Книга: Все формулы мира
Назад: Глава 6 Возрастание сложности
Дальше: Глава 8 Эволюция формы и содержания

Глава 7
Чем математика похожа на глаз?

«Чем ворон похож на письменный стол?» Не исключаю, что Льюису Кэрроллу понравился бы вопрос: «Чем математика похожа на глаз?» Мой ответ: «И то и другое удивительно, и в обоих случаях мы можем понять почему».
Нередко, если ребенок быстро и хорошо считает, ему говорят: «Математиком будешь». Совсем не факт, что это окажется близко к истине (более того, можно и навредить), так как математика вовсе не похожа на устный счет. Хотя истоки, конечно, восходят именно к нему. «Счет должен был появиться десятки тысяч лет назад, – говорят нам антропологи. – Один мамонт, два мамонта». Однако важно было перейти к понятию числа, абстрагироваться, так сказать, от этих хоботных млекопитающих. Со временем мамонты вымерли и абстрагироваться от них стало проще.
Как бы то ни было, более трех тысячелетий назад в Египте уже существует нечто среднее между простым устным счетом и математикой, т. е. продвинутая арифметика, а также методы вычисления площадей и объемов. Постепенно методы вычислений развиваются, но практически нет «решений в общем виде», а также системы, связывающей различные элементы воедино, – пока не существует ни алгебры, ни геометрии. Это не позволяет начать строить логически связанную систему, известную нам как математика.
Всем известно, что важный рубеж смогли преодолеть античные греки. К пифагорейцам можно возвести начала алгебры, поскольку именно они начали строить систему операций с (целыми) числами, основанную на некоторых постулатах, а к платоникам – геометрию. Существенным стало именно создание логически связанной структуры, базирующейся на наборе аксиом. В таком случае мы можем не только решать текущие задачи, но и развивать наш метод, используя его внутренние ресурсы. С этой точки зрения настоящим памятником культуры является евклидова геометрия. Это образец понятного и строгого вывода, основанного на разумных постулатах, к тому же более или менее соответствующих нашему опыту.
На фундаменте, заложенном древними греками (которые сами учились чему-то у египтян, а чему-то – у других народов), выросло современное здание математики, парадоксальное и восхитительное. К нашему удивлению, математика предлагает неожиданные готовые решения проблем, в том числе и самых насущных: как правильно составить расписание, как лучше организовать транспортную сеть, как быстрее найти информацию в большой базе данных и т. д. Ну или совершенно неактуальных в быту: как описать движение частиц в многомерном искривленном пространстве, как из данных о колебаниях лучевой скорости звезды в системе девяти планет определить параметры каждой из них и т. д. и т. п. Более того, эффективность математических методов настолько велика, что позволяет делать естественно-научные открытия «на кончике пера», т. е. просто путем анализа решений уравнений.
«Непостижимая эффективность математики» сродни чуду человеческого глаза (хотя глаза стрекозы или лобстера не менее, а может быть, даже и более удивительны). И то и другое заставляет некоторых людей объяснять его сверхъестественными причинами.
«Необъяснимая» сложность глаза служит аргументом для теории разумного замысла. Ведь никто не поверит, что сам собой (в результате случайных мутаций) неожиданно появился столь хитроумный орган, выполняющий так много функций. Но он таким способом и не появлялся! Проблема долгое время состояла в том, что органы зрения древних животных очень трудно изучать. Это же не костные останки, достаточно хорошо сохраняющиеся в грунте, благодаря чему мы можем десятки миллионов лет спустя восстановить полные скелеты динозавров (у которых, к слову, уже было вполне продвинутое зрение) и посмотреть, как они связаны с ныне живущими видами. Тем не менее развитие научных методов привело к тому, что мы все-таки можем восстановить основные вехи в становлении структуры светочувствительных органов, приведшем к появлению зрения современного человека.
Эффективность математики также иногда служит аргументом в пользу наличия Творца. Если для Ньютона это был «Великий часовщик», то теперь для кое-кого – творцы Матрицы. Ведь это поразительно, как просто и гармонично устроен мир. Вот закон Всемирного тяготения – а вот из него выводятся эллиптические орбиты планет и все прочие законы Кеплера. При этом сам закон напрямую связан с трехмерностью нашего пространства. Более того, например, математика – явно искусственно созданная и развиваемая человеком структура. Однако она позволяет в некоторых случаях не только описывать, но и предсказывать явления в реальном мире! Книга природы написана на языке математики. Кем? Неважно, кем конкретно, но ведь не сама же себя написала?
С математикой произошло нечто, похожее на появление глаза, – эволюция. Именно это объясняет ее сложность и поразительную адаптированность к миру (вероятно, в мирах, не описываемых в рамках достаточно простых законов, жизнь попросту невозможна; об этом говорит и антропный принцип, см. главу 10). Причем если в случае глаза (и других органов) людям в наследство достались разные неудобные странности (перевернутая сетчатка, слепое пятно), то развитие науки часто позволяло по ходу изучения этого органа вносить коррективы. Тем не менее какие-то рудименты остались. У нас на руках 10 пальцев, поэтому базовая система счисления десятеричная (хотя для счета времени и угловых координат мы используем шестидесятеричную, а в компьютерах – двоичную). У нас есть устоявшиеся традиции расположения осей в трехмерном пространстве (и иногда, когда вдруг удобнее использовать другой вариант, например при описании движения объектов в нашей Галактике, возникает путаница). Читатель может попробовать привести свои примеры.
Поразительная эффективность математики во многом объясняется тем, что она возникла в ответ на практические нужды и развивалась, не отрываясь полностью от реальности и постоянно соотносясь с естественными науками – астрономией, физикой и др., а теперь еще и с кибернетикой, IT-технологиями, социологией. К тому же не надо забывать, что огромное количество математических структур не нашли (и, скорее всего, никогда не найдут) применения в естественных науках. Так что между математикой и физическим миром, как нам кажется, нет соответствия «один в один».
Те же методы математики, что нашли себе применение, часто активно используются при численном моделировании сложных процессов. И вот тут можно находить многочисленные примеры эволюции с сохранением рудиментов. Любой, кто достаточно долгое время писал какой-нибудь пакет программ, развивая его и создавая новые версии на протяжении ряда лет, сталкивался с этим.
Поскольку в астрофизике прямые эксперименты, как правило, невозможны, в этой науке активно используются численные (как говорится, кто может – делает, кто не может – симулирует). Можно моделировать отдельные сложные процессы (слияния нейтронных звезд и черных дыр, формирование планетных систем, столкновение галактик), а можно рассчитывать свойства и эволюцию большой совокупности объектов (звезд, планет, пульсаров). Последнее называется популяционным синтезом.
Нередко одна группа авторов может заниматься моделированием какого-то широкого класса объектов на протяжении десятилетий. За это время не только идет развитие науки, но также появляются новые вычислительные средства, компьютерные языки, алгоритмы. Иногда возникает возможность написать новую версию программы с нуля. Тогда можно перейти на более продвинутый язык (скажем С++ или Python вместо Фортрана), использовать современные вычислительные схемы, ну и, разумеется, добавить новую физику, ради чего все и затевалось. Как правило, это происходит, если в команду приходит новый (и, что важно, молодой) человек. А между такими прогрессивными событиями дорабатывается старая версия путем вписывания новых строк кода, добавления подпрограмм, модулей и т. п. И вот здесь происходит эволюция, весьма похожая на биологическую. Если мы вначале ходили на четырех конечностях, а потом перешли на прямохождение, будут проблемы с позвоночником. Если окажется, что нужен большой мозг, будут проблемы с родами.
Обычно анализ популяции источников начинается с очень простых моделей. Например, вначале мы считаем, что все нейтронные звезды рождаются с очень короткими периодами вращения, с внешней средой не взаимодействуют, магнитное поле у них сохраняется и они замедляют свое вращение по так называемой магнито-дипольной формуле. Достигнув определенной комбинации магнитного поля и периода, пульсар выключается – перестает производить мощное радиоизлучение. Задавшись такими предположениями, мы пишем программу, моделирующую эволюцию радиопульсаров, а затем, задав темп рождения нейтронных звезд, начинаем создавать эти объекты в разных частях компьютерной Галактики. Результаты моделирования сравниваем с наблюдениями. Получается что-то похожее, но с заметными отличиями. Начинаем модифицировать нашу модель, пока не достигнем желаемого совпадения.
Какие-то изменения внести достаточно просто: к примеру, задать другое распределение по начальным периодам вращения или по магнитным полям, какие-то – уже сложнее, но можно, например, дописать модули, рассчитывающие движение пульсаров в галактическом гравитационном потенциале другого вида. А вот если вы с самого начала построили программу таким образом, что магнитное поле постоянно, то можно столкнуться с проблемами. Для полей, меняющихся по относительно простым законам, когда уравнения легко интегрируются аналитически, ситуацию еще можно выправить. Но, если эволюция поля слишком сложная, придется существенно переделывать программу или же отказаться от идеи использования таких законов. Еще хуже, если вы захотите учесть тот факт, что заметная доля нейтронных звезд рождается в двойных системах. Теперь вам надо моделировать эволюцию звездных пар. А это отдельная большая проблема. Так что вы или начинаете работу над новым полноценным кодом, куда ваш войдет как часть (как клетки когда-то получили митохондрии), или начинаете делать довольно искусственные упрощения поведения двойных, чтобы хоть как-то учесть их вклад.
Сценарии популяционного синтеза обладают практически бесконечным потенциалом совершенствования, ведь пределом является полное воспроизведение в компьютере вселенной от Большого взрыва до настоящего времени. В наши дни сделано уже очень многое, чтобы к этому приблизиться. Программы EAGLE, Illustris и подобные им рассчитывают эволюцию вселенной от первичных флуктуаций плотности до наших дней, доходя в детализации до масштабов в сотни парсек. Это позволяет воспроизводить облик далеких галактик в таких подробностях, которые сейчас показывают крупные телескопы. Вы можете, например, найти в результатах расчетов эволюции большой области вселенной галактики интересующего вас типа и посмотреть, как они возникали, с чем взаимодействовали. Любой может использовать данные EAGLE или Illustris в качестве начальных условий для своей программы популяционного синтеза населения какой-нибудь галактики. Такие расчеты путем сравнения с данными наблюдений позволяют проверить, насколько хорошо мы понимаем происхождение и эволюцию разнообразных астрономических объектов в рамках большой космологической картины.
Мир земных животных демонстрирует большое разнообразие устройства и характеристик органов зрения. Это можно воспринимать и как отличие от математики (ведь она едина), и как сходство (внутри математики есть разные области, сильно непохожие друг на друга, взять хотя бы алгебру и геометрию). Интересно, а как обстоит дело со зрением и математикой в других мирах?
Зрение большинства животных на нашей планете адаптировалось к солнечному излучению (подчеркну, что это верно и для ряда ночных животных, поскольку ночной свет тоже во многом солнечный: отраженный свет луны, звезды, рассеянный солнечный свет в сумерках). Кривая чувствительности человеческого глаза очень напоминает спектр Солнца (желтый и зеленый в радуге мы замечаем лучше всего). Нам незачем было вырабатывать способность хорошо видеть чистый фиолетовый цвет. В других обстоятельствах все могло повернуться иначе. Мы можем представить себе обитаемый мир, всегда укрытый плотным слоем облаков, или планету у очень красной звезды. Это вполне реалистичные варианты. Там глаза могут быть устроены по-другому и будут иметь другую спектральную чувствительность. А может ли существовать другая математика?
Возможно, ответ содержится не в пространстве, а во времени. Не исключено, что и наше зрение, и математика в будущем претерпят значительные изменения. И то и другое может быть связано с развитием технологий. Вряд ли кто-то отказался бы от идеального зрения, к тому же не только в видимом диапазоне, но хотя бы еще в ультрафиолете и ИК. Био-электронно-механические системы будущего могут дать нам такую возможность. Если вместо человека (или вместе с человеком) будут существовать искусственные разумные существа, то их зрение может быть принципиально иным, причем оно приобретет свои свойства не в результате эволюции, а в результате конструирования. Может быть, аналогичный процесс приведет и к созданию другой версии математики (см. главу 15). Будущее предсказывать трудно, проще смотреть на историю.
А. У СОВРЕМЕННОЙ НАУКИ И СОВРЕМЕННОГО ИСКУССТВА МНОГО ОБЩЕГО. ОНИ ЗАМЕТНО (ТАК, ЧТО ЭТО ВИДНО И НЕСПЕЦИАЛИСТУ) ОТЛИЧАЮТСЯ ОТ СВОИХ ПРЕДШЕСТВЕННИКОВ ВСЕГО ЛИШЬ ВЕКОВОЙ ДАВНОСТИ. А КРОМЕ ТОГО, В ОБОИХ СЛУЧАЯХ САМЫЕ СОВРЕМЕННЫЕ ДОСТИЖЕНИЯ С ТРУДОМ ВОСПРИНИМАЮТСЯ НЕПОДГОТОВЛЕННОЙ ПУБЛИКОЙ.
Б. В СОВРЕМЕННОЙ НАУКЕ, КАК И В СОВРЕМЕННОМ ИСКУССТВЕ, ЗАЧАСТУЮ ОТСУТСТВУЕТ «НУЛЕВОЙ» УРОВЕНЬ ПОНИМАНИЯ, ДЛЯ КОТОРОГО ДОСТАТОЧНО БЫТОВОГО ОПЫТА И ПРЕДСТАВЛЕНИЙ О МИРЕ.
В. ИСКУССТВО И НАУКА XX ВЕКА, НЕСМОТРЯ НА СВОЮ КАЖУЩУЮСЯ ОТОРВАННОСТЬ ОТ БЫТОВЫХ ПРОБЛЕМ, СУЩЕСТВЕННО ВЛИЯЮТ НА НАШУ ЖИЗНЬ, ХОТЯ НЕ ВСЕГДА ЭТО ЛЕЖИТ НА ПОВЕРХНОСТИ И ЛЕГКО ЗАМЕТНО ГЛАЗУ.

 

Назад: Глава 6 Возрастание сложности
Дальше: Глава 8 Эволюция формы и содержания