Книга: Все формулы мира
Назад: Глава 13 Неизбежность математических выводов
Дальше: Глава 15 Что могло бы быть «научной магией»

Глава 14
«Приподнимем занавес за краешек…»

Мир не сводится лишь к тому, что мы непосредственно воспринимаем нашими органами чувств. Но также, видимо, нельзя сказать, что именно математическое описание – это и есть «сама реальность». Скорее, математизированные подходы в естественных науках (в первую очередь в физике) позволяют заглянуть за занавес кажимости, показывая закономерности в природных процессах. И эти закономерности мы можем формулировать в виде законов природы, записанных в виде набора уравнений. Совокупность уравнений вместе с соответствующим описанием формирует теорию. В настоящее время различные комплексы явлений описываются различными теориями, зачастую не имеющими друг с другом никакой связи. Рабочая гипотеза состоит в том, что можно создать единую теорию (TOE), из которой все другие будут вытекать как частные или предельные случаи.
Поэт может подобрать нужные слова, художник – вызвать эмоции изображением на холсте и рассказать внешнему – материальному – миру о внутренних чувствах (в том числе не только своих, но и разделяемых другими – теми, кому выразить их сложнее). В некотором смысле ученый с помощью математики проделывает обратную процедуру: труднообнаруживаемые закономерности внешнего мира преобразуются в умопостигаемые модели.
Философия науки периодически обращается к разнообразным вопросам изучения мира; некоторые из них касаются формульного представления знаний. Очевидно, что наш мозг эволюционно не приспособлен для «мышления в формулах». Означает ли это, что с языка уравнений всегда нужен перевод на что-то более доступное нам? И на что именно: слова, визуальные образы? Кроме того, критерием истинности мы считаем сравнение с наблюдениями. Теория дает нам в конце концов числа, и их же дает эксперимент. Мы сравниваем первые со вторыми. А если это станет невозможным? Что нас ждет, если мы и дальше будем поднимать занавес?
Начнем с обсуждения роли визуализации и вербализации в понимании. Что, если наиболее адекватное описание мира будет со временем получено не в виде формул, которые можно понять и переформулировать словами, а в виде, скажем, численного моделирования с помощью клеточных автоматов? Будем ли мы тогда называть удачные модели «элементами понимания» устройства мира, или будем манипулировать им без понимания в нашем современном смысле?
Здесь мы снова можем вспомнить о том, что в астрономии понятие «видеть» претерпело существенные изменения как из-за освоения невидимых диапазонов электромагнитного спектра и других видов излучения (включая данные по нейтрино и другим частицам), так и благодаря применению сложных методов обработки данных. В физике постоянно используются необычные виды многомерных «пространств», например фазовое пространство. В космологии любят использовать замены для времени, применяя, скажем, конформное время, а при изучении черных дыр постоянно вводятся экзотические системы координат, помогающие лучше проиллюстрировать и понять те или иные процессы. Но все же в том или ином виде концепция изменений величин в некоторых «пространственных» координатах, как правило, сохраняется.
Наше мышление работает в терминах пространства и времени. Уже объединение этих понятий может вызывать сложности. Многомерные модели запутывают еще больше, если мы хотим внятных визуальных образов (вы можете представить себе пятимерный куб?). Теперь задумайтесь: что, если мы придем к модели, в которой на самом фундаментальном уровне нет пространства-времени. Так, например, обстоит дело в петлевой квантовой гравитации (и вообще во многих моделях, описывающих квантовые и гравитационные процессы вместе). В таком случае, скорее всего, мы не сможем в обычном смысле представить себе происходящее в виде сколь-нибудь привычных образов, однако сумеем строить модели и проводить расчеты. Именно такая ситуация была недавно рассмотрена Себастьяном де Харо (Sebastian de Haro) и Хенком де Регтом (Henk de Regt).
Эти авторы предлагают считать, что мы понимаем тот или иной процесс с научной точки зрения, если выполняются три условия. Первые два вполне очевидны: объяснение не должно быть внутренне противоречивым и не должно вступать в противоречие с эмпирическими данными. Третье можно сформулировать так: объяснение должно быть основано на теории, которую мы можем применять (например, ОТО – это не только принцип эквивалентности, но и возможность рассчитывать орбиты космических тел). Важным проявлением третьего условия является возможность использования теории для качественного предсказания протекания феноменов без детальных расчетов. Для появления такой возможности нужна интерпретация теории, т. е. ее описание на смысловом уровне, а не только в виде системы уравнений.
Понимание отличается от просто «знания». Любой сдававший экзамен мог с этим столкнуться: вы все отбарабанили по билету, но преподаватель спрашивает: «А почему?» В итоге – максимум тройка. Знания были, понимания – нет. В вульгарном смысле каждый создает свою интерпретацию теории, о которой что-то узнает, создавая некоторые визуальные образы, помогающие представить, как там все происходит. Так что для большинства людей научное понимание неразрывно связано с визуализацией. Наличие представляемых образов также облегчает манипулирование с элементами теории, т. е. ее применение для описания (и предсказания) поведения объектов.
Представление о том, что означает «понимать», менялось с течением времени. Например, есть разница между тем, что вы что-то уложили у себя в голове (сюда попадают и «интуитивно понятные – для вас – идеи», и «у меня есть внутренняя уверенность, что…»), и тем, что вы можете связно и аргументированно изложить. Наконец, есть еще один уровень – применение знаний. Скажем, читатель хорошей научно- популярной литературы ощущает, что нечто стало понятным. Автор научно-популярной литературы может изложить некую модель, т. е. объяснить ее другим. Наконец, ученый способен применять и развивать это знание. Иными словами, речь идет не просто о знании и даже не о знании причин, а о некотором навыке, позволяющем применять знания, в том числе для получения новых знаний.
В ряде случаев переходы между этими категориями оказываются затруднительными. Сейчас очень распространена ситуация, когда, начитавшись научно-популярной литературы и пресс-релизов, энтузиасты идут «нести свет в массы», но получается это у них плохо, особенно если начать задавать им вопросы (какие-то знания есть, а понимания – нет, как у студента на экзамене в примере, приведенном выше). Хорошие популяризаторы, не работая профессионально в какой-то конкретной научной области, иногда пытаются предстать в ней в роли экспертов, но оказывается, что их знания недостаточно глубоки (они на самом деле не понимают важных деталей, не понимают причины), и оценка оказывается в лучшем случае поверхностной, а нередко и ошибочной.
На этих разных уровнях понимания часто задействованы разные средства. Стороннему интересующемуся человеку (скажем, мне – в области биологии) важно представить себе некоторую научную концепцию на уровне «пешехода» (пешехода XXI века, с высшим образованием и тысячей прочитанных книг за плечами, но все равно пешехода). Огромная удача – придумать новый яркий образ, хорошо поясняющий какую-то непростую научную концепцию или хотя бы какой-то ее существенный аспект. Именно к таким образам и должен стремиться популяризатор. Но все это не дает возможности работать в соответствующей области. Это верно не только для популярного уровня. Современная наука стала достаточно сложной и разветвленной, так что и университетские преподаватели оказываются в положении, когда в своих общих лекционных курсах, касающихся очень широкого круга вопросов, они оперируют понятиями, которыми не владеют на уровне профессионалов в соответствующей узкой области.
На этапе применения сложных понятий часто визуальные образы уже оказываются не нужны. На этом уровне люди думают по-другому, поэтому вполне типична ситуация, когда ведущий эксперт в какой-то сложной научной сфере не может «в двух словах, буквально на пальцах» объяснить, казалось бы, базовые понятия из его области. Например, «как представить себе вечную инфляцию». Поэтому я категорически не согласен, что настоящий специалист в любой области должен уметь объяснить, чем он занимается, пятилетнему ребенку. Не всегда это можно объяснить на должном уровне и 55-летнему доктору других наук.
По мере развития науки таких ситуаций может быть все больше, в том числе и в областях, касающихся самых первооснов. Это связано с тем, что, углубляясь в строение мира, мы оказываемся в областях, сильно отличающихся от тех, в которых мы эволюционировали. Наш разум оказывается не приспособлен для непосредственного восприятия (представления) того, что там происходит. Нам приходится учиться понимать по-новому, в частности обзавестись новой интуицией, так как старая не годится. Уже с квантовой механикой, СТО и ОТО возникают проблемы. Но нас может ждать еще более радикальный переход, если на каком-то микроуровне не просто изменяются, а исчезают понятия пространства и времени. И здесь, видимо, под пониманием мы будем понимать (такой вот каламбур) в первую очередь способность математически анализировать объекты и процессы.
А что, если наши теоретические модели, которые, допустим, можно представить в виде компактных понятных формул, не дают непосредственных вычислимых количественных предсказаний, которые можно было бы сравнить с наблюдениями? Отсутствие количественных выводов теории может быть связано с тем, что конечный компьютер за конечное количество итераций не может совершить вычисление с неопределенностью (ошибкой), меньше заданной. Иначе говоря, не существует алгоритма для проведения точных расчетов. В ходе такого анализа мы не можем быть уверены, что члены, которые сыграют роль на последующих итерациях, не уведут результат сильно в сторону. Как мы в данном случае будем судить об истинности теорий? Что скажет Поппер??? Такое, как показывают исследования, может произойти в некоторых моделях квантовой гравитации, и обсуждение такой странной перспективы уже идет. Роберт Герох (Roberg Geroch) и Джеймс Хартл (James Hartle) полагают, что это не должно нас останавливать. Оптимистический взгляд на такую возможность говорит, что прогресс все-таки реален, пусть и путем больших усилий и временных затрат. Пессимистическое отношение к таким построениям состоит в том, что на этих теориях нельзя основать научное понимание в современном смысле, так как ни путем расчетов, ни путем качественных рассуждений мы не сможем давать надежные и достаточно точные предсказания о протекании процессов и поведении объектов. Может быть, в самом деле изменится смысл «научного понимания»…
Пока же именно формулы в физике дают нам и понимание, и предсказание, и возможность создавать технические устройства. А кроме того, математический аппарат позволяет нам двигаться дальше, углубляя наши знания. Кто-то полагает, что «книга природы написана на языке математики», кто-то считает, что мы лишь придумали очень удобный язык для описания мира (и продолжаем его разрабатывать). Но, как бы то ни было, сейчас без формул невозможно представить себе эффективное познание мира. А что будет в будущем?
А. ТЕХНИЧЕСКАЯ НОВИНКА, ПРИНЦИП ДЕЙСТВИЯ КОТОРОЙ МЫ НЕ ПОНИМАЕМ, МОЖЕТ ВЫЗЫВАТЬ ОЩУЩЕНИЕ «МАГИИ». ТО ЖЕ САМОЕ ИНОГДА ПРОИСХОДИТ И С НАУЧНЫМИ РЕЗУЛЬТАТАМИ.
Б. СОВРЕМЕННЫЕ «ЧУДЕСА СВЕТА» – ЭТО КРУПНЫЕ НАУЧНЫЕ УСТАНОВКИ И КОМПЛЕКСЫ ВРОДЕ МКС И LIGO.
В. В РАЗВИТИИ НАУКИ МЫ МОЖЕМ СТОЛКНУТЬСЯ С ОГРАНИЧЕНИЯМИ, СВЯЗАННЫМИ С ВОЗМОЖНОСТЯМИ НАШЕГО МОЗГА. ОДИН ИЗ ВАРИАНТОВ ПРЕОДОЛЕНИЯ ЭТОГО ПРЕПЯТСТВИЯ – СОЗДАНИЕ ПОЛНОЦЕННОГО ИСКУССТВЕННОГО ИНТЕЛЛЕКТА, ПРЕВОСХОДЯЩЕГО ЧЕЛОВЕЧЕСКИЙ.
Г. НЕ ИСКЛЮЧЕНО, ЧТО В БУДУЩЕМ РАЗВИТИЕМ НАУКИ БУДУТ ЗАНИМАТЬСЯ ИСКУССТВЕННЫЕ СУЩЕСТВА, А ЧЕЛОВЕКУ ОСТАНЕТСЯ ТОЛЬКО ЧИТАТЬ НАУЧНО-ПОПУЛЯРНУЮ ЛИТЕРАТУРУ, НАПИСАННУЮ ИМИ ЖЕ.

 

Назад: Глава 13 Неизбежность математических выводов
Дальше: Глава 15 Что могло бы быть «научной магией»