Книга: Мозг. Такой ли он особенный?
Назад: 4. Не все мозги устроены одинаково
Дальше: Что означает разница в правилах нейронного шкалирования

Помимо грызунов и приматов

Ныне живущие грызуны и приматы – достаточно близкие родственники, приблизительно в той же степени, в какой мы являемся родственниками нашим двоюродным братьям и сестрам. Дело не в том, что приматы произошли от грызунов или мы произошли от наших кузенов (последнее невозможно, особенно если мы одного возраста), а в том, что грызуны и приматы произошли от какого-то одного общего для них предка. В случае нас и наших кузенов таким общим предком может быть бабушка или дедушка, которых уже, быть может, нет в живых, но по устным рассказам и по метрическим книгам мы можем узнать, какими они были, когда жили и здравствовали. В случае грызунов и приматов общий предок, от которого произошли только эти два таксона, жил приблизительно 95 миллионов лет тому назад.
Генеалогическое родство с предками, жившими и вымершими так давно, можно установить с помощью некоторых современных и не очень современных методов. Независимо от того, какие методы привлекаются для решения этой задачи – радиометрическое датирование, секвенирование нуклеиновых кислот или белков или даже старомодное сравнение морфологических характеристик, – все полученные данные приходится анализировать математическим анализом «кладистики», задачей которой является определение, какая группа видов (клада) происходит от данного общего предка, а какая – нет. Конечно, данные, полученные в ходе кладистического анализа, не всегда согласуются между собой; различия в результатах могут быть обусловлены особенностями какого-то конкретного вида, генов и сравниваемого белка, разницей в частоте мутаций – и это всего несколько из возможных причин. Генеалогическое древо ныне живущего вида продолжает развиваться, изменяясь, когда появляется новое свидетельство, бросающее вызов старым интерпретациям данных и предполагающее новое теоретическое объяснение эволюции вида.
Тем не менее неоспорим тот факт, что виды, живущие сегодня на Земле, населяли ее не всегда, так же как и то, что некогда на нашей планете жили виды, которых сегодня нет. Скелеты существ, принадлежащих к виду современного человека, имеют возраст максимум 200 тысяч лет; с другой стороны, трилобиты процветали в период между 540 и 250 миллионов лет назад, но их остатки не находят ни в предшествующих, ни в более поздних отложениях. То же самое касается и динозавров: их остатки находят в породах, возраст которых оценивают в 230 миллионов лет, но не старше. Динозавры исчезли 65 миллионов лет назад, когда в полуостров Юкатан врезался крупный метеорит или комета. С тех пор никто и никогда не видел живого динозавра, хотя на них очень похожи современные ящерицы и крокодилы. Жизнь – во всяком случае, в том виде, в каком она сохранилась в ископаемых остатках, – со временем развивалась, эволюционировала, ибо слово «эволюция», собственно, означает всего лишь «изменение». Таким образом, эволюция не теория – это неоспоримый факт: жизнь изменилась с течением времени. С другой стороны, теориями являются соображения о том, как происходили эти изменения, посредством каких механизмов, какими исторически прослеживаемыми путями.
Современный консенсус, основанный на молекулярно-биологических методах исследования и на математическом анализе самых выгодных возможностей, предполагает, что из всех современных зверей (плацентарных млекопитающих за вычетом однопроходных и сумчатых) африканские звери раньше всех ответвились от всеобщего предка, а китопарнокопытные (парнокопытные и китообразные) ответвились последними или, во всяком случае, сравнительно недавно, как это показано на рис. 4.7. Грызуны и приматы сделали это где-то в промежутке, объединенные в надотряд Euarchontoglires, однако это объединение, сделанное в 2007 году, ничего не дает нам в смысле оценки строения их головного мозга. Если бы мы могли определить правила нейронного шкалирования, верные в отношении африканских настоящих зверей, с одной стороны, и в отношении парнокопытных – с другой, и сравнить их с правилами, верными в отношении грызунов и приматов (а возможно, и других клад), то мы смогли бы претендовать на самое экономичное объяснение тому, как стало возможным разнообразие строения головного мозга, имеющее место в наши дни.

 

Рис. 4.7. Генеалогическое древо или наглядное изображение эволюционных отношений между ныне живущими видами млекопитающих (даты представлены в миллионах лет). Грызуны и приматы являются разными ответвлениями одной группы, особого надотряда плацентарных млекопитающих – Euarchontoglires, – тем не менее к их мозговой коре и мозжечку приложимы разные правила нейронного шкалирования. Цифры взяты с разрешения, из Herculano-Houzel, 2012

 

К 2014 году, то есть приблизительно через десять лет после того, как был создан метод превращения мозга в суп для подсчета содержащихся в нем клеток, благодаря маленькой армии студентов и сотрудников мы опубликовали данные, касающиеся 41 вида, принадлежавшего шести различным кладам млекопитающих. Вместе с Кеном Катания мы смогли определить правила шкалирования для насекомоядных, самых мелких из ныне живущих млекопитающих; в сотрудничестве с Полом Мэнджером мы поняли, каковы правила нейронного шкалирования у африканских зверей и парнокопытных на другом краю эволюционного древа настоящих зверей (плацентарных млекопитающих). Теперь мы могли приступить к исследованию всех этих видов и постараться выявить разницу и сходство в том, как изменялся их мозг по массе в процессе увеличения числа нейронов, и, таким образом, впервые обратить внимание на происхождение разнообразия мозга, возникшего в ходе эволюции млекопитающих.
Мы обнаружили, что картина с мозговой корой была абсолютно ясна. Правила нейронного шкалирования, которые, как мы видели, приложимы к грызунам, можно было распространить и на очень древнюю группу афротерий, или африканских зверей (землеройки и кроты плюс африканские слоны); на очень мелких, но не столь древних насекомоядных (еще кроты и землеройки), которые, как выяснилось, являются отдельной группой афротерий, что упразднило старый термин Insectivores с заменой его термином Eulipotyphla; и на более молодую группу парнокопытных (свинья, куду, жираф). Как показано на рис. 4.8, мозговая кора всех животных, не относящихся к приматам, имеет одно и то же соотношение между массой коры и числом нейронов, в то время как у приматов оно другое.

 

Рис. 4.8. Масса мозговой коры увеличивается сходным образом у грызунов, африканских зверей, насекомоядных и парнокопытных (окружности) по мере увеличения числа нейронов, но не так, как у приматов (треугольники). Линии указывают на степенные зависимости, которые наилучшим способом описывают вариации массы коры как функции числа нейронов в коре приматов (показатель степени +1,0) и в коре всех других кладов млекопитающих (показатель степени +1,6). Чем больше мозговая кора, тем больше рассогласованность в числе нейронов, обнаруженных в коре у приматов и неприматов при ее равной массе; в коре приматов содержится все больше и больше нейронов в сравнении с числом нейронов в коре неприматов

 

Мы получили ответ на эту загадку, что показано на рис. 4.9. Учитывая имеющие место эволюционные отношения среди видов и групп млекопитающих, которых мы исследовали, наиболее экономичным объяснением правил нейронного шкалирования у приматов и неприматов было следующее: правила шкалирования для неприматов, общие для всех современных видов, принадлежащих к кладам млекопитающих – как древним, так и молодым в отношении их эволюционного происхождения, – были характерны и для предковых форм всех плацентарных млекопитающих и остались практически неизменными с тех пор, ибо в противном случае у каждой из исследованных нами групп неприматов были бы свои собственные правила нейронного шкалирования. Приматы, в свою очередь, отклонились от предковых правил нейронного шкалирования и нашли свой собственный путь: правило нейронного шкалирования приматов – паковать в единицу объема коры больше нейронов. (Остается самый жгучий вопрос: как выглядит человек в сравнении с другими приматами? Но с ответом мы подождем до следующей главы.)

 

Рис. 4.9. Предположительная схема эволюции роста массы мозговой коры в зависимости от роста числа нейронов: правила нейронного шкалирования, характерные для современных африканских зверей, грызунов, насекомоядных и парнокопытных, как можно допустить, были уже характерны для их общего предка и сохранились в эволюции у их потомков, но эти правила изменились при отхождении той ветви животных, которые затем дали начало приматам

 

Мы можем говорить об «отклонении» от предкового правила нейронного шкалирования у приматов по мере увеличения мозговой коры, потому что эволюционная история млекопитающих – это история сильной тенденции к увеличению размеров мозга, начиная с очень мелких животных с таким же малым головным мозгом. Самым близким известным родственником всех современных млекопитающих является похожее на млекопитающее существо Hadrocordium wui, масса тела которого, вероятно, не превышала 2 г, то есть приближалась к массе тела самых мелких современных насекомоядных и летучих мышей. Это существо жило на Земле около 195 миллионов лет назад. Согласно оценкам, мозг Hadrocordium весил около 0,04 г, а масса коры была равна, вероятно, 0,02 г при числе нейронов в ней всего 3,6 миллиона, что намного меньше чисел нейронов, какие мы обнаружили у всех исследованных нами млекопитающих. Но мы можем представить себе, что те ранние виды имели мозговую кору, которая уже была построена согласно правилам нейронного шкалирования, которые оставались неизменными в линиях, давших начало современным африканским зверям, грызунам, насекомоядным и парнокопытным, в равной степени, а группа, которая, в конце концов, дала ответвление, получила в дополнение измененные правила формирования коры мозга, и это были приматы – они получили в дар возможность паковать в единице объема мозга больше нейронов.
Что можно сказать о мозжечке? Здесь мы обнаруживаем, что африканские звери (за исключением слонов, о которых речь пойдет в главе 6) и парнокопытные отличаются теми же правилами нейронного шкалирования, какие были обнаружены у грызунов, в то время как у насекомоядных эти правила отличаются как от приматов, так и от других групп, как это показано на рис. 4.10. Интересно отметить, что упаковка нейронов в мозжечке насекомоядных является более плотной, чем в мозжечке сравнимой массы у грызунов и африканских зверей. Например, в мозжечке восточноамериканского крота (отряд насекомоядных) при массе 0,153 г содержится 158 миллионов нейронов, в то время как в немного меньшем мозжечке хомячка (отряд грызунов) при массе 0,145 г имеется всего 61 миллион нейронов, а в мозжечке прыгунчика (африканские звери) при массе 0,168 г – 89 миллионов нейронов.

 

Рис. 4.10. Масса мозжечка растет у грызунов, африканских зверей и парнокопытных (сплошные кружки) по мере увеличения числа нейронов, но не как у приматов (треугольники) и насекомоядных (белые кружки), у которых в мозжечке также увеличивается число нейронов. Линии графиков соответствуют степенным зависимостям, которые наилучшим образом описывают изменения массы коры как функции числа нейронов в коре приматов (показатель степени +1,0), насекомоядных (показатель степени тоже равен +1,0, но с вертикальным сдвигом прямой), а у остальных клад показатель степени равен +1,3. Число нейронов мозжечка насекомоядных хотя и сравнимо с числом нейронов мозжечка у мелких грызунов и африканских зверей, но сочетается с более плотной их упаковкой в ткани мозга

 

Таким образом, оказывается, что древние африканские звери обладали мозжечком, построенным в соответствии с правилами нейронного шкалирования, которые остались неизменными в линиях, давших начало современным африканским зверям, грызунам и парнокопытным, а группы, от которых впоследствии произошли современные приматы, и, отдельно, насекомоядные ответвились, когда изменился способ упаковки нейронов в их мозжечке (рис. 4.11), что позволило этим животным наращивать массу мозжечка медленнее при том же темпе роста числа нейронов. Это преимущество касается отряда приматов и отряда насекомоядных и заключается в том, что большее число нейронов не требует избыточного увеличения массы мозжечка.
Остальные части мозга демонстрируют те же правила нейронного шкалирования, что и кора, при этом правила одинаковы у африканских зверей, грызунов, насекомоядных и парнокопытных, а это указывает на то, что согласно этим правилам был также построен мозг первых плацентарных млекопитающих. Опять-таки, приматы отклонились от общего предкового пути построения остальных частей головного мозга, так как у них сопоставимое число нейронов упаковано в меньшем объеме мозговой ткани (рис. 4.12). Например, при числе нейронов от 106 до 122 миллионов остальные отделы мозга весят у капибары (отряд грызунов) 20,0 г, у куду (отряд парнокопытных) 64,0 г, но лишь 9,2 г у макака-резуса (отряд приматов).
Назад: 4. Не все мозги устроены одинаково
Дальше: Что означает разница в правилах нейронного шкалирования