12. Радикалы и революционеры. Эварист Галуа
4 июня 1832 г. французская газета Le Precursor сообщила о сенсационном, хотя и ни в коем случае не уникальном в своем роде, событии:
Париж, 1 июня. Вчера прискорбная дуэль лишила точные науки молодого человека, который подавал величайшие надежды; в последнее время, однако, его прославленная ранняя зрелость отошла в тень под влиянием его политической деятельности. Молодой Эварист Галуа… дрался с одним из своих старых друзей… не менее известным в политических кругах. Говорят, что причиной схватки стала любовь. В качестве оружия был выбран пистолет, но, поскольку из-за старой дружбы противники были не в состоянии смотреть друг на друга, решать судьбу свою они доверили слепой судьбе. Стреляли они практически в упор; у каждого был пистолет, но лишь один пистолет был заряжен. Галуа был прошит пулей своего противника насквозь; его отвезли в больницу Кошен, где он и умер примерно через два часа. Ему было 22 года. Его противник L. D. чуть моложе.
Ночь перед дуэлью Галуа посвятил краткому изложению на бумаге своих математических исследований, основная часть которых была сосредоточена на использовании особых наборов перестановок, которые он называл «группами», для определения того, может ли некоторое алгебраическое уравнение быть решено в формульном виде. Он описал также связь этой идеи с особыми функциями, известными как эллиптические интегралы. Из результатов его работы прямо следует, что не существует алгебраической формулы для решения обобщенного уравнения пятой степени – вопрос, ставивший математиков в тупик не одно столетие, прежде чем Паоло Руффини опубликовал почти полное, но ужасно длинное доказательство, а Нильс Хенрик Абель получил доказательство попроще.
До сего дня существует несколько мифов об Эваристе Галуа, несмотря на все попытки историков разобраться в его биографии и установить истинный ход событий. Документальные свидетельства обрывочны и иногда противоречивы. К примеру, кто был его противником на дуэли? На газетную статью полагаться не стоит – начать с того, что журналисты даже возраст погибшего называют неправильно, – и многое остается неясным. А вот значимость математики Галуа никаких сомнений не вызывает. Понятие группы перестановок стало одним из первых существенных шагов к теории групп, а она, в свою очередь, оказалась ключом к глубокой математике симметрии; даже в наше время в этой области ведутся серьезные исследования. Группы сегодня играют центральную роль во многих областях математики, не обойтись без них и в математической физике. Они имеют важные приложения в области формирования структур во многих областях физической и биологической науки.
* * *
Отец Эвариста Николя-Габриэль, убежденный республиканец, стал мэром Бур-ля-Рена в 1814 г., после того как Людовик XVIII вновь стал королем. Его мать Аделаида-Мари (урожденная Демант) была хорошо образованной дочерью юридического консультанта. Она изучала религию и классические языки и до 12 лет сама обучала Эвариста дома. Мальчику легко давалась латынь, он заскучал – и нашел утешение в математике. Эварист читал продвинутые работы: «Начала геометрии» Лежандра и оригинальные труды Абеля и Лагранжа о решении полиномиальных уравнений «в радикалах». Этот термин относится к алгебраическим формулам, выражающим решения уравнений через коэффициенты с использованием базовых арифметических операций и извлечения корней второй, третьей и более высоких степеней. Вавилоняне в свое время решали в радикалах квадратные уравнения, а алгебраисты Возрождения делали то же самое с уравнениями третьей и четвертой степеней. Теперь же становилось очевидно, что эти методы выдохлись. Абель в 1824 г. доказал, что обобщенное уравнение пятой степени не может быть решено в радикалах, а в 1826 г. опубликовал развернутое доказательство.
Вопреки совету своего преподавателя математики, Галуа решил сдавать вступительные экзамены в престижную Политехническую школу (École Polytechnique) на год раньше, не потрудившись к ним подготовиться. Неудивительно, что он провалился. В 1829 г. он направил работу по теории уравнений в Парижскую академию, но рукопись затерялась. Галуа воспринял это как намеренное подавление его гения, хотя на самом деле это могло быть всего лишь результатом чьей-то небрежности. Вообще, год тогда выдался очень неудачный. Отец Галуа покончил с собой в результате политического конфликта с деревенским священником, который подделал подпись Николя на каких-то страшных документах. Вскоре после этого Галуа предпринял вторую и последнюю попытку поступить в Политехническую школу – и вновь потерпел неудачу. Вместо этого он поступил в менее престижную Подготовительную школу (École Preparatoire), которая позже была переименована в Нормальную, или Педагогическую, школу (École Normal). Он показывал хорошие успехи в физике и математике, но не в литературе, и окончил Школу в 1829 г. и по естественным наукам, и по словесности. Через несколько месяцев он подал новый вариант работы по уравнениям на конкурс Академии. Фурье, бывший тогда секретарем Академии, взял его рукопись домой, но умер, не успев дать на нее отзыв. Рукопись вновь куда-то делась – и Галуа вновь увидел в этом заговор с целью лишить его заслуженного вознаграждения. Такая позиция прекрасно уживалась с республиканскими взглядами молодого человека и дополнительно укрепляла его решимость участвовать по мере сил в разжигании революции.
Свою возможность принять реальное участие в деле революции Галуа упустил. В 1824 г. Людовика XVIII на престоле сменил Карл X, но к 1830 г. и этот король оказался под угрозой отречения. Чтобы избежать этого, он ввел цензуру прессы, но вызвал своими действиями только народный бунт. После трех дней хаоса был согласован компромиссный кандидат на престол – и королем стал Луи-Филипп, герцог Орлеанский. Но директор Нормальной школы запер на это время своих студентов в стенах школы и никуда их не выпускал. Галуа, как революционеру в душе, это не понравилось, и он написал в школьную газету письмо с яростными личными нападками на директора. Галуа подписал письмо, но редактор напечатал его без подписи, и директор, воспользовавшись этим предлогом, исключил Галуа за написание анонимного письма. Так что молодой человек поступил в артиллерийскую часть Национальной гвардии – милиции, где было полно республиканцев. Вскоре после этого король распустил Национальную гвардию как угрожающую безопасности.
В январе 1831 г. Галуа направил в Академию третью рукопись по теории уравнений. После двух месяцев молчания он написал президенту Академии; в письме он спрашивал, чем вызвана задержка, но ответа вновь не получил. Молодой человек пришел в болезненно возбужденное, едва ли не параноидальное душевное состояние. Софи Жермен, блестящая женщина-математик, писала о Галуа Гийому Либри: «Говорят, что он совершенно сойдет с ума, и я боюсь, что это правда». В апреле того же года состоялся суд, на котором судили 19 членов распущенной артиллерийской части Национальной гвардии за попытку свержения правительства; присяжные, однако, всех оправдали. На шумном банкете, где примерно две сотни республиканцев собрались, чтобы отметить оправдательный приговор, Галуа поднял бокал и кинжал. На следующий день он был арестован за угрозы королю. Он признался в своих действиях, но сообщил суду, что предложенный им тост звучал так: «Это для Луи-Филиппа, если он станет предателем». Доброжелательно настроенные присяжные оправдали юношу.
В июле Академия дала наконец заключение по представленной Галуа работе: «Мы сделали все от нас зависящее, чтобы понять доказательство г-на Галуа. Его рассуждения не обладают ни достаточной ясностью, ни достаточной полнотой для того, чтобы мы могли судить об их точности». Кроме того, рецензенты высказали и вполне разумную с точки зрения математики критику. Они ожидали увидеть изложение каких-то условий, которым должны соответствовать коэффициенты уравнения и по которым можно определить, решаемо ли это уравнение в радикалах. Галуа действительно доказал элегантное условие, но в нем были задействованы сами решения. А именно: каждое решение должно выражаться как рациональная функция двух других решений. Нам сегодня понятно, что простого критерия, основанного на коэффициентах, просто не существует, но тогда этого никто не знал.
Галуа вышел из себя. В День взятия Бастилии он вместе со своим другом Эрнестом Дюшатле был в первых рядах республиканской демонстрации; он вышел на демонстрацию вооруженным и в форме артиллериста Нацгвардии. То и другое было противозаконно. Оба товарища-революционера были арестованы и посажены в тюрьму в Сент-Пелажи ждать суда. Четыре месяца спустя Галуа был осужден и приговорен к шести месяцам тюрьмы. В заключении он занимался математикой, а когда в 1832 г. вспыхнула эпидемия холеры, молодого человека отправили в больницу, а затем выпустили под честное слово.
Получив свободу, он без памяти влюбился в молодую женщину, которую обозначил в своих записях только как «Стефани Д.»; остальная часть имени старательно замалевана. «Как могу я утешиться, когда всего за один месяц я исчерпал величайший источник счастья, какой только может быть у мужчины?» – писал Галуа другому своему другу, Огюсту Шевалье. Фрагменты письма означенной дамы он перенес и в свои записи. Один из них гласил: «Месье, будьте уверены, больше ничего не было бы. Ваши предположения неверны, а сожаления безосновательны». Иногда историки изображают Стефани этакой роковой женщиной и намекают, что «дело чести», давшее врагам Галуа повод вызвать его на дуэль, было сфабриковано. Однако в 1968 г. Карлос Инфантоцци заново исследовал оригинальную рукопись и сообщил, что пассией Галуа была Стефания-Фелиция Потерэн дю Мотель – дочь врача, снимавшего меблированные комнаты в том же доме, что и Галуа. Предложенное им прочтение вызывает некоторые сомнения, но выглядит довольно убедительно.
В полицейском отчете о дуэли сказано, что это был частный спор по поводу молодой дамы между Галуа и другим революционером. Накануне дуэли Галуа писал:
Я умоляю патриотов и друзей не укорять меня за то, что умер не за свою страну. Я умираю жертвой низкой кокетки. Моя жизнь угаснет в постыдной стычке. О! Зачем умирать за столь тривиальную вещь, за нечто столь недостойное!.. Прошу прощения за тех, кто убил меня, у них честные намерения.
Его представление о даме было, естественно, предвзятым, но, если бы все это было подстроено его врагами, он вряд ли стал бы просить за них в своей записке.
Кто же был противником Галуа? Сведения об этом путаны и обрывочны. Александр Дюма в своих мемуарах говорит, что это был собрат-республиканец по имени Пешо д’Эрбенвиль. Что вновь возвращает нас к заметке в Le Precursor и загадочному убийце, обозначенному в ней «L. D.» Буква «D» могла бы, в принципе, относиться к д’Эрбенвилю, но даже если так, тогда «L» – еще одна ошибка в и без того неточной статье. Тони Ротман довольно убедительно доказывает, что «D» означает Дюшатле, хотя «L» при этом вызывает вопросы. Почему нет, известно немало случаев, когда дружба распадалась из-за женщины. Дрались на пистолетах – на 25 шагах, согласно результатам вскрытия, или в формате «русской рулетки», если верить заметке в Le Precursor. Косвенные данные подтверждают скорее второй вариант, поскольку Галуа был поражен в живот, что не так просто сделать с 25 шагов, но, если стрелять практически в упор, попадание гарантировано. Галуа умер на следующий день от перитонита, отказавшись от общения со священником, и был похоронен в общем рве на кладбище Монпарнас.
* * *
Накануне дуэли Галуа подытожил свои открытия в письме к Шевалье. Там он коротко рассказывает, как при помощи групп можно узнать, решаемо ли данное полиномиальное уравнение в радикалах, и касается других открытий – эллиптических функций, интегрирования алгебраических функций; есть там и непонятные намеки, о смысле которых мы можем только догадываться. Письмо заканчивается так:
Попросите Якоби или Гаусса публично высказать свое мнение не в том смысле, верно это или нет, а в смысле важности этих теорем. Позже найдутся, надеюсь, какие-то люди, которые поймут, как это полезно, и разберутся во всей этой неразберихе.
К счастью для математики, такие люди нашлись. Первым из тех, кто по достоинству оценил достижения Галуа, был Жозеф-Луи Лиувиль. В 1843 г. Лиувиль выступил ровно перед теми же людьми, которые умудрились потерять или отвергнуть три рукопись Галуа. «Я надеюсь заинтересовать Академию, – начал он, – объявлением о том, что среди бумаг Эвариста Галуа я обнаружил решение, столь же точное, сколь и глубокое, следующей красивой задачи: существует ли решение [некоторого уравнения] в радикалах». Вскоре Якоби тоже прочел бумаги Галуа и, как Галуа и надеялся, понял их важность. К 1856 г. теорию Галуа преподавали на аспирантском уровне и во Франции, и в Германии. А в 1909 г. Жюль Таннери, директор Нормальной школы, открыл памятник Галуа в его родном городе Бур-ля-Рене; при этом он поблагодарил мэра города за «возможность принести извинения гению Галуа от имени школы, куда он поступил без всякой охоты, где не встретил понимания и откуда был изгнан, но для которой стал в конечном итоге одним из самых ярких имен».
Итак, что же сделал Галуа для математики?
Его идеи не были абсолютно неслыханными; это вообще редко случается в математике. Как правило, математики строят свои теории на базе подсказок, намеков и предположений предшественников. Удобной отправной точкой здесь может стать Ars Magna Кардано, где были предложены решения для алгебраических уравнений третьей и четвертой степени. Сегодня мы записываем эти решения в виде формул и выражаем через коэффициенты. Ключевая особенность этих формул состоит в том, что решение в них выстраивается с использованием стандартных операций алгебры – сложения, вычитания, умножения и деления, а также квадратных и кубических корней. Естественно предположить, что решение уравнения пятой степени тоже можно выразить такой формулой, в которой, скорее всего, будут присутствовать также корни пятой степени. (Корень четвертой степени – это квадратный корень из квадратного корня, так что сам по себе он избыточен.) Многие математики (в том числе любители) искали эту неуловимую формулу. Чем выше степень, тем сложнее становятся формулы, так что можно было ожидать, что формула для уравнения пятой степени будет особенно замысловатой. Но время шло, а отыскать эту формулу никто не мог. Постепенно до ученых начало доходить, что у длинной череды неудач может быть вполне объективная причина: это была попытка отыскать в темной комнате черную кошку, которой там нет, то есть найти то, чего на свете в принципе не существует.
Сказанное не означает, что уравнение не имеет решений. Любое уравнение пятой степени имеет по крайней мере одно действительное решение – и всегда имеет ровно пять решений, если разрешить комплексные числа и правильно учесть кратные решения. Но эти решения невозможно заключить в алгебраическую формулу, в которой не используется ничего более сложного, чем радикалы.
Первое серьезное свидетельство в пользу того, что дело может обстоять именно так, появилось в 1770-е гг., когда Лагранж написал длинный трактат об алгебраических уравнениях. Вместо того чтобы просто отметить, что традиционные решения верны, он задался вопросом о том, почему эти решения вообще существуют. Какие особенности уравнения делают его разрешимым в радикалах? Он унифицировал классические методы решения для второй, третьей и четвертой степеней, соотнеся их с особыми выражениями в формулах решения, которые при перестановке решений ведут себя довольно интересно. В качестве тривиального примера заметим, что сумма решений будет одинаковой, в каком бы порядке мы их ни записали. Как и произведение. Алгебраисты-классики доказали, что любое полностью симметричное выражение, подобное этим, всегда может быть выражено через коэффициенты уравнения, без всякого использования радикалов.
Более интересным примером для кубического уравнения с решениями a1, a2, a3 является выражение
(a1 – a2) (a2 – a3) (a3 – a1).
Если мы переставим решения циклически, так что a1 → a2, a2 → a3, a3 → a1, значение этого выражения не изменится. Однако, если мы поменяем два из них местами, так что a1 → a2, a2 → a1, a3 → a3, выражение поменяет знак. То есть как бы домножится на –1, а в остальном останется неизменным. Следовательно, его квадрат полностью симметричен и должен выражаться некоторым образом через коэффициенты. Это помогает объяснить, почему в формулу Кардано для решения кубических уравнений входят квадратные корни. Другое частично симметричное выражение объясняет присутствие там кубических корней.
Развивая эту идею, Лагранж нашел общий метод решения уравнений квадратных, кубических и четвертой степени с использованием перестановочных свойств конкретных выражений в решениях. Он показал также, что этот метод не работает для уравнений пятой степени. Он приводит не к более простому уравнению, а, наоборот, к более сложному, лишь усугубляя проблему. Это не означает, что такое уравнение невозможно решить никаким иным способом, но это уже явный намек на потенциальные проблемы.
В 1799 г. Паоло Руффини, поняв намек, опубликовал двухтомную «Общую теорию уравнений». «Алгебраическое решение обобщенных уравнений степени выше четвертой, – писал он, – всегда невозможно. Вот очень важная теорема, которую, мне кажется, я в состоянии доказать (если не ошибаюсь)». В качестве источника вдохновения он сослался на исследование Лагранжа. К несчастью для Руффини, перспектива продираться через 500-страничный том, наполненный сложной алгеброй, только для того, чтобы получить в конечном итоге отрицательный результат, никому не улыбалась, и на его работу не обратили практически никакого внимания. Ведущие алгебраисты начали уже примиряться с вероятным отсутствием решения, и это, вероятно, тоже не способствовало повышенному интересу. Да и слухи о том, что в книге есть ошибки, гасили всякое желание с ней знакомиться. Руффини попробовал еще раз, с доработанным доказательством, более простым, как ему казалось, для понимания. В 1821 г. Коши все же написал автору, что его книга «всегда казалась мне достойной внимания математиков и, насколько я могу судить, полностью доказывает невозможность решения алгебраических уравнений степени выше четвертой».
Возможно, похвала Коши несколько исправила репутацию Руффини, но ему не пришлось долго этому радоваться; он умер меньше чем через год. После его смерти математики пришли к общему мнению о том, что уравнение пятой степени невозможно решить в радикалах, но статус доказательства Руффини долго еще оставался неясным. Лишь много лет спустя в нем была обнаружена небольшая ошибка. Пробел можно было залатать, еще удлинив тем самым книгу Руффини, но к тому момент Абель уже нашел гораздо более короткое и простое доказательство. Мало того, оказалось, что один из его результатов вполне в состоянии дополнить доказательство Руффини. Абель умер молодым, вероятно от туберкулеза. Такое впечатление, что уравнение пятой степени было чем-то вроде отравленной чаши для всех, кто занимался поисками его решения.
И Руффини, и Абель взяли на вооружение ключевую идею Лагранжа: важно, какие выражения сохраняют инвариантность при определенных перестановках корней. Главный вклад Галуа заключался в создании общей теории, основанной на перестановках и применимой к любым полиномиальным уравнениям. Он не просто доказал, что какие-то конкретные уравнения нерешаемы в радикалах; он задался вопросом, какие из них решаемы. Его ответ состоял в том, что набор перестановок, сохраняющих все алгебраические соотношения между корнями, – он назвал это группой уравнения – должен иметь конкретную, довольно формальную, но четко определенную структуру. Детали этой структуры объясняют, какие именно радикалы появятся в решении, если решение в радикалах существует в принципе. Отсутствие такой структуры означает, что решения в радикалах просто нет.
Задействованная здесь структура весьма сложна, хотя и естественна с точки зрения теории групп. Уравнение решаемо в радикалах в том, и только том случае, если его группа Галуа имеет серию особых подгрупп (именуемых «нормальными»), такую, что конечная подгруппа содержит всего одну перестановку и число перестановок в каждой последующей подгруппе равно числу перестановок в предыдущей, деленному на некоторое простое число. Идея доказательства состоит в том, что нужны только простые радикалы – к примеру, корень шестой степени есть квадратный корень из кубического корня, при этом числа 2 и 3 – простые, – и каждый такой радикал снижает размер соответствующей группы делением числа ее членов на соответствующее простое число.
Группа Галуа для обобщенного уравнения четвертой степени, к примеру, содержит все 24 возможные перестановки решений. Эта группа имеет нисходящую цепочку нормальных подгрупп с размерами
24 12 4 2 1
и
24/12 = 2 – простое,
12/4 = 3 – простое,
4/2 = 2 – простое,
2/1 = 2 – простое.
Следовательно, уравнение четвертого порядка решить можно, и в формуле для решения мы ожидаем встретить квадратные (следует из двоек) и кубические (следует из троек) корни, но ничего больше.
Группы для квадратных и кубических уравнений меньше по размеру и опять же имеют нисходящие цепочки нормальных подгрупп, размеры которых изменяются делением на простые числа. А что с уравнением пятой степени? У него пять решений, что дает нам 120 перестановок. Единственная цепочка нормальных подгрупп имеет размеры
120 60 1.
Поскольку 60/1 = 60 – не простое число, решений в радикалах у такого уравнения быть не может.
На самом деле Галуа не стал записывать доказательства того, что уравнение пятой степени не может быть решено в радикалах. Это уже доказал Абель, и Галуа знал об этом. Вместо этого он разработал обобщенную теорему, характеризующую все уравнения простых степеней, которые могут быть решены в радикалах. Показать, что обобщенное уравнение пятой степени не входит в число этих уравнений, – пустяк для Галуа настолько тривиальный, что он об этом даже не упоминает.
* * *
Значение Галуа для математики определяется не столько теоремами, сколько его методом. Его группа перестановок – сегодня мы называем ее группой Галуа – состоит из всех перестановок корней, сохраняющих алгебраические отношения между ними. В более общем плане, если задан некоторый математический объект, мы можем рассматривать все преобразования – может быть, перестановки, может быть, нечто более геометрическое, к примеру жесткое перемещение, – которые сохраняют его структуру. И совокупность таких преобразований называется группой симметрии объекта. Понятие «группа» здесь определяется одним конкретным свойством групп перестановок Галуа, которое он подчеркивал, но не развил в более общую концепцию. Суть в том, что последовательность двух любых симметричных преобразований всегда дает симметричное преобразование.
В качестве простого геометрического примера возьмем квадрат на плоскости и будем преобразовывать его при помощи различных жестких перемещений. Вы можете сдвигать этот квадрат, вращать его, можете даже перевернуть. При каких движениях из этого набора квадрат остается совершенно неизменным с виду? Сдвиг не годится; центр квадрата при этом перемещается в другое место. Вращать можно, но только на один или несколько прямых углов. Любой другой угол приведет к наклону квадрата, которого прежде не было. Наконец, квадрат можно перевернуть относительно любой из четырех осей: двух диагоналей и прямых, проходящих через центры противоположных сторон. Добавив еще тривиальное преобразование типа «ничего не трогать», получим ровно восемь симметрий.
Проделайте эту же процедуру с правильным пятиугольником – и получите 10 симметрий; для правильного шестиугольника их будет 12 и т. д. Круг имеет бесконечное множество симметрий: поворот на любой угол и переворот относительно любого диаметра. У разных фигур может быть разное число симметрий. Мало того, в игру вступают и более тонкие свойства, чем просто число симметрий, – следует учитывать не только то, сколько имеется симметрий, но и то, как они сочетаются.
Симметрия пронизывает собой все без исключения области математики, от алгебры до теории вероятностей, и занимает центральное положение в математике и теоретической физике. При знакомстве с любым математическим объектом вопрос «Какими симметриями он обладает?» сразу приходит на ум, и ответ на него часто несет в себе массу информации. В физике специальная теория относительности Эйнштейна занимается в основном тем, как ведут себя физические величины под действием преобразований определенной группы симметрий физических законов, известной как группа Лоренца и основанной на философском представлении о том, что законы природы не должны зависеть от того, где и когда их наблюдают. Сегодня все элементарные частицы квантовой механики – электроны, нейтрино, бозоны, глюоны, кварки – классифицируются и объясняются в рамках одной-единственной группы симметрий.
Галуа сделал принципиально важный шаг на пути, который позволил в конечном итоге формализовать симметрию как инвариант группы преобразований. Этот шаг привел к абстрактному определению группы – ключевого понятия в современном подходе в алгебре. Анри Пуанкаре однажды даже сказал, что группы – это и есть, по сути, «вся математика». Конечно, это преувеличение, но преувеличение простительное.