Книга: Трещина в мироздании
Назад: Глава 1 В поисках исцеления
Дальше: Глава 3 Взламывая код

Глава 2
Новая защита

В 2014 году я отметила двадцатилетие своей исследовательской лаборатории (и заодно мое пятидесятилетие) выездом сотрудников в места моего детства: на Гавайи. Около тридцати участников празднования (сборная солянка из студентов, аспирантов, постдоков, технических работников и близких, в числе которых оказался даже мой сын Эндрю) оккупировали три арендованных домика рядом с городом Кона на западном берегу Большого острова – всего в пятнадцати минутах от пляжа и нескольких часах езды от дома в Хило, в котором прошло мое детство. Днем мы устраивали пикники, бродили по Гавайскому вулканическому национальному парку, отправлялись на ближайшие пляжи или рынки и плавали с маской и трубкой среди нетронутых коралловых рифов, окружающих остров. Мы провели незабываемый вечер, наслаждаясь захватывающими видами красноватых отсветов от потоков лавы из кратера Халемаумау, а в другие вечера устраивали непринужденные вечеринки на задних двориках наших домов: общение, пицца и пиво, спонтанные танцы и караоке.
Конечно, как и на любом научном сборище, часть времени была посвящена выступлениям. За четыре дня мы провели четыре мини-симпозиума, на которых каждый сотрудник сделал пятнадцатиминутный доклад на выбранную им самим тему – от истории лаборатории до тонкостей структуры РНК.
На четвертый день постдок Росс Уилсон, взявший на себя большую часть забот по организации нашего путешествия, встал, чтобы прочесть последний доклад. Точнее, я думала, что это будет доклад. Но вместо этого Росс сделал нам сюрприз, показав короткий фильм, смонтированный из фрагментов видео, в которых фигурировала я сама. Оказывается – и я ничего об этом не знала! – коробка со старыми VHS-кассетами все эти годы передавалась от одного поколения сотрудников к другому: своего рода традиция лаборатории.
Гости то издавали одобрительные возгласы, то подтрунивали надо мной, пока один кадр на экране сменялся другим: вот я выступаю с благодарственной речью на церемонии награждения премией Национального научного фонда в 1999-м, вот мое фото со счетчиком Гейгера в руках в одном из номеров Vogue за 2000 год, а вот и отрывок из документального фильма, который Фредерик Уайзман снимал в моей лаборатории, к тому моменту переместившейся из Йельского университета в Калифорнийский университет в Беркли.
В этой нарезке оказались и фрагменты из двух новостных сюжетов, в которых я в свое время появлялась, и в обоих шла речь о первом крупном открытии, сделанном в моей лаборатории в Йеле в 1996 году. Я помнила о существовании этих видео, помнила даже кое-какие детали их содержания. В то время внезапный всплеск внимания к моей работе меня одновременно и радовал, и немного нервировал – ведь я тогда была молодой исследовательницей, проводившей большую часть времени за рабочим столом, в уединении своей лаборатории.
Из всех эпизодов в фильме Росса эти два вызвали самую бурную реакцию. Они казались такими безнадежно древними: начальнице всего около тридцати, ведущие выглядят и говорят старомодно, и в кадре видны громоздкие допотопные компьютеры, которые в то время, конечно, были последним словом техники.
Пока я веселилась вместе со всеми остальными, память уносила меня в те ранние годы моей работы в Йеле, и я вновь ощутила те надежды и страхи, которые испытала, когда двинулась в новую рискованную область исследований, начала работу над проектом, из которого, как предостерегали меня многие коллеги-ученые, никогда ничего не получится. Глядя теперь на то, как я в молодости отвечала на вопросы интервьюеров, я живо вспомнила и воодушевление, и ощущение тяжелой утраты – главные чувства, сопровождавшие меня в те годы. Мои тогдашние комментарии оказались на удивление точным предсказанием того, что произошло значительно позднее, по мере того как разворачивались мои исследования по новым направлениям.
Во времена, когда я давала эти интервью, моя лаборатория только что установила трехмерную структуру – точное расположение каждого атома – в молекуле рибонуклеиновой кислоты (РНК), образующей часть более крупной молекулы под названием самосплайсирующий рибозим. В 1980-х годах Том Чек, мой научный руководитель в Университете штата Колорадо в Боулдере, получил Нобелевскую премию за обнаружение самосплайсирующих рибозимов. Его открытие было прорывом, поскольку существование самосплайсирующих рибозимов предполагает, что жизнь на Земле могла возникнуть из молекул РНК, способных и кодировать генетическую информацию, и копировать ее в примитивных клетках. Когда в 1994 году я возглавила собственную лабораторию в Йеле, я собиралась отталкиваться в своей работе от открытия Тома – изучить структуру рибозимов, чтобы лучше понять, как они работают. Я хотела определить, каким образом РНК – молекула, тесно связанная с ДНК, – может функционировать и в качестве хранилища генетических инструкций, и в качестве химически активной молекулы, способной изменять свою форму и биологическое “поведение”. Кульминацией этого исследования стало фантастически волнующее открытие: молекулы РНК могут складываться в трехмерные структуры, совершенно непохожие на изящную в своей простоте двойную спираль ДНК.
Однако моя радость от установления структуры рибозимов – эту работу я провела вместе со своим аспирантом Джейми Кейтом – омрачилась личной трагедией. Той осенью отец позвонил мне на работу в Йель, чтобы сообщить ужасную новость: ему диагностировали меланому на поздней стадии. В последние три месяца его жизни я трижды летала из Нью-Хейвена на Гавайи, чтобы подержать его за руку, почитать ему вслух его любимые отрывки из “Уолдена” Генри Торо, вместе послушать Моцарта, обсудить, как действуют различные обезболивающие и что происходит с нами после смерти. Это были крайне напряженные дни и ночи.
Папа всегда интересовался моими исследованиями и во время каждой встречи расспрашивал меня, что нового в лаборатории. Однажды я показала ему рисунок молекулы рибозима, сделанный зелеными чернилами. “Похоже на зеленые фетучини!” – сказал он. Через три недели его не стало.
Потрясенная смертью отца и желая отвлечься, я с головой окунулась в работу, утешаясь мыслью, что однажды наша работа спасет или хотя бы улучшит жизни людей. Рибозимный проект, как и многие другие научные исследования, двигали два желания: пролить свет на неизведанные явления природы и использовать полученные знания на практике. В то время, когда я решила установить молекулярную структуру рибозимов, многие биологи думали, что молекулы этого типа лягут в основу альтернативного способа лечения ряда заболеваний. Основанный на рибозимах метод терапии, каким его представляли тогда, отличался и от генной терапии (которая была нацелена на исправление генетических проблем путем добавления здоровых генов), и от редактирования генома (направленного на “починку” самих дефектных генов) тем, что позволял врачам лечить пациентов, “ремонтируя” бракованные молекулы РНК – переносчики сигналов, используемых клетками для перевода информации с ДНК в белки.
Окрыленная успехом нашего исследования рибозимов, я высказала в телевизионном эфире идею, что эти молекулы однажды станут инструментами для редактирования ДНК. В конце концов, уже в то время имелось несколько свидетельств тому, что некоторые рибозимы способны запускать химические изменения в ДНК. Пересматривая эти кадры спустя столько лет, я видела себя двадцатилетней давности, объясняющую, зачем вообще нужен рибозимный проект:
Одна из потенциальных возможностей заключается в том, что мы сможем избавлять людей от генетических нарушений или облегчать состояние пациентов с такими нарушениями… Мы надеемся, что [это открытие] подскажет нам, каким образом мы можем модифицировать рибозимы для того, чтобы они работали в качестве ремонтных наборов для молекул и исправляли дефектные гены.
В конце концов эта идея так и не воплотилась в жизнь – по крайней мере, к настоящему моменту. Хотя несколько вариантов терапии, основанной на рибозимах, в конце концов дошли до стадии клинических испытаний, эффективность в лечении генетических заболеваний не была доказана ни для одного из них. Однако это интервью из далекого прошлого резко вернуло меня к настоящему – оно было неожиданным образом связано с моим текущим исследованием.
Что привлекло мое наибольшее внимание в этих старых кадрах, так это слова, которые я выбирала для интервью: они отразили неожиданный поворот в направлении моей научной работы. Когда я описывала наше исследование рибозимов с точки зрения его потенциального применения для исправления генов, у меня и мысли не было о том, что почти двадцать лет спустя редактирование генома будет определять ход моей карьеры.
Примерно через пятнадцать лет после того, как эти телесюжеты вышли в эфир, я погрузилась в область исследований, потенциальная терапевтическая польза от которых была гораздо, гораздо больше, чем я могла себе представить в 1996-м, едва только став самостоятельным исследователем. Это произошло в момент, когда я изучала другую биологическую систему – иммунную систему бактерий, где РНК играла главную роль. Но в отличие от рибозимного проекта, который был посвящен теме, уже оказавшейся в центре внимания из-за Нобелевской премии, которой наградили открывателя рибозимов, это научное путешествие начиналось в полной безвестности: его затеяли чуть ли не ради забавы, и проект продвигался благодаря почти невероятным (но оказавшимся крайне полезными) встречам и столь же случайным, но плодотворным научным коллаборациям. Теперь, сидя в окружении своей семьи и коллег и глядя на экран, на котором блистала молодая версия меня самой, я удивлялась и радовалась тому, как наглядно идея, лежащая в основе моей работы, – исправление дефектных генов – пронизывает насквозь всю мою карьеру.

 

Я никогда не забуду, как впервые услышала термин CRISPR.
Однажды в 2006 году, когда я сидела у себя в кабинете на седьмом этаже Стэнли-холла в Калифорнийском университете в Беркли, зазвонил телефон. На проводе была Джиллиан Бэнфилд, коллега-профессор с кафедры наук о Земле и планетологии, а также с кафедры наук об окружающей среде, экологической политики и природопользования.
Я знала о Джилл только понаслышке, и она обо мне тоже; она объяснила, что нашла сайт моей лаборатории, только потратив некоторое время на его поиск в Google. Геомикробиолог, сосредоточенный в первую очередь на взаимоотношениях микроорганизмов с их окружающей средой, Джилл искала среди сотрудников Беркли исследователей, которые бы занимались РНК-интерференцией – системой процессов на молекулярном уровне, которую клетки животных и растений используют для подавления экспрессии конкретных генов; на уровне целого организма эта система задействуется во время иммунных ответов. По этой теме у нашей лаборатории имелся обширный опыт.
Джилл рассказала мне, что ее лаборатория занимается изучением чего-то, что я на слух восприняла как “криспер”, – она не объяснила, о чем речь, и даже не произнесла слово по буквам, лишь упомянула, что это название “всплыло” в каких-то наборах данных, которые анализировали ее сотрудники, – и что она хочет расширить область исследования, используя методы генетики и биохимии: именно такие инструменты могла бы предоставить моя лаборатория. В частности, Джилл считала, что между “криспером” и РНК-интерференцией могут быть некоторые параллели. Не хочу ли я встретиться и обсудить это?
Я была заинтригована напором Джилл, хотя и сомневалась насчет ее запроса; я так и не поняла, что именно она исследует. Но ее энтузиазм чувствовался даже по телефону, так что я согласилась выпить с ней чашечку кофе на следующей неделе.
После этого звонка я сделала беглый поиск по базам научных публикаций и нашла лишь несколько статей, посвященных теме, о которой с таким воодушевлением рассказывала Джилл. Для сравнения: РНК-интерференция, изучение которой началось всего-то восемь лет, упоминалась в тот момент уже более чем в четырех тысячах источников (внимание к этой теме достигло апогея, когда позднее в том же году открыватели РНК-интерференции Эндрю Файер и Крейг Мелло получили Нобелевскую премию). Из-за нехватки публикаций было трудно оценить важность темы, о которой говорила Джилл, – но именно это подстегнуло мое любопытство.
Я пробежалась глазами по нескольким обзорным статьям и прочла ровно столько, чтобы понять: эта штука – CRISPR – обозначает участок бактериальной ДНК, а сокращение расшифровывается как “кластерные короткие палиндромные повторы, разделенные регулярными промежутками, clustered regularly interspaced short palindromic repeats”. Дальше я разбираться не стала, увязнув в незнакомых терминах, и решила, что Джилл расскажет мне подробности при встрече.
Поиск информации о Джиллиан в Google показал, что она чрезвычайно успешный ученый. Яркая, предложившая неожиданные идеи во множестве самых разных областей науки, она опубликовала статьи с такими заголовками, как “Минералогические следы живого и поиск жизни на Марсе” (Mineralogical Biosignatures and the Search for Life on Mars) и “Геофизическая визуализация стимулированной микробной биоминерализации” (Geophysical Imaging of Stimulated Microbial Biomineralization). Ее исследования включали в себя сбор и изучение биологических образцов, собранных со всего света: от горных пород, слагающих земную кору под Японией, до гиперсоленых озер Австралии и закисленных водоотливов в Северной Калифорнии. Эти экзотические работы разительно контрастировали с моими: если не считать неизбежно частых визитов в Национальную лабораторию имени Лоуренса в Беркли для исследований на циклотроне, эксперименты в моей лаборатории проводились по большей части в пробирках.
Частично из-за того, что меня так впечатлили исследованияя Джилл, частично из моих собственных научных интересов я все больше хотела с ней встретиться. За четыре года до этого я перешла из Йельского университета в Беркли и переехала в Калифорнию вместе с Джейми Кейтом, который теперь стал моим мужем, и нашим новорожденным сыном Эндрю. Хотя мои текущие исследования уже развивались в некоторых новых направлениях, я надеялась расширить лабораторию и запустить в ней несколько дополнительных проектов, одновременно наладив рабочие связи с новыми коллегами. Возможно, сотрудничество с Джилл – это именно то, чего я ищу.
Мы с Джилл встретились на следующей неделе в кафе Free Speech Movement недалеко от входа в одну из студенческих библиотек кампуса. Был ветреный весенний день, и, когда я пришла в кафе, Джилл уже расположилась во внутреннем дворике, за одним из мраморных столиков. На столе лежали блокнот и стопка бумаги. Мы немного поболтали, а затем Джилл открыла блокнот и перешла к делу.
Она быстро набросала схему CRISPR. Сначала изобразила большой овал, он обозначал бактериальную клетку. Затем внутри овала нарисовала круг – бактериальную хромосому, а на одной из его сторон – чередующиеся квадратики и ромбики, символизирующие конкретный участок ДНК. Этот участок, очевидно, и представлял собой CRISPR.
Джилл заштриховала ромбики и объяснила, что все они представляют собой одинаковые последовательности примерно из тридцати “букв” ДНК. Затем она последовательно пронумеровала квадратики, начиная с цифры 1, и сказала, что каждый из них включает в себя уникальную последовательность ДНК.
Наконец я начала понимать слова, скрывавшиеся за аббревиатурой CRISPR: кластерные короткие палиндромные повторы, разделенные регулярными промежутками. Ромбики были короткими повторами, а квадратики – регулярными промежутками, которые их разделяли, и эти последовательности ромбиков и квадратиков были сгруппированы в кластеры на одном участке хромосомы, а не разбросаны по ней. Уже потом, когда я более детально ознакомилась с повторяющимися последовательностями ДНК в своем рабочем кабинете, значение буквы “P” в аббревиатуре тоже стало мне понятным: последовательности при чтении их в противоположных направлениях “звучали” практически одинаково – словно палиндром вроде “нажал кабан на баклажан”.
Сама идея, что клетки могут нести в себе повторяющиеся последовательности ДНК, не нова: более 50 процентов генома человека – существенно больше миллиарда “букв” ДНК – это различные типы повторяющихся последовательностей, и некоторые из них представлены миллионами копий. Хотя геномы бактерий сравнительно небольшие, они тоже содержат повторяющиеся последовательности. Я знала о нескольких типах, в названии которых даже присутствовали некоторые слова из расшифровки CRISPR: повторяющиеся экстрагенные палиндромы (REP) и бактериальная, рассеянная по геному, повторяющаяся ДНК (BIME). Но я никогда раньше не слышала о последовательностях ДНК, повторяющихся так точно и настолько унифицированных, чтобы все повторы действительно совпадали друг с другом и всегда были отделены от соседей последовательностями-спейсерами близкой длины, но со случайным набором нуклеотидов.
Желая узнать больше об этих странных участках бактериальной ДНК, я спросила Джилл, каковы их биологические функции, но, к моему разочарованию, Джилл ответила, что ничего об этом не знает. Однако в ее лаборатории обнаружили важную зацепку. Последовательности ДНК бактерий природных популяций показали, что буквально каждая клетка в них содержит уникальный вариант CRISPR, поскольку разделяющие регулярные повторы промежутки у каждой клетки отличаются. Это было совершенно необычно, поскольку все остальные участки ДНК у этих клеток практически совпадали. Джилл поняла, что CRISPR, скорее всего, эволюционируют быстрее всех остальных областей генома, а это указывает на то, что их функция – быстро меняться или адаптироваться в ответ на некий вызов из внешней среды, с которым сталкиваются клетки.

 

CRISPR внутри бактериальной клетки

 

Годами ранее испанский профессор Франсиско Мохика в своей новаторской работе обнаружил те же повторы у множества совершенно не родственных друг другу видов, включая архей – одноклеточных организмов, которые, как и бактерии, не имеют ядер. (Бактерии, археи – их собирательное название “прокариоты” – и эукариоты представляют собой три домена, включающих все формы жизни на Земле.) CRISPR, по словам Джилл, обнаружили в половине бактериальных геномов, секвенированных на тот момент, и почти во всех геномах архей. Выходило, что кластерные палиндромы – наиболее распространенный тип повторяющихся последовательностей ДНК у всех прокариот.
Эти факты заставили меня буквально задрожать от любопытства: если CRISPR присутствует у такого большого количества видов, то с высокой вероятностью природа использует этот инструмент для чего-то важного.
Я внимательно слушала, а тем временем Джилл вытащила из стопки бумаг три статьи, все 2005 года, и оживленно пересказала их суть. Три коллектива исследователей (один из них – под руководством Мохики) независимо друг от друга обнаружили, что многие спейсеры CRISPR – те фрагменты ДНК, что встроены между повторяющимися последовательностями, – точно совпадают с ДНК известных бактериофагов. Что еще интереснее, возникало ощущение, что между числом последовательностей ДНК в бактериальной CRISPR, совпадающей с вирусной ДНК, и числом вирусов, способных поразить эту бактерию, существует обратная зависимость: чем больше совпадений, тем ниже вероятность инфицирования. Собственное новаторское исследование Джилл, в котором геномы целых микробных сообществ были восстановлены секвенированием небольших, перекрывающих друг друга фрагментов ДНК и их сборкой в одну более длинную последовательность, также показало, что многие разделенные регулярными промежутками последовательности на содержащем CRISPR участке хромосомы соответствовали последовательностям вирусной ДНК, обнаруженным в окружающей бактериальные сообщества среде.
В совокупности эти новые сведения стали отличной подсказкой для ответа на вопрос, какую роль CRISPR играет у бактерий и архей. Авторы упомянутых статей обнаружили свидетельство в пользу того, что CRISPR, вероятно, является частью иммунной системы прокариот – адаптацией, позволяющей микроорганизмам успешно справляться с вирусами.
Напоследок, в качестве последнего козыря, Джилл выложила на стол самую новую статью о CRISPR. Опубликованная коллективом исследователей из Национальных институтов здравоохранения под руководством Киры Макаровой и Евгения Кунина, она называлась “Гипотетическая иммунная система прокариот, основанная на РНК-интерференции” (A Putative RNA-Interference-Based Immune System in Prokaryotes). Этот заголовок моментально привлек мое внимание. Хотя в этой статье, как и в трех предыдущих, явно недоставало убедительных экспериментальных данных, ее авторы проделали значительную работу, собрав всю доступную информацию о CRISPR. Сопоставив результаты множества более ранних исследований с экспертной оценкой распространения CRISPR у различных видов, они собрали из этих кусочков заманчивую новую гипотезу о том, что РНК служит ключевой составляющей иммунной системы одноклеточных организмов, таких как бактерии, и что эта система может быть функционально сходной с одним из объектов моих исследований, РНК-интерференцией.
Джилл не смогла бы найти лучшей приманки, чтобы завлечь меня в свои исследования. Не только вся моя научная деятельность до того момента была посвящена изучению молекул РНК, но я еще все больше концентрировалась на процессах РНК-интерференции в человеческих клетках. А тут еще Макарова и Кунин предполагали, что CRISPR представляет собой бактериальный аналог РНК-интерференции. Если это было верно, то моя лаборатория отлично подходит для того, чтобы разобраться с этим новым загадочным биологическим явлением. А перспективы были более чем соблазнительными, поскольку никто еще не провел экспериментов для подтверждения или опровержения теорий о биологическом смысле CRISPR – все только и делали, что плодили эти теории. Для биохимиков, таких как я, это был идеальный момент, чтобы ввязаться в борьбу за понимание того, как работает и для чего нужен CRISPR.
В завершение встречи с Джилл я поблагодарила ее и пообещала быть на связи. Мне нужно было переварить всю новую информацию и просчитать плюсы и минусы добавления исследований CRISPR к текущим проектам моей лаборатории. Если я соглашаюсь заниматься этой темой, мне понадобится ученый, постоянно занятый координацией работы по ней, так как у меня самой не хватило бы времени возглавить новый проект: я была слишком занята руководством лабораторией в целом.
Мне также нужно было освежить свои знания о мире бактерий и о вирусах, которые поражают эти бактерии. Я опубликовала немало научных статей о вирусе гепатита С, я изучала вирус гриппа с новым постдоком в собственной лаборатории, и я знала, что механизм РНК-интерференции тесно связан с противовирусной защитой растений и животных. Но я никогда не изучала вирусы бактерий и даже не особенно задумывалась о них. Если я собираюсь присоединиться к исследованиям Джилл, это положение дел нужно было менять.

 

Фредерик Туорт, британский бактериолог, работавший в начале XX века, стал первым ученым, отметившим действие бактериальных вирусов. По иронии судьбы, изначально Туорт собирался исследовать не вирусы бактерий, а вирусы, поражающие животных и растения, – а они были открыты уже давно. Однако в ходе попыток извлечь вирусы из таких субстратов, как навоз и сено, а затем культивировать их, Туорт обнаружил странную колонию бактерий из рода Micrococcus. Складывалось ощущение, что бактерии больны; вместо того чтобы, как большинство других бактерий, плотными колониями расти на питательной среде в чашках Петри, их культуры выглядели водянистыми и прозрачными. Если Туорт брал мазок с водянистой колонии микрококков и переносил его на здоровую, последняя через какое-то время тоже приобретала стеклянистый вид, словно ее чем-то заразили. Туорт написал статью, в которой предположил, что инфекционный агент в данном случае имеет вирусную природу, но идея о том, что вирусы способны заражать бактерии, в то время казалась неслыханной, а у перемен, произошедших с культурами, могли быть и другие объяснения. Ученый не мог с полной уверенностью говорить, что конкретно поразило здоровые культуры.
В 1917 году, спустя два года после публикации статьи Туорта, вирусы бактерий заново открыл канадский врач Феликс д’Эрелль. Во время Первой мировой войны д’Эрелль служил во Франции, и ему поручили расследовать причину вспышки дизентерии, которая косила солдат одного из кавалерийских эскадронов. Стремясь выяснить, почему одни больные выздоравливают, а другие нет, д’Эрелль взял у пациентов образцы кала и подверг их обстоятельному, хотя и достаточно грубому анализу. Сначала он пропустил кровянистый стул своих подопечных через мелкоячеистый фильтр, чтобы удалить из него все твердые частицы – включая бактерии. Затем д’Эрелль налил немного отфильтрованной жидкости на культуры бактерий рода Shigella, вызывающих дизентерию. На следующий день он с удивлением обнаружил, что одна из культур заразных бактерий под фекальной жидкостью “растворилась подобно сахару в воде” – исчезла буквально за ночь. Что еще интереснее, когда д’Эрелль поспешил в госпиталь узнать о состоянии пациента, у которого был взят этот образец кала, он обнаружил, что больному заметно лучше. Сопоставив эти факты, д’Эрелль заключил, что возбудителя дизентерии уничтожил некий паразит, которого ученый назвал бактериофагом (“пожирателем бактерий”); эта форма жизни должна была быть достаточно маленького размера, чтобы пройти через фильтр. Судя по всему, “бактериофаг” заражал бактерии фактически так же, как другие вирусы инфицировали растения или животных.
В последующие годы было открыто множество бактериофагов, или, сокращенно, фагов, и выяснилось, что каждый из них поражает свой конкретный вид бактерий. По мере накопления знаний о новых разновидностях фагов увеличивался ажиотаж вокруг так называемой фаговой терапии – идеи о том, что бактериофагов можно использовать для лечения микробных инфекций. Хотя некоторым ученым претила идея вводить живые вирусы в организм человека, клинические испытания показывали, что фаги “не замечают” человеческие клетки и видимых побочных эффектов у фаговой терапии нет. В 1923 году д’Эрелль помогал советским ученым организовать институт в Тбилиси, исследования в котором были посвящены бактериофагам; во времена своего расцвета учреждение насчитывало более тысячи сотрудников, производящих тонны фагов в год для клинического использования. В некоторых уголках мира фаговую терапию используют и по сей день – в Грузии в настоящее время фаги назначают при бактериальных инфекциях примерно в 20 процентах случаев. Однако после того как в 1930-х были открыты антибиотики (а в 1940-х началось их массовое производство), этот способ терапии был быстро забыт, особенно на Западе.
Хотя бактериофаги нашли лишь ограниченное применение в медицине, для генетиков они стали настоящим подарком судьбы. К тому моменту, когда ученые с помощью новых электронных микроскопов с большим увеличением смогли впервые увидеть фагов (это случилось в 1940–1950-е годы), эти вирусы вкупе с бактериями-жертвами уже предоставили очередное доказательство дарвиновской теории естественного отбора. Они помогли установить, что именно ДНК, а не белки, служит “молекулой наследственности” в клетках. Тот факт, что генетический код триплетен (то есть каждые три “буквы” ДНК обозначают одну аминокислоту в белке), был впервые продемонстрирован на примере фагов; эксперименты с последними позволили также выяснить, как “включаются” и “выключаются” гены внутри клетки. Даже открытие Джошуа Ледерберга (он обнаружил, что вирусы могут вносить чужеродные гены в инфицированные ими клетки, и это стало одним из ранних подступов к генной терапии) было сделано благодаря фагу, специализирующемуся на бактериях рода Salmonella. Во многом именно эксперименты с вирусами бактерий заложили основы молекулярной генетики.
Кроме того, изучение фагов послужило толчком к революции в молекулярной биологии 1970-х годов. Исследуя иммунные механизмы, с помощью которых бактерии дают отпор фаговым инфекциям, ученые обнаружили класс ферментов, называемых эндонуклеазами рестрикции; их можно “настроить” таким образом, чтобы они разрезали фрагменты искусственно синтезированной ДНК (это было показано в простых экспериментах вне живых объектов). Используя сочетание этих ферментов с другими ферментами, выделенными из инфицированных фагами клеток, исследователи сумели создать и клонировать искусственные молекулы ДНК в лабораторных условиях. Одновременно с этим геномы фагов послужили прекрасной мишенью для только что разработанных технологий секвенирования ДНК. В 1977 году Фред Сенгер и его коллеги успешно определили последовательность всех нуклеотидов ДНК в геноме фага ФX174. Двадцать пять лет спустя тот же фаг снова оказался в центре внимания: он стал первым объектом, чей геном был синтезирован с нуля.
Впрочем, бактериофаги – это не просто популярные “подопытные кролики”. Это еще и наиболее многочисленные биологические объекты на планете – и по этому показателю они лидируют с большим отрывом. Фаги в природе так же вездесущи, как свет и почва, и их можно найти в грязи, воде, человеческом кишечнике, горячих источниках, ледяных кернах и практически во всех других местах, где возможна жизнь. Ученые оценивают численность бактериофагов на Земле в 1031 вирусных частиц – десять миллионов триллионов триллионов, или единица с 31 нулем. В одной чайной ложке морской воды в пять раз больше фагов, чем в Нью-Йорке людей. Невероятно, но фагов на планете намного больше, чем бактерий, которые они могут инфицировать; столь же вездесущие, как и микроорганизмы, бактериофаги превышают численность последних на порядок. Они вызывают примерно триллион триллионов инфекций по всему миру каждую секунду, а если брать только океан, то там ежедневно от смертоносного заражения фагами погибает около 40 % всех бактерий.
Эти вирусы созданы для убийства: в течение миллиардов лет они эволюционировали, чтобы научиться заражать бактерии с беспощадной эффективностью. Все фаги состоят из прочной белковой наружной оболочки, называемой капсидом, в которую упакован генетический материал. Фаговый капсид может иметь одну из десятков разнообразных форм, и все они спроектированы таким образом, чтобы максимально эффективно защищать геном вируса и успешно переносить его генетический материал в бактериальные клетки, где тот способен размножаться и распространяться. Некоторые фаги имеют изящную икосаэдрическую форму, у других длинный хвост присоединяется к шарообразному капсиду. Нитевидные фаги цилиндрические. Возможно, самые устрашающие из этих вирусов – те, что похожи на инопланетные корабли, с “ногами” для закрепления на поверхности клетки, “головой”, в которой хранится ДНК, и “насосами”, впрыскивающими эту ДНК в клетку после того, как фаг закрепится снаружи.

 

Примеры различных бактериофагов

 

Методы работы вирусов, как и их внешний вид, разнообразны, но неизменно (и смертоносно) эффективны. Некоторые вирусные геномы упакованы в капсид так плотно, что генетический материал под давлением буквально выстреливает в клетку, словно пробка от шампанского, как только нарушается целостность белковой клеточной оболочки. Сразу после того, как геном вируса попал в клетку, он способен захватить контроль над клеткой-хозяином одним из двух способов. При паразитическом, или лизогенном, жизненном цикле геном вируса внедряется в геном хозяина и в таком виде, никак себя не проявляя, может передаваться из поколения в поколение, ожидая подходящего момента для нападения. Напротив, при инфекционном, или литическом, жизненном цикле геном вируса сразу же захватывает ресурсы клетки-хозяина, заставляя их работать на себя: производить вирусные белки вместо микробных и многократно копировать геном фага до тех пор, пока клетка не лопнет от распирающих ее вирусных частиц, разбросав последние на соседние бактерии. С помощью этого цикла внедрения в клетку, захвата контроля над ней и распространения по ее потомкам или соседям один-единственный фаг может полностью уничтожить целую популяцию бактерий за считанные часы.
Но бактерии не так уж беспомощны в этой старой как мир войне. Точно так же как растения и животные, за миллиарды лет эволюции они выработали впечатляющие стратегии защиты. К моменту нашего разговора с Джилл у бактерий уже были открыты четыре основные защитные системы. В рамках наиболее выдающейся из них бактерии “навешивают” на свой геном уникальные метки, немного меняющие химические свойства ДНК, но не меняющие экспрессию генетической информации. В дополнение к этому бактерии производят ферменты (эндонуклеазы рестрикции), которые разрезают любую ДНК, не несущую таких меток, зачищая клетку ото всех фаговых генов, проникших под ее оболочку. Также бактерии способны попросту заблокировать фаговой ДНК путь внутрь себя – либо заделывая отверстия, проделанные этими вирусами, в результате чего последние не могут ввести ДНК в клетку, либо делая неузнаваемыми белки на своей поверхности, к которым в обычных условиях прикрепляются фаги. У бактерий даже развилась способность чувствовать наступающую инфекцию и “совершать самоубийство” до распространения заразы – самоотверженный способ защитить остальные клетки в сообществе.

 

Литический жизненный цикл бактериофага

 

Может ли CRISPR быть еще одним механизмом антивирусной защиты? Чем больше я читала о гонке вооружений между бактериями и бактериофагами, тем более вероятным мне казалось существование других, еще не открытых, орудий, которые они используют в борьбе друг с другом.
Более того, узнавая все больше о CRISPR, я начинала понимать, в каком направлении будут двигаться исследования в нашей лаборатории, если мы примем предложение Джилл. Расчеты голландца Рююда Янсена и его коллег – это они в 2002-м предложили аббревиатуру CRISPR – выявили набор генов, которые в бактериальных хромосомах почти всегда примыкали к участкам с CRISPR. Они разительно отличались и от повторяющихся последовательностей, и от спейсеров в CRISPR.
Даже то немногое, что мы тогда знали об этих ассоциированных с CRISPR генах, или cas-генах, подсказывало, что они представляют собой нечто крайне интересное. Сравнение их строения со строением уже известных генов позволило предположить, что cas-гены кодируют специализированные ферменты, в чьи функции может входить разделение двух цепочек двойной спирали ДНК или разрезание молекул РНК либо ДНК, как у эндонуклеаз рестрикции (последние режут только ДНК).
Учитывая, насколько полезным оказалось открытие эндонуклеаз рестрикции для развития технологии рекомбинантных ДНК в 1970-е годы, казалось весьма вероятным, что при более глубоком изучении разных аспектов работы CRISPR мы обнаружим целый клондайк новых ферментов – и эти белки тоже будут иметь значительный биотехнологический потенциал.
Вот так все это и случилось. Я оказалась на крючке.

 

Учеными, которые занимаются фундаментальными исследованиями, движут азарт, любопытство, интуиция и упорство – но вдобавок к этим возвышенным качествам нам необходима здоровая доза практичности. Это и банальные поиски финансирования, и непрерывное решение вопросов управления. Те из нас, кто руководит собственными лабораториями, вынуждены делегировать другим ученым множество задач, которые мы прекрасно умеем выполнять самостоятельно. Часто это означает, что каждый раз, когда мы приступаем к новому для нас направлению исследований, нам нужно найти подходящего человека, который отвечал бы за этот участок.
По счастью, моя лаборатория в Беркли получала довольно хорошее финансирование, но когда Джилл рассказала мне о CRISPR, никто из моих сотрудников не был достаточно квалифицирован для того, чтобы взять на себя этот новый, непредсказуемый и потенциально рискованный проект. И тут нам повезло: на собеседование на вакансию постдока пришел Блейк Виденхефт. Когда я спросила молодого претендента на вакансию, над чем он хотел бы работать, то, к своему восхищению, получила в ответ встречный вопрос: “А вы слышали когда-нибудь о CRISPR?” Я тут же взяла Виденхефта на работу. Всего несколько месяцев спустя Блейк обжился в Беркли и самозабвенно работал над успешным запуском проекта по изучению CRISPR.
Дружелюбный и располагающий к себе уроженец Монтаны, впитавший вместе с любовью к спортивным играм присущий им дух соперничества, Блейк приехал в Беркли из Бозмена, из Университета штата Монтана, где он получил и высшее образование, и степень доктора философии. В отличие от большинства исследователей, которых мне приходилось брать на работу до него (все они специализировались на биохимии или структурной биологии), Блейк был прирожденным микробиологом. Подобно Джилл, часть своих исследований он проводил в лаборатории, а часть – собирая образцы в полевых условиях. Работа над докторской диссертацией заносила его и в Йеллоустонский национальный парк, и в Россию, на Камчатку, где в кислотной воде горячих источников он обнаружил ранее неизвестные вирусы, способные выживать и сохранять способность к заражению при температурах выше 75 °C. Стало известно, что эти вирусы инфицируют архей – одноклеточные организмы, похожие на бактерии; в геноме почти у каждой археи есть CRISPR. После секвенирования геномов двух выделенных им вирусов Блейк обнаружил, что значительная часть ДНК у них совпадает. Это означало, что у вирусов должен был быть общий предок – несмотря на огромное расстояние, отделяющее Йеллоустон от Камчатки. Геномы вирусов также содержали ответы на вопрос, каким образом они заражают своих хозяев; анализируя конкретные вирусные гены, Блейк вычислил, какой именно фермент, скорее всего, давал вирусам возможность встраивать фрагменты своих геномов в ДНК ничего не подозревающих хозяев.
Именно такого рода “расследование” нам надо было провести в отношении CRISPR – только в обратную сторону. Вместо того чтобы сконцентрироваться на вирусных генах, обеспечивающих инфицирование, нам необходимо было выследить те гены в бактериях, которые препятствуют заражению – и ассоциированы с CRISPR. Или гены, которые, как мы считаем, препятствуют заражению. Мы в то время еще не были уверены, что именно обеспечивает этот эффект – cas-гены или сам CRISPR.
Большая часть наших ранних обсуждений вращалась вокруг привлекательной гипотезы, согласно которой CRISPR и cas-гены представляют собой части одной системы иммунной защиты от вирусов и РНК используется в этой системе для обнаружения последних. Но гипотеза – лишь первый этап любого обстоятельного научного исследования. Так что нам нужно было еще проверить эту гипотезу и собрать сведения, подтверждающие или опровергающие ее.
На встречах с Джилл и несколькими заинтересованными учеными в Национальной лаборатории имени Лоуренса всего в нескольких минутах ходьбы от моего кабинета в Беркли мы с Блейком размышляли, как нам организовать наши эксперименты. Главный вопрос заключался в том, какой модельный организм нам использовать. В качестве одного из вариантов мы рассматривали Sulfolobus solfataricus, архею, которую впервые выделили из воды горячих источников вулкана Сольфатара рядом с Неаполем. Известно было, что ее клетки содержат CRISPR и что их поражают вирусы, обнаруженные Блейком в Йеллоустоне и на Камчатке, – что было удобно, поскольку Блейк был хорошо знаком с этими формами.
Другим “кандидатом” выступала кишечная палочка Escherichia coli, которую часто называют просто E. coli. Наиболее хорошо изученный на данный момент вид бактерий, E. coli подвержена заражению десятками одинаково хорошо изученных фагов, многие из которых можно просто заказать в интернете. (Также E. coli принадлежит честь быть первой бактерией, у которой определили последовательность CRISPR.) В дополнение к этому Блейк предложил Pseudomonas aeruginosa, патогенную бактерию, которая, как было известно, устойчива ко многим антибиотикам и несет в себе CRISPR. Мы знали, что сможем манипулировать ДНК P. aeruginosa, используя разнообразные инструменты генной инженерии, и что эту бактерию инфицируют многочисленные фаги (Блейк провел некоторое время в поисках новых фагов Pseudomonas, но не в экзотических местах вроде Йеллоустона, а на местных канализационных очистных сооружениях области залива Сан-Франциско).
Блейк четко дал мне понять, что он хочет сфокусироваться на изучении биохимии и структурной биологии во время работы в моей лаборатории, и ему не терпелось приступить к научной работе в новом направлении. Перед исследованиями CRISPR он очистил белки семейства Cas, закодированные в геноме P. aeruginosa, и стал проверять их на способность каким-либо образом распознавать или разрушать вирусную ДНК, начав с наиболее распространенного из них – белка Cas1. Затем (это было в 2007 году, примерно в то же время, когда Блейк начал работать в моей лаборатории) Джилл сообщила нам, что скоро будет опубликована важная статья исследователей из Danisco – датской биотехнологической компании и одновременно одного из ведущих мировых производителей пищевых ингредиентов. В своем исследовании они с помощью генетических методов показали, что CRISPR действительно представляет собой бактериальную иммунную систему – хотя спектр ее возможностей на тот момент оставался неизвестным.
Предметом исследования ученых из Danisco была ферментирующая молоко бактерия под названием Streptococcus thermophilus, один из ключевых пробиотиков, используемых в производстве йогурта, сыра моцарелла и бесчисленного множества других молочных продуктов. Человечество поглощает существенно больше миллиарда триллионов клеток живых S. thermophilus в год, и годовая рыночная стоимость культур этих бактерий превышает сорок миллиардов долларов. Вероятно, не стоит удивляться, что эти масштабные инвестиции в молочную промышленность постоянно находятся под угрозой фаговых инфекций – наиболее распространенной причины потерь продукции и неполного брожения. В одной капле сырого молока содержится от десятка до тысячи вирусных частиц, что делает полное уничтожение фагов в нем просто невозможным. Компании, подобные Danisco, пытались бороться с фагами, совершенствуя технологии очистки молока и оборудование фабрик, а также принимая другие меры, – но проблему так и удалось решить.
Работая совместно с Филиппом Хорватом и его командой из французского филиала Danisco, группа исследователей под руководством Родольфа Баррангу из американского филиала компании изучала S. thermophilus в попытках найти решение. Родольф и Филипп задумались над тем, что делает некоторые штаммы S. thermophilus более устойчивыми к фаговым инфекциям по сравнению с другими. В молочной промышленности уже начали применять линии мутантных бактерий, менее восприимчивых к бактериофагам, но Родольф и Филипп подозревали, что участки CRISPR в геноме S. thermophilus могут обеспечивать бактерии иммунитетом такого типа, что он окажется даже более сильным, чем случайные мутации у упомянутых штаммов.
Последовательности CRISPR у S. thermophilus, как было известно Родольфу и Филиппу, обладают определенными необычными свойствами, которые можно было бы использовать в экспериментальной работе. Александру Болотину удалось обнаружить некоторые из этих свойств, когда он секвенировал геном S. thermophilus; позднее Болотин сосредоточился на изучении ДНК CRISPR и в конце концов проанализировал более двадцати различных штаммов. В ходе этой работы он заметил, что, хотя повторяющиеся последовательности CRISPR (заштрихованные черным ромбики на рисунке Джилл) всегда были одинаковыми, спейсерные последовательности (пронумерованные квадратики на том же рисунке) у представителей разных штаммов заметно отличались. Более того, многие из этих спейсеров фактически совпадали с участками фаговых геномов, секвенированными незадолго до этого. (Результаты работы Болотина обобщены в одной из трех статей 2005 года, которые Джилл показывала мне в кафе Free Speech Movement.) Главный вывод из статьи Болотина таков: штаммы S. thermophilus, в CRISPR которых было больше таких спейсеров, оказались более устойчивыми к заражению фагами. Хотя было не особенно понятно, какое это имеет значение, казалось, что бактерии неким образом модифицируют свою ДНК в составе CRISPR, имитируя геномы определенных фагов и совершенствуя собственную иммунную систему – если предположить, что CRISPR является таковой, – чтобы эффективнее бороться с этими вирусами.
Основываясь на работе Болотина, Родольф и Филипп спланировали эксперименты для проверки этого предположения. Действительно ли штамм S. thermophilus способен повышать свою устойчивость к конкретному бактериофагу, вставляя себе в область CRISPR новые фрагменты ДНК, совпадающие с последовательностями ДНК этого фага?
В своих опытах исследователи из Danisco сосредоточились на штамме S. thermophilus, который широко используется в молочной промышленности, и на двух вирулентных фагах, выделенных из образцов фабричного йогурта. Основой методики послужили простейшие генетические эксперименты – подобные проводили с начала XX столетия. Ученые заражали популяции бактерий в отдельных пробирках двумя фагами, инкубировали их 24 часа, а затем проверяли, остались ли в этих культурах живые бактерии, высевая их в чашки Петри и оставляя их на ночь расти. Было обнаружено, что, хотя фаги уничтожили более 99,9 % бактерий, девять новых, мутировавших штаммов S. thermophilus, видимо, были устойчивы к заражению фагами.
В этой части исследования Danisco не было ничего принципиально нового, поскольку другие ученые тоже использовали сходные методы для обнаружения резистентных к фагам штаммов S. thermophilus. Но Родольф и Филипп пошли дальше. Они попытались выяснить, что именно на уровне генов обеспечивает бактериям эту наблюдаемую неуязвимость.
У Родольфа и Филиппа была одна догадка по поводу того, какая часть бактериального генома делала мутировавшие штаммы S. thermophilus устойчивыми к заражению вирусами: они подозревали, что за это отвечает CRISPR, и предполагали, что участки CRISPR у девяти новых мутантных штаммов по строению отличаются от таковых у предкового штамма. И действительно: выделив геномную ДНК из каждого мутантного штамма, исследователи обнаружили, что каждая область с CRISPR расширилась за счет вставки новых кусочков ДНК между повторами. Более того, эти новые спейсеры точно повторяли последовательности ДНК фага, к которому конкретный штамм приобрел иммунитет. Особенно примечательным казалось следующее: благодаря физическому встраиванию в область CRISPR бактериальной ДНК новоприобретенная устойчивость наследовалась и могла передаваться всем последующим поколениям при каждом делении.
Исследователи из Danisco обнаружили еще один способ борьбы бактерий с вирусами – их пятый набор вооружения. Как мы теперь знаем, в дополнение к ранее открытым системам защиты у бактерий имеется (в виде CRISPR) удивительно эффективная система противовирусного адаптивного иммунитета, позволяющая “воровать” кусочки ДНК фагов, когда последние заражают бактерии, и использовать их для обеспечения иммунного ответа в будущем. По выражению Блейка, CRISPR работал как “молекулярная карта” профилактических прививок: сохраняя память о предыдущих фаговых инфекциях в форме спейсерных последовательностей ДНК, запрятанных в рядах из повторов и спейсеров, бактерии могли использовать эту информацию для распознавания и разрушения тех же самых фагов во время новых столкновений с ними.

 

CRISPR: молекулярная карта профилактических прививок

 

С момента публикации исследования Danisco малопонятная биология CRISPR начала привлекать внимание исследователей. Кроме того, эта статья стала поводом для проведения первой посвященной CRISPR встречи, которая состоялась в Калифорнийском университете в Беркли в 2008 году и была организована Джилл Бэнфилд и Родольфом Баррангу. Однако, как это всегда бывает в науке, исследователи приоткрыли одну дверь, чтобы обнаружить за ней другую. Поскольку для иммунного ответа CRISPR требуется, чтобы последовательности ДНК в вирусном и бактериальном геноме полностью совпадали, было понятно, что эта иммунная система “целится” в генетический материал фагов, чтобы разрушить его, – но как? Какая составляющая клетки наводилась на цель?
Прошло не так уж много времени, и начал вырисовываться ответ и на этот вопрос. Стэн Броунс, постдок из лаборатории Джона ван дер Ооста в Вагенингенском университете в Нидерландах, предоставил убедительное доказательство того, что молекулы РНК задействованы в основанной на CRISPR защите от вирусов. Стэн опирался на более раннее исследование, в ходе которого были обнаружены молекулы РНК, в точности совпадающие с последовательностью ДНК CRISPR в клетках архей различных видов (включая обитающие в вулканах штаммы Sulfolobus, которых изучал Блейк). Это позволило предположить, что РНК может координировать в иммунном ответе стадии распознавания и разрушения фагов. А Стэн, экспериментируя с E. coli, добавил к этим наблюдениям новые сведения, подтвердив, что РНК играет эту роль в основанной на CRISPR системе защиты у совершенно иного микроорганизма, – и это послужило хорошим аргументом в пользу того, что РНК необходима для всех связанных с CRISPR иммунных систем.
Стэн также показал, каким образом в клетке синтезируются молекулы РНК CRISPR. Сначала бактериальная клетка “переводит” весь ряд элементов CRISPR в длинные цепочки РНК, с точностью до буквы совпадающие с последовательностью нуклеотидов в ДНК CRISPR (как мы помним, РНК – молекула-сестра ДНК, состоящая из тех же “букв”, с той только разницей, что “буква” Т в ДНК в РНК заменяется на У). Как только клетка синтезирует эти длинные цепочки РНК на основе CRISPR, фермент с хирургической точностью разрезает их на более короткие РНК одинаковой длины, единственное отличие между которыми – последовательности нуклеотидов в их спейсерах. В ходе этого процесса длинные повторяющиеся последовательности ДНК переводятся в библиотеку из более коротких молекул РНК, каждая из которых содержит одну последовательность, построенную на основе фрагмента генома конкретного фага.
Эти данные указали на ключевую роль, которую РНК CRISPR играет в бактериальной иммунной системе, – и для этой роли РНК идеально подходит. Поскольку РНК химически очень похожа на ДНК, она также может образовывать двойные спирали за счет комплементарных взаимодействий азотистых оснований (которые лежат и в основе знаменитой двойной спирали ДНК). Подходящие (комплементарные) цепочки РНК могут взаимодействовать друг с другом, формируя двойную спираль РНК – РНК, но и одна цепочка РНК способна соединяться с подходящей одиночной цепочкой ДНК с образованием двойной спирали РНК – ДНК. Эта вариабельность и многообразие последовательностей, обнаруженных в РНК CRISPR, подсказали ученым заманчивую идею. Казалось возможным, что молекулы РНК CRISPR способны “вывести из игры” ДНК и РНК фагов-интервентов, образуя пары с любыми из них, подходящими по последовательности нуклеотидов, и запуская в клетке некий иммунный ответ.
Если РНК в самом деле помогает таким образом “целиться” в генетический материал вирусов, то механизм CRISPR, видимо, действительно похож на механизм РНК-интерференции, который изучали в моей лаборатории, – как и предполагали авторы той статьи, которая и “подсадила” меня на изучение CRISPR! При РНК-интерференции в клетках растений и животных для разрушения вирусов-интервентов образуются двойные спирали РНК – РНК. Вероятно, весьма похожим образом – используя двойные цепочки РНК – РНК, молекулы РНК CRISPR атакуют фаговые РНК в ходе иммунного ответа. Я была очарована открывавшейся здесь дополнительной возможностью: в отличие от РНК-интерференции, молекулы РНК в механизме CRISPR были способны распознавать и комплементарную ДНК – и благодаря этому “CRISPR-оружие” могло атаковать вирусные геномы по двум фронтам сразу.
Вскоре после открытия Стэна два исследователя из Северо-Западного университета – Лучано Марраффини и его наставник Эрик Сонтхаймер (с которым мы были знакомы еще со времен, когда он учился в Йеле) – выяснили, что РНК CRISPR действительно способна управлять процессом разрушения ДНК. Работая с еще одним микроорганизмом под названием Staphylococcus epidermidis – сравнительно безобидной бактерией с поверхности кожи человека (но близкой родственницей опасного и устойчивого к антибиотикам штамма золотистого стафилококка Staphylococcus aureus), Лучано спланировал серию элегантных экспериментов, чтобы доказать, что РНК CRISPR нацеливается на ДНК генетических паразитов-вторженцев. Он также показал, что это наведение на цель, скорее всего, производится за счет комплементарных взаимодействий азотистых оснований – единственного процесса, способного обеспечить специфичность, с которой CRISPR уничтожал свою жертву.
Скорость и тщательность проведения этих исследований захватывали дух. Всего за несколько лет после моего знакомства с механизмом CRISPR его изучение из россыпи интересных, но мало что объясняющих работ переросло во всеобъемлющую единую теорию устройства и работы системы приобретенного (адаптивного) иммунитета микроорганизмов. Эта теория была основана на непрерывно растущем множестве экспериментальных исследований, и, хотя к концу двухтысячных было уже опубликовано немало фундаментальных статей, было очевидно, что всем нам предстоит проделать еще больший объем работы, чтобы действительно разобраться в этой мудреной бактериальной системе защиты.
CRISPR, как мы начинали понимать, имеет гораздо более сложное строение, чем можно вообразить для какого-либо компонента простого одноклеточного организма. В некоторых отношениях открытие этой части иммунной системы бактерий поставило их на одну доску с людьми, так как продемонстрировало, что и те и другие обладают сложными формами клеточного ответа на инфекцию. Правда, никто из нас не знал, какое значение эта бактериальная система защиты может иметь для нашего вида.
Назад: Глава 1 В поисках исцеления
Дальше: Глава 3 Взламывая код