – 13 и 20 (эластичность в 0,6).
Ожидаемая связь между двумя переменными в дальнейшем подтвердилась благодаря очень высокой корреляции (более 0,9) между средними показателями ВВП на душу населения и поступлением энергии, когда в рассмотрение были включены все страны мира. Это очевидно одна из необычайно высоких корреляций в обычно неконтролируемой реальности социально-экономических процессов, но эффект в значительной степени ослабеет, если мы оценим более гомогенные группы стран: чтобы стать богатым, необходимо значительно увеличить использование энергии, но сравнительный рост потребления энергии в процветающих сообществах, измеренный в ВВП на единицу или на душу населения, варьируется широко, обеспечивая очень низкую корреляцию.
Например, Италия и Южная Корея имеют очень похожий показатель ВВП на душу населения, в 2014 году он составил около 35 тысяч долларов, но потребление энергии на человека в Южной Корее почти на 90 % выше, чем в Италии. И наоборот, Германия и Япония характеризуются почти одинаковым уровнем годового потребления энергии, около 170 ГДж/на душу населения, но в 2014 году ВВП Германии был почти на 25 % выше (IMF 2015; USEIA 2015d). Подъем в абсолютном потреблении энергии, сопровождаемый более высокой экономической производительностью, скрывает заметное сравнительное снижение. Высокодоходные, высокоэнергетичные зрелые экономики характеризуются значительно более низкой энергоемкостью (энергия на единицу ВВП), по сравнению с той, что была у них на более ранних стадиях развития (примечание 6.10, рис. 6.17).
Примечание 6.10. Падение энергоемкости экономического роста
Историческая статистика показала постоянное падение энергоемкости в Британии, после чего последовал быстрый рост, вызванный введением в оборот паровых двигателей и железных дорог между 1830 и 1850 годами (Humphrey and Stanislaw 1979). Показатели энергоемкости в Канаде и США повторили британские с лагом в 60–70 лет. Показатели в США достигли пика перед 1920 годом, максимум в Китае был достигнут к концу 1970-х, энергоемкость в Индии начала снижаться только в XXI веке (Smil 2003). Между 1955 и 1973 годами энергоемкость в США не менялась (колебания плюс-минус 2 %), в то время как реальный
ВВП вырос в 2,5 раза, но затем она возобновила падение, и к 2010 году в США показатель был на 45 % ниже уровня 1980-го.
По контрасту, энергоемкость в Японии росла до 1970-х, но между 1980 и 2010 годами она упала на 25 % (USEOA 2015d). В Китае падение было особенно заметным, почти 75 % между 1980 и 2013 годами (China Energy Group 2014), что отражает в первую очередь исключительно низкую экономическую эффективность Китая в первые годы постмаоистской эпохи, до начала модернизации в 1980-х. С другой стороны, в Индии, все еще находящейся на ранней стадии экономического развития, наблюдалось падение всего на 7 % между 1980 и 2010 годами. Такое уменьшение происходит при комбинации нескольких факторов: падение важности энергоемких капитальных вложений, которые были характерны для ранних стадий экономического развития, когда происходило развитие базовой инфраструктуры; увеличение эффективности конверсии энергии при сгорании топлива и использовании электричества; рост доли сектора услуг (торговля, образование, финансы), где на единицу произведенного ВВП требуется куда меньше энергии, чем для добывающей и другой промышленности.
Значительные различия в энергоемкости от страны к стране (с похожими экономиками) также объясняются сочетанием использования первичной энергии (кто-то должен производить энергоемкие металлы), эффективности финальных преобразований энергии (гидроэлектричество всегда превосходит уголь), климата и размера территории (Smil 2003). Если принять США за 100, то сравнительные показатели в 2011 году были около 60 для Японии и Германии, 70-в Швеции, 150-в Канаде, 340 в Китае. Падение энергоемкости после 1950-х годов (Kaufmann 1992) в развитых странах по большей части связано с изменением типа используемых энергий и вида доминирующих товаров и услуг, а вовсе не с техническим прогрессом.
Наиболее важный урок, который мы можем извлечь, глядя на долговременные тенденции использования энергии на душу населения и на экономический рост, состоит в том, что значительный уровень последнего может быть достигнут при все более низком уровне первого. В США прирост населения влечет за собой продолжающийся рост в абсолютном потреблении топлива и электричества, но средние показатели на душу населения в области первичной энергии не повышаются (с небольшими флюктуациями) три десятилетия, с середины 1980-х годов, в то время как реальный ВВП (в ценах 2009 года) на душу населения вырос почти на 57 %, с 32 218 долларов в 1985 году до 50 456 в 2014-м (FRED 2015). Схожим образом, во Франции и в Японии (где население в настоящий момент уменьшается) первичное использование энергии на душу населения стабилизировалось в середине 1990-х, а за последующие два десятилетия средний ВВП на душу вырос соответственно на 20 и 10 %.
Но эти данные следует интерпретировать с осторожностью, поскольку периоды сравнительного расхождения ВВП и энергетических показателей совпадают со значительным выводом энергоемкой тяжелой промышленности из США, Европы и Японии в материковую Азию в целом и в Китай в особенности. Будет преждевременным делать вывод, что недавний опыт этих трех экономик может предвещать, что подобная тенденция распространится на весь мир. И большей частью по причине невероятного роста потребления энергии в Китае до 2015 года (почти в 4,5 раза с 1990-го), глобальное производство первичной энергии выросло почти на 60 % и обеспечило рост ВМП в 2,8 раз за 25 лет после 1990 года (эластичность 0,56). Более того, падение электроемкости было куда более медленным, чем падение общей энергоемкости. Между 1990 и 2015 годами глобальное падение составило всего 20 % (по сравнению с более чем 40 % для всей энергии), в США – те же 20 %, но быстро модернизирующийся Китай не видел никакого падения между 1990 и 2015 годами.

 

Рисунок 6.17. Падение энергоемкости ВВП было универсальной чертой экономик, входящих в стадию зрелости. Базируется на данных из Smil 2003 и U5EIA 2015d

 

Энергоемкость в области первичной энергии (и электричества) глобального экономического роста уменьшилась, но благодаря размеру мировой экономики и продолжающемуся росту населения в Азии и Африке в ближайшие десятилетия будет повторен, хотя и в измененном виде, опыт прошлого, по мере того как большие объемы топлива и производства энергии потребуются, чтобы обеспечить экономический рост в модернизирующихся странах. Очевидно, что и начало, и поддержание уверенного экономического роста являются предметом сложных, взаимосвязанных вложений. Требуются технологические усовершенствования и соответствующие институциональные перемены, особенно важны они в законодательной и финансовой областях. Целенаправленная политика правительства, хорошая система образования и высокий уровень конкурентоспособности также очень важны. Но если бедные сегодня страны перейдут в область начального процветания (повторяя экономическую траекторию Китая после 1990 года), тогда никакие из этих факторов не создадут различий без подъема потребления топлива и электричества: разъединений показателей экономического роста и потребления энергии на ранних стадиях современного экономического развития стало бы отрицанием законов термодинамики.
Назад: 6. Цивилизация ископаемого топлива
Дальше: Последствия и проблемы