Книга: Складки на ткани пространства-времени
Назад: 1 Знакомство с пространственно-временным континуумом
Дальше: 3 Теория Эйнштейна проходит проверку

2
Все относительно

Лейден – город поэзии.
На стене дома № 36 по улице Новый Рейн надпись семиметровой высоты представляет собой стихотворение Э. Э. Каммингса, начинающееся строками:
Часы растут, убирая звезды, и вот
рассвет
на улицу небесного света входит,
расточая стихотворения.

Не вполне понимаю, что это значит, но звучит красиво.
Стихотворение Каммингса – 23-е по счету. На стенах домов в историческом центре Лейдена – города, расположенного в сорока с небольшим километрах от столицы Нидерландов Амстердама, – около сотни стихотворений.
Среди них выделяется одно, начертанное на восточной стене Музея Бургаве – голландского Национального музея истории науки и медицины. Его трудно продекламировать, поскольку язык, на котором оно написано, знают немногие. Всего одна строчка:

 

 

Возможно, вам она не кажется стихотворной. Это уравнение поля из ОТО Альберта Эйнштейна. Как видите, уравнение состоит из двух частей, разделенных знаком равенства, означающим, что левая часть равна правой. В левой части описывается искривление пространственно-временного континуума. В правой – распределение массы (и энергии). Изменив распределение массы, вы измените искривление пространственно-временного континуума. Измените искривление – и материя начнет двигаться по окружности (см. главу 1).
Эйнштейновское уравнение поля написано на языке математики. Лучший его «перевод» на английский язык сделал Джон Арчибальд Уилер, блестящий американский физик, научный руководитель Кипа Торна: «Материя указывает пространственно-временному континууму, как искривляться; пространственно-временной континуум указывает материи, как двигаться». Разве это не поэзия?
Уравнение было написано на стене Музея Бургаве в честь столетия теории Эйнштейна и представлено публике на торжественной церемонии в ноябре 2015 г. голландским физиком Роббертом Дейкграафом, директором Института перспективных исследований в Принстоне (штат Нью-Джерси), где Эйнштейн работал последний 21 год своей жизни. Самая подходящая кандидатура!
От Музея Бургаве всего 15 минут идти пешком до музейного хранилища на Раамстеег, 2. Паулю Стеенхорсту, руководителю реставрационного отдела, есть что показать. Он ведет меня на один лестничный пролет вверх, к комнате № 1.01 с контролируемым микроклиматом, где в сосновых шкафах хранится коллекция, связанная с физикой. Пауль открывает ящик J410 и достает экспонат V34180 – маленькую картонную коробку темно-синего цвета. На крышке надпись: «Идеальное самопишущее перо Ватермана».
Я держу перьевую ручку Альберта Эйнштейна, которой он написал всё, созданное им в период 1912–1921 гг., в том числе рукописи статьи 1915 г. об общем принципе относительности. Искривление пространственно-временного континуума, уравнения поля, гравитационные волны – все «стекало» с кончика этого тонкого Füllfeder (вечного пера), как называл его Эйнштейн.
Вам знакома «теория шести рукопожатий»? Согласно ей, вас отделяет от любого человека на Земле самое большее шесть промежуточных звеньев – других людей. Самопишущая ручка не человек, но в каком-то смысле я всего в двух «рукопожатиях» от величайшего физика в истории.
Кстати, эту характеристику дал не я. Эйнштейн действительно считается самым великим физиком человечества, по крайней мере по результатам опроса 1999 г. с участием 100 выдающихся ученых, проведенного журналом Physics World. В том же году Time объявил Эйнштейна «Человеком столетия» – не конкретно физиком, заметьте, а самой выдающейся личностью вообще.
__________
Все знают, кто такой Альберт Эйнштейн. Пышные усы, растрепанная шевелюра, растянутый свитер, сандалии – хрестоматийный образ ученого. Не много найдется физиков, лица которых обессмертило тиражирование на открытках, кофейных чашках и футболках. Разумеется, свою роль сыграла фотография с высунутым языком, сделанная фотографом UPI Артуром Сассом на 72-летие Эйнштейна. Однако на научный небосклон он взлетел благодаря гениальности.
Как ни удивительно, вы намного больше знаете о Вселенной, чем Эйнштейн в то время, когда разрабатывал ОТО. Тогда никто еще не видел обратной стороны Луны. Не был открыт Плутон. Астрономы не знали, что служит источником энергии Солнца. Истинная природа спиральных туманностей – галактик, таких как наш Млечный Путь, – оставалась неясной. По мнению большинства ученых, Вселенная существовала всегда. До открытия пульсаров, квазаров и экзопланет оставались долгие десятилетия. Антиматерия, нейтрино, кварки – в 1915 г. эти слова были бы для Эйнштейна пустым звуком, – как и скопления галактик, гамма-всплески и темная материя.
Что ученые знали в 1915 г., так это то, что во Вселенной правит гравитация, хотя является крайне слабым взаимодействием. Электромагнитное, например, намного сильнее, но электромагнитные силы могут быть либо положительными, либо отрицательными – притягивающими или отталкивающими. Во Вселенной эти противоположные силы взаимно нейтрализуются. Гравитация, напротив, всегда сила притяжения (антигравитация остается темой научной фантастики). Вследствие этого движение звезд и планет – как и, разумеется, спотыкающихся людей и падающих яблок – подчиняется только этой маломощной силе.
Если вы сомневаетесь, что гравитация очень слаба, простой эксперимент вас в этом убедит. Порвите на полосы лист бумаги и уроните на стол. Они опускаются под действием гравитации Земли – той же силы, которая не дает нам взлететь под потолок. Теперь возьмите маленькую пластмассовую расческу и потрите о собственные волосы или о шерстяной свитер. Поднесите расческу к обрывкам на расстоянии несколько сантиметров. Видите? Они тут же притягиваются статическим зарядом расчески. Что и требовалось доказать: электромагнитное притяжение статически заряженной расчески намного сильнее гравитационного, создаваемого целой планетой! Следовательно, гравитация – действительно слабая фундаментальная сила природы.
Греки почти ничего не знали об электромагнитных силах (и совершенно ничего – о сильных и слабых ядерных взаимодействиях). Знаниями о гравитации они также не обладали. Аристотель считал, что все объекты имеют природную склонность двигаться к центру Вселенной, причем в центре Вселенной находится Земля. Поэтому вещи и падают на землю – все просто. Более того, Аристотель был убежден, что тяжелые предметы падают быстрее легких. Возможно, экспериментировал с клочками пергамента и амфорами?

 

 

Жаль, что Аристотель не видел киносъемки командира «Аполлона-15» Дэвида Скотта, бросающего перышко и молоток на поверхность Луны. У Луны нет атмосферы, поэтому отсутствует и сопротивление воздуха, без которого перо падает ровно столько же времени, сколько и молоток, – это выглядит дико. (Причем оба предмета падают в 6 раз медленнее, чем падал бы молоток на Земле, поскольку гравитация Луны составляет лишь 1/6 часть земной, к которой мы привыкли.)
По легенде, Галилео Галилей впервые поставил аналогичный эксперимент в 1589 г., поднявшись на Пизанскую башню. Эксперимент очень прост. Возьмите две сферы разного веса – скажем, свинцовую и деревянную. Они должны быть большими и достаточно тяжелыми, чтобы сопротивление воздуха не оказывало на них существенного воздействия. Поднимитесь на башню. Уроните обе сферы строго одновременно. Какая из них приземлится первой? Если они ударятся о землю в один и тот же момент, вы докажете, что Аристотель заблуждался.
Надежные свидетельства того, что Галилей поставил этот опыт, отсутствуют. Верно, он его описывает, но, возможно, как мысленный эксперимент. Если же Галилей действительно ронял сферы с башни, то, бесспорно, не первым. В 1585 г. фламандский ученый и математик Симон Стевин и его друг Ян Корнелиус де Гроот (впоследствии ставший мэром голландского города Делфта) провели эксперимент, воспользовавшись башней Новой церкви в Делфте. Он подробно описан в книге Стевина, изданной в 1586 г. Мне очень нравится рассказ Стевина – от Новой церкви рукой подать до места, где родился мой отец.
Как бы то ни было, к концу XVI в. ошибочность представлений Аристотеля была доказана раз и навсегда. (В главе 1 вы прочли, что предположение Аристотеля о центральном положении Земли было опровергнуто парой десятилетий ранее Коперником.) Однако и Стевин, и Галилей знали о природе гравитации не многим больше древних греков. Например, подобно Аристотелю, они и мысли не допускали, что движением звезд и планет во Вселенной может управлять та же сила, которая воздействует на движение свинцовых сфер и яблок здесь, на Земле. Прошло еще два десятка лет, прежде чем это понял Исаак Ньютон. (Кстати, история о яблоке, упавшем на голову Ньютону, тоже легенда.)
Ньютон опубликовал свои размышления о гравитации летом 1687 г. не в научной статье, а в виде объемистого трехтомника на латыни под названием «Математические начала натуральной философии» (Philosophiae Naturalis Principia Mathematica). Первое издание на английском языке вышло лишь в 1728 г., более чем через год после смерти автора. Почти через два века после публикации «Начал», 14 марта 1879 г., в Ульме (на территории нынешней Германии) Паулина Эйнштейн-Кох родила первенца Альберта, которому в будущем удастся доказать неточность воззрений Ньютона.
Вы знаете легенду о Галилео Галилее. Я упомянул легенду о Ньютоне. Легенд об Альберте Эйнштейне хватило бы на книгу размером с эту. К счастью, подлинная история его жизни не менее увлекательна, чем выдуманная. И пожалуй, столь же легендарна.
Альберту был всего год, когда его родители-иудеи переехали из Ульма в Мюнхен. Его отец Герман вместе со своим братом управлял маленькой фабрикой по производству электрооборудования. Мать занималась домом и семьей и в ноябре 1881 г. произвела на свет младшую сестру Альберта Майю. Семью часто навещала тетушка Фанни (сестра матери) с дочерьми Эрминой, Эльзой и Паулой. Маленький Альберт рос в женском окружении; он был горячо привязан к сестрам и любил играть с кузиной Эльзой.
Был ли он особенным ребенком? Едва ли. Разве что тихоней и интровертом. В детстве он научился игре на скрипке. Играл очень хорошо. Кроме того, его зачаровывали вещи, на которые дети обычно не обращают внимания, например компас, подаренный отцом, когда Альберту было 5 лет. Как ни поворачивай его корпус, стрелка всегда показывает в одном и том же направлении. Очевидно, на нее действует нечто в пространстве – потрясающе! Но Герман и помыслить не мог, что сын станет величайшим физиком всех времен.
У отца хватало других забот. В 1894 г. его компания разорилась. Семейство перебралось в Милан в надежде на лучшую участь. Пятнадцатилетний Альберт остался в Мюнхене, чтобы завершить курс гимназии. К этому времени он серьезно интересовался физикой и мечтал продолжить обучение в обновленной швейцарской Высшей технической школе в Цюрихе.
Другим выраженным интересом Альберта были девушки. (Как я уже говорил, он не был каким-то чудиком – большинство мальчиков-подростков живо интересуются девочками.) Девушки также проявляли к Альберту большой интерес. Он был симпатичным: кудрявые черные волосы, красивые темные глаза. Среди очарованных была и Мари Винтелер, дочь орнитолога Йоста Винтелера, преподавателя кантональной школы в Арау (Швейцария). Альберт жил в доме Винтелеров два года, пока учился в Арау. Они с Мари скоро влюбились друг в друга.
В сентябре 1896 г. Альберт сдал выпускные экзамены в школе, показав прекрасный результат, по крайней мере по естественным наукам. «Не слишком хорошо знаю историю… не слишком хорошо знаю французский, который учил» – эти строчки из хита Сэма Кука 1960 г. «Wonderful World» словно написаны об Эйнштейне. Зато по физике, алгебре и геометрии он набрал максимальные баллы. В 17 лет его зачислили в Политехникум.
_________
Мог ли 17-летний юноша помыслить, что именно ему суждено решить ряд животрепещущих проблем физики? Едва ли. Но Альберт Эйнштейн, безусловно, знал об этих проблемах. Особенно выделялась одна загадка, остававшаяся неразрешимой несколько десятилетий и грозившая ниспровергнуть теорию гравитации Ньютона.
Теория Ньютона наконец позволила астрономам понять закономерности движения планет в Солнечной системе. С помощью уравнений Ньютона было относительно просто предсказать, где планета окажется, скажем, через 20 лет от настоящего времени, или установить, где она была полвека назад, – в обоих случаях вычисления, по сути, одинаковы.
Я сказал «относительно просто», поскольку Солнечная система весьма сложна. Будь в ней только Солнце и одна планета, решение уравнений Ньютона было бы детской забавой. На практике на движение каждой планеты оказывает небольшое влияние гравитация всех остальных планет системы. Чтобы предсказать траекторию, например, Сатурна, необходимо принять в расчет силу притяжения Юпитера. Иногда Сатурн слегка замедляется гравитацией Юпитера, иногда слегка ускоряется. Расчет всех этих возмущений – дело далеко не простое!
Возможность проверить теорию Ньютона на жизнеспособность появилась в 1781 г., когда английский астроном Вильям Гершель открыл новую планету за орбитой Сатурна – Уран. Астрономы тут же воспользовались уравнениями Ньютона, чтобы спрогнозировать траекторию движения новой планеты. Конечно, они учли гравитацию других крупных планет. Но вскоре оказалось, что Уран медленно отклоняется от расчетного курса. Неужели теория всемирного тяготения Ньютона неверна? Или существует еще одна планета, сбивающая Уран с пути?
В 1840-е гг. математики усовершенствовали уравнения Ньютона. В нормальном случае нам известны положения всех планет, что позволяет точно вычислять их орбиты. Возможны ли обратные расчеты? Что, если, отталкиваясь от отклоненной орбиты Урана, попытаться вычислить, где должна находиться неизвестная планета, вызывающая отклонение? Французский математик Урбен Леверье решил задачу.
В наши дни было бы легко разработать для этого программное обеспечение – любой студент, изучающий астрономию, справится с этим за один-два дня. Но в те времена в распоряжении ученого были только письменный стол, карандаш, бумага и логарифмические таблицы. Леверье понадобилось несколько месяцев, чтобы получить достоверный результат.
Его усилия окупились. В сентябре 1846 г. вблизи местоположения, указанного Леверье, была обнаружена новая планета. Он написал о своем прогнозе коллеге Иоганну Галле из Берлинской обсерватории. В течение нескольких часов Галле с ассистентом Генрихом д’Арре нашли Нептун – так было названо это небесное тело.
Теперь понятно, почему Нептун иногда называли «планетой, открытой за письменным столом» – она была обнаружена по результатам математических расчетов. В них использовались уравнения Ньютона. Таким образом, открытие Нептуна, восьмой планеты Солнечной системы, было воспринято как триумф теории всемирного тяготения Ньютона.
Именно так обычно работает наука. Она отталкивается от наблюдений – в нашем примере за траекториями падающих яблок и планет. Какой-нибудь гений выдвигает теорию, непротиворечиво объясняющую наблюдения, – в данном случае это Исаак Ньютон и его теория всемирного тяготения. По мере того как все больше предсказаний теории подтверждаются, ученые проникаются все большим доверием к ней – именно так открытие Нептуна подкрепило теорию Ньютона.
Прошло около 10 лет с открытия Нептуна, и Леверье занялся поисками девятой планеты. Искал он ее не за орбитой Урана, а внутри орбиты Меркурия, самой близкой к светилу планеты Солнечной системы. Причина та же: как и Уран, Меркурий вел себя «неправильно».
Траектория движения Меркурия вокруг Солнца не является правильной окружностью. Она имеет выраженный эксцентриситет: расстояние до Солнца меняется при каждом обороте. Более того, сама орбита медленно вращается – самая ближняя к Солнцу точка орбиты Меркурия (его перигелий) со временем смещается. В середине XIX в. это явление – так называемая «прецессия перигелия» – была измерена с большой точностью. Она составляет около 1/6° за столетие – больше, чем предсказывала теория Ньютона. По расчетам Леверье, на 92,5 % прецессию перигелия Меркурия можно было объяснить гравитационными возмущениями других планет. Но 7,5 % (43″ за 100 лет) оставались загадочными. Открытие Нептуна не помогло – Нептун находится слишком далеко и движется слишком медленно, чтобы оказывать заметное влияние на орбиту Меркурия.
Соответственно, Леверье предположил, что существует другая до сих пор не обнаруженная планета внутри орбиты Меркурия. Могла ли столь близкая планета ускользнуть от взгляда астрономов? Безусловно, могла. Восход и закат планеты, находящейся очень близко к Солнцу, происходили бы практически одновременно с солнечными. Вследствие этого она была бы на небе только днем, когда ее невозможно увидеть, становясь доступной для наблюдения только в двух редких случаях: во-первых, при полном солнечном затмении, когда яркий диск Солнца заслоняет Луна; во-вторых, во время транзита, когда планета проходит перед солнечным диском, если смотреть с Земли.
Поскольку Леверье успешно предсказал существование Нептуна на основе неправильного поведения Урана, он был убежден, что прецессию орбиты Меркурия также можно объяснить неизвестной прежде «интрамеркурианской» планетой. Леверье даже подобрал для прилегающей к Солнцу гипотетической планеты название – Вулкан, в честь римского бога огня.
Проблема была в том, что никто так и не нашел Вулкан ни во время затмений, ни при предполагаемом транзите. (Сейчас мы точно знаем, что такой планеты не существует.) В конце XIX в., начав изучать физику и математику в Цюрихе, Альберт Эйнштейн понимал, что теорию всемирного тяготения Ньютона можно поставить под сомнение: она не смогла в полной мере объяснить медленную прецессию орбиты Меркурия. Где ошибка?
Молодой Альберт знал и о другой досадной проблеме. Она была связана со скоростью света.
Свет движется невероятно быстро. Настолько быстро, что ученым было сложно измерить его скорость. Для лучшего понимания приведу пример: если включить лазерную указку в Нью-Йорке, ее свет всего через 0,013 секунды достигнет Лос-Анджелеса (если бы не препятствие в виде кривизны поверхности Земли). Лишь во второй половине XVII в. датский астроном Оле Рёмер довольно точно определил скорость света. Сегодня мы знаем, что она составляет около 300 000 км/с. (В действительности 299 792,458 км/с в космическом вакууме. Нам невероятно повезло с выбором метрических единиц, благодаря которому скорость света оказалась столь близкой круглому числу. В других единицах измерений эту величину было бы трудно запомнить. Например, это 670 616 629 миль/ч или – специально для британских читателей старшего возраста – 1803 трлн фарлонгов за две недели.)
Через 15 лет после экспериментов Рёмера, в 1690 г., нидерландский физик Христиан Гюйгенс опубликовал знаменитую книгу «Трактат о свете» (Treatise on Light). Гюйгенс был одним из величайших ученых своего времени. Он установил природу колец Сатурна, открыл самый крупный спутник Сатурна Титан, первым заметил темные пятна на поверхности Марса. Он значительно продвинул изучение механики и оптики и изобрел маятниковые часы.
В «Трактате о свете» (впервые увидевшем свет на французском языке) Гюйгенс утверждал, что свет является волновым феноменом. Его можно сравнить с волной, распространяющейся по поверхности пруда. Как волны на воде или звуковые волны (а также, о чем вы скоро узнаете, гравитационные), световые волны характеризуются рядом свойств. Поэтому имеет смысл для начала рассмотреть общие свойства волн всех типов.
Во-первых, это амплитуда волнового процесса. У водяных волн амплитуда равна половине разности ее высоты в гребне и ложбине. В случае звуковых или световых волн амплитуда является показателем энергии – силы звука или яркости света. Амплитуда гравитационных волн – это их интенсивность: более мощные волны сильнее искривляют пространственно-временной континуум.
Во-вторых, это скорость волны. Рябь на поверхности пруда распространяется со скоростью около 1 м/с. Звуковые волны в воздухе – со скоростью около 330 м/с. Световые и гравитационные волны движутся со скоростью света, почти 300 000 км/с.
Наконец, частота волны – это количество гребней волны, которые можно насчитать за каждую секунду при наблюдении с неподвижной точки. Пустите в пруд резиновую уточку, и скорость водяной волны покажет вам, насколько быстро уточка поднимается и опускается. Если гребни волн идут тесно – что значит, длина волны мала, – скорость волны относительно велика, и уточка часто подскакивает вверх-вниз. Более длинные волны, гребни которых сильно разнесены, соответствуют более низким частотам и более редким колебаниям уточки.
Из повседневного опыта явствует, что для движения волн нужна среда, в которой они могли бы распространяться: рябь в пруду распространяется в воде, звуковые волны – в воздухе. Неудивительно, что ученые выдвинули идею эфира – таинственной субстанции, заполняющей безвоздушное пространство. Эфир мыслился средой, в которой распространяются световые волны.
Однако к концу XIX в. физики уперлись в проблему. Отсутствовали какие-либо доказательства существования эфира. При наличии такой субстанции Земля, следуя по орбите вокруг Солнца, двигалась бы в ней в разных направлениях, следовательно, имела бы собственную скорость относительно эфира. Эта скорость сказалась бы на измерениях скорости света.
Объясню почему. Допустим, свет далекой звезды распространяется в эфире со скоростью 300 000 км/с. Орбитальная скорость Земли при движении вокруг Солнца почти 30 км/с. Таким образом, когда Земля движется «против течения» – по направлению к звезде, световые волны должны будут приходить к ней со скоростью 300 030 км/с. При движении Земли «по течению», в одном направлении со световыми волнами, ожидаемый результат измерения их скорости составит 299 970 км/с. (Если учесть движение всей Солнечной системы сквозь эфир, картина усложняется, но принцип ясен.)
Американские физики Альберт Майкельсон и Эдвард Морли весной 1887 г. – Альберт Эйнштейн только что отпраздновал 18-летие – поставили изящный эксперимент в Кливленде (штат Огайо). Его детали можно опустить, за исключением любопытного факта – ученые использовали интерферометр, тот же самый инструмент, с помощью которого в сентябре 2015 г. будут впервые в истории зарегистрированы гравитационные волны.
Прибор Майкельсона и Морли был достаточно чувствительным, чтобы измерять малые различия скорости движения света в разных направлениях. Но они не обнаружили никаких отклонений. В какую сторону ни смотри, световые волны всегда имели одну и ту же скорость – 300 000 км/с, как если бы Земля, двигаясь в космическом пространстве, волокла гипотетический эфир вместе с собой. Никто не смог предложить удовлетворительного объяснения этим наблюдениям.
Итак, Эйнштейн знал о двух фактах, не объяснимых в рамках ни одной существующей на тот момент теории, – чрезмерной прецессии перигелия орбиты Меркурия и постоянстве скорости света.
Единственным ответом стала его теория относительности.
_________
Осенью 1896 г. 17-летний Альберт Эйнштейн был зачислен на 4-летний курс математики и физики в Политехническую школу Цюриха. Сначала он поддерживал контакт со своей подругой Мари, но все изменило знакомство с сербкой Милевой Марич, единственной девушкой на потоке. Как и Мари, она была старше Альберта. В отличие от Мари, она понимала многие тонкости физики. Любовь оказалась взаимной.
Через 4 года Альберт окончил курс и получил диплом, дававший возможность преподавать физику и математику в средней школе, но предпочел бы труду учителя работу над диссертацией на степень доктора философии, желательно в нидерландском Лейдене. Лейденский университет был альма-матер и местом работы Хендрика Лоренца, одного из величайших физиков своего времени, которого Эйнштейн глубоко почитал. На основе работы Лоренца он сформулирует идеи относительности.
В 1901 г., надеясь оказаться ближе к Лоренцу, Эйнштейн подал заявление о приеме на работу в лейденскую лабораторию физики низких температур Хейке Камерлинга-Оннеса, другого гиганта науки. Но Камерлинг-Оннес даже не потрудился написать ответ, что оказалось потерей не только для Эйнштейна, но и для голландской физики. В конце концов, Эйнштейну удалось устроиться клерком в Федеральное бюро патентования изобретений в швейцарском Берне, куда его, по доброте душевной, рекомендовал отец его друга и одноклассника Марселя Гроссмана. Работа была скучной, но в спокойные дни предоставляла достаточно свободного времени для размышлений над теориями в области физики.
Жизнь складывалась не слишком удачно. Весной 1901 г. у Милевы случилась незапланированная беременность, и в январе 1902 г. родилась их с Альбертом дочь Лизерль, дальнейшая судьба которой неизвестна. Биографы Эйнштейна даже не знали о Лизерль до 1986 г. Возможно, она была умственно отсталой и, вероятно, умерла от скарлатины осенью 1903 г., через год после кончины отца Альберта Германа (хотя существует версия, что Лизерль была удочерена подругой Милевы и дожила до 1990-х гг.). Как бы то ни было, создается впечатление, что Эйнштейн ни разу не видел дочери.
Альберт и Милева поженились в Берне в январе 1903 г.; их первый сын Ганс Альберт родился в мае 1904 г. Эйнштейн не уделял особого внимания ни воспитанию ребенка, ни домашнему хозяйству. В те времена считалось, что это обязанность женщины, и Милеве пришлось пожертвовать физикой. Альберт тем временем вступил на путь, ведущий к открытию тайн орбиты Меркурия и постоянства скорости света.
Это был двухэтапный процесс. В 1905 г. появилась специальная теория относительности (СТО). На основе работы своего бывшего преподавателя профессора Германа Минковского, разработавшего понятие четырехмерного пространственно-временного континуума, Эйнштейн показал, что и пространство, и время являются относительными понятиями. Каково расстояние между двумя точками? Это зависит от того, кому вы задаете этот вопрос. То же самое относится к времени, когда происходят события. Два наблюдателя, движущиеся относительно друг друга, дадут разные ответы. И оба будут правы. Прощай, Ньютон, абсолютного пространства и абсолютного времени не существует.
СТО не проста. Чтобы полностью понимать ее потенциальные следствия, нужно научиться решать сложные уравнения – так называемые уравнения преобразования. Но суть уловить нетрудно. Если вы станете двигаться со скоростью, составляющей существенную часть скорости света, сторонним наблюдателям покажется, что ваш космический корабль уменьшается – укорачивается в направлении перемещения. Этот эффект называется Лоренцевым сокращением. Более того, если двигаться достаточно быстро, оставшиеся дома люди заметят, что ваши часы стали идти медленнее. Это замедление времени. В повседневной жизни мы не замечаем такие эффекты по единственной причине – скорость света слишком велика. Даже гонщик «Формулы-1» движется недостаточно быстро, чтобы воздействие на него Лоренцева сокращения или замедления времени можно было обнаружить.
Одно из основных предположений СТО заключается в том, что сама скорость света одинакова для любого наблюдателя, независимо от его собственного движения или скорости. Это установили Майкельсон и Морли, и Эйнштейн счел их результат достоверным. Из уравнений Эйнштейна следует, что ничто не может двигаться сколько-нибудь быстрее света – это непреодолимый и фундаментальный предел скорости, поставленный природой.
Во второй статье, опубликованной в 1905 г., Эйнштейн вывел уравнение E = mc2 – без сомнения, самое знаменитое уравнение в истории. Оно гласит, что энергия (Е) может быть преобразована в массу (m) и наоборот. Это неизбежное следствие относительности в рамках специальной теории, тесно связанное также со скоростью света (с). Кстати, мы живем благодаря истинности этого уравнения. В главе 5 будет показано, что Солнце светит, поскольку масса превращается в энергию – о чем Эйнштейн в то время не знал, – а никакая жизнь на Земле, включая нашу, не была бы возможна без энергии Солнца.
Две другие статьи 1905 г. посвящены иным темам: одна – движению молекул, вторая – существованию фотонов, или частиц света. Эта статья принесла Эйнштейну Нобелевскую премию по физике за 1921 г. В общем, 1905 г. стал для Эйнштейна «годом чудес» – он также получил степень доктора философии в Цюрихском университете. Ему было всего 26 лет.
Вторым этапом стала разработка ОТО. Под словом «общая» Эйнштейн понимал то, что она должна работать в любых условиях, а не только в особом случае равномерного прямолинейного движения. ОТО описывает движение с ускорением – в случае, если какая-либо сила (например, гравитация или реактивная сила струи из двигателя ракеты) вызывает изменение скорости или направления. Эйнштейн трудился над этой теорией 10 лет, в течение которых переехал из Берлина в Цюрих, из Цюриха в Прагу, из Праги вернулся в Цюрих, а оттуда снова в Берлин. В эти годы родился его второй сын (Эдуард, 1910 г.), а сам он написал душераздирающее любовное письмо первой возлюбленной Мари (пока Милева была беременна Эдуардом) и влюбился в кузину Эльзу. В 1914 г., когда разразилась Первая мировая война, Эйнштейн перебрался в Берлин, а Милева с сыновьями остались в Цюрихе. Альберт обосновался в Берлине с Эльзой и двумя ее дочерьми Илзе и Марго.
Эйнштейн уже был признанным физиком. В 1911 г., впервые приехав в Лейден, он наконец познакомился с Хендриком Лоренцем. Ему была предложена должность в Утрехтском университете, однако он предпочел Прагу, где в 1912 г. познакомился и подружился с физиком австрийского происхождения Паулем Эренфестом. Примерно тогда Эйнштейн начал пользоваться самопишущим пером Ватермана, которое мне довелось подержать в руках в запасниках Музея Бургаве. В Берлине он стал профессором теоретической физики Университета Гумбольдта, главой только что созданного кайзером Вильгельмом Института теоретической физики и (в 1916 г.) президентом Германского физического общества.
_________
ОТО – новая теория гравитации. Это кажется странным, но лишь на первый взгляд. Все сводится к так называемому принципу эквивалентности Эйнштейна, впервые сформулированному в 1907 г., согласно которому в действительности нет никакой разницы между гравитацией и движением с ускорением.
Представьте, что вы вошли в помещение без окон. Гравитация Земли тут же притягивает вас к полу. Ваш друг входит в такое же помещение без окон в космическом корабле, разгоняющемся в безвоздушном пространстве. Рядом нет планеты, которая могла бы воздействовать на него своей гравитацией, но и его прижимает к полу. Это происходит потому, что все помещение с ускорением движется вперед, будучи частью корабля.
Принцип эквивалентности Эйнштейна гласит, что между этими двумя ситуациями нет принципиальной разницы. Иными словами, какие бы эксперименты ни поставили вы и ваш друг-астронавт, результаты будут одинаковыми. Следовательно, если время замедляется в ускоряющемся корабле, оно должно замедляться и в среде с сильной гравитацией. Как объяснил Эйнштейн Лоренцу во время визита 1911 г., часы идут чуть быстрее на втором этаже здания, чем в цокольном, поскольку на втором этаже гравитационное поле Земли чуть слабее.
В последующие несколько лет Эйнштейн много трудился над этой темой и в конце концов поручил своему другу и бывшему соученику по Цюриху Марселю Гроссману разработать сложный математический аппарат, без которого невозможно было двигаться дальше. Осенью 1915 г. он погрузился в размышления, почти не покидая мансарду в доме Эльзы по Хаберландштрассе, 5, обстановку которой составляли старомодный телефон (и самопишущее перо!) на письменном столе, вытертый ковер на полу и портрет Исаака Ньютона на стене. Думаю, он даже на время перестал обращать внимание на свою кузину.
В течение ноября Эйнштейн завершил четыре основополагающие статьи о разных аспектах ОТО. Это геометрия четырехмерного пространства; масса, энергия и искривление пространственно-временного континуума; знаменитое уравнение поля, ныне украшающее стену Музея Бургаве в Лейдене; наконец, верное предсказание избыточной прецессии перигелия орбиты Меркурия. Ее можно полностью объяснить искривлением пространственно-временного континуума вблизи массивного Солнца.
Задача была решена.
Эйнштейн представил свои статьи на четырех последующих собраниях Прусской академии наук, проводившихся по четвергам, – 4, 11, 18 и 25 ноября 1915 г. Третья статья, по проблеме Меркурия, была обнародована в день 34-летия его любимой сестры Майи – двойное торжество. Читая доклад, он то и дело прерывался, чтобы записать формулы на доске. Все ли физики старшего поколения, присутствовавшие в аудитории, были способны сразу понять его работу? Едва ли. Сознавали ли они, что ОТО совершит переворот в физике? По крайней мере некоторые. Оценили ли они гений молодого коллеги? Почти наверняка.
Альберту Эйнштейну было 36 лет.
_________
Прошло еще четыре года, прежде чем Эйнштейн стал культовой фигурой (в главе 3 я расскажу, как это произошло). К тому времени он развелся с Милевой (14 февраля 1919 г.) и, не прошло и 16 недель, женился на Эльзе. В 1920 г. он становится приглашенным профессором в Лейденском университете и в течение многих лет проводит по меньшей мере один месяц ежегодно в обществе Эренфеста, сменившего Лоренца в 1912 г. Эйнштейн стал иностранным членом Голландской академии наук и Королевского общества. Он получил Нобелевскую премию по физике, посетил Нью-Йорк, совершил путешествие по Азии и подружился с Чарли Чаплином.
В начале 1933 г., по окончании третьей поездки в Соединенные Штаты, Альберт и Эльза решили не возвращаться в Германию, где пришел к власти Адольф Гитлер. У Эйнштейна были еврейские корни, он был включен в список врагов германского рейха. Написанные им книги были сожжены, его летний коттедж в Капуте, недалеко от Берлина, захвачен и впоследствии превращен в лагерь гитлерюгенда. После девятимесячного пребывания в Бельгии супруги уехали в Англию, откуда вернулись в США. Осенью 1933 г. Эйнштейн получил должность в недавно созданном Институте перспективных исследований в Принстоне. Через несколько недель его близкий друг Пауль Эренфест в состоянии глубокой депрессии покончил с собой.
Жизнь Альберта Эйнштейна оборвалась 18 апреля 1955 г. Он умер от аневризмы брюшной аорты в принстонской больнице в возрасте 76 лет. Одно из его последних писем было адресовано семье его друга Микеле Бессо, скончавшегося в марте того же года. «Люди, подобные нам, которые верят в физику, знают, что различие между прошлым, настоящим и будущим – всего лишь навязчивая иллюзия», – писал он. В конце концов, время относительно.
Собственноручно написанное Эйнштейном послание и сейчас можно прочесть в доме Эренфеста по улице Витте Розенстраат, 57, в Лейдене. Коллегам со всего мира, приезжающим в гости, предлагалось расписаться на стене в коридоре второго этажа перед гостевой комнатой. Эти подписи можно читать как биографический словарь по физике: Нильс Бор, Поль Дирак, Вольфганг Паули, Эрвин Шрёдингер, Альберт Эйнштейн.
Недалеко от дома Эренфеста, на стене дома по Грёнховенстраат, 18, начертано стихотворение аргентинского писателя Хорхе Луиса Борхеса. Вот его последние строки:
Tu materia es el tiempo, el incesante
Tiempo. Eres cada solitario instante.
(Ты состоишь из времени, бесконечного времени.
Ты есть каждый отдельный момент.)

Назад: 1 Знакомство с пространственно-временным континуумом
Дальше: 3 Теория Эйнштейна проходит проверку