Глава 5. Фантастические
Я опустил шторку на окне, спасаясь от резкого солнечного света. Это действие всегда кажется таким странным и неестественным; в обычной жизни я почти каждый день мечтаю взлететь над серыми тучами, которые постоянно висят над Лондоном, и купаться там, наверху, в солнечном свете. Но, пробыв недолгое время в небе, я захотел посмотреть кино, и мне понадобилось, чтобы вокруг стало темно и экран было видно как следует. Моя соседка Сьюзен резко вскинула голову, когда я опустил шторку: ей я тоже перекрыл свет. Так что я чуть приподнял шторку снова, впустив несколько ярких лучей, и поднял большие пальцы в вопросительном жесте — надеюсь, вы не против, если я опущу шторку. Она кивнула, щелкнула кнопкой своего светильника, включив его, и вновь погрузилась в книгу. Я почувствовал, что досаждаю ей.
«Вот если бы экраны были больше похожи на картины, — подумал я, — из краски, которая умеет меняться, позволяя действующим лицам на экране двигаться, как полагается в кино; вот тогда мне бы не пришлось опускать шторку». Но как только эта мысль проникла в мою голову, меня осенило: ведь книга, которую читает Сьюзен, как раз об этом! «Портрет Дориана Грея» — именно о такой картине. Мысль эта оказалась немного пугающей и вполне соответствовала мистическому сюжету книги. Оскар Уайльд написал свой роман в 1890 г., когда жидкие кристаллы были только открыты. Он не мог знать, что в будущем на их основе будет создана технология плоского экрана, которую я использовал для просмотра «Человека-паука». Не мог он знать и о том, что именно эта технология когда-нибудь будет способна создать волшебную, но зловещую картину, вокруг которой разворачивалось действие его романа.
Дориан Грей в одноименной книге — миловидный, богатый молодой человек — заказывает художнику свой портрет. При виде готовой картины его поражает мысль о том, что, хотя сам он будет стареть и терять красоту, картина навсегда останется такой же прекрасной. Он жалуется:
Он никогда не станет старше, чем в этот июньский день… Ах, если бы могло быть наоборот! Если бы старел этот портрет, а я навсегда остался молодым! За это… за это я отдал бы всё на свете. Да, ничего не пожалел бы! Душу бы отдал за это!
Момент, когда Дориан Грей впервые увидел свой юный портрет
Желание Дориана волшебным образом исполняется. Он ведет жизнь гедониста, обожает свою красоту, молодость и чувственные наслаждения, которые те ему приносят; при этом он без малейших угрызений совести разрушает жизни других. По сути, картина наделяет его сверхсилами — но не такими, как у Человека-паука, который уже летал по моему экрану. Тот обладает сверхспособностью — умеет прилепляться к зданиям — и «паучьим чувством», которое позволяет ему ощущать опасность. Сверхспособность Дориана Грея в том, что он не стареет и не теряет красоты; вместо него стареет портрет. Мои глаза метнулись к Сьюзен, которая теперь сидела в полутьме и читала книгу в свете небольшой лампы. Я подумал, как трудно, наверное, было бы нарисовать движущийся портрет.
Когда вы наносите краску на холст, жидкость прилипает к нему и всем другим уже имеющимся на нем слоям краски. Ведь еще наши далекие предки, рисовавшие на стенах пещер, поняли, что краска — по сути цветной клей. Так что ее задача — превратиться из жидкости в твердое тело, а затем навсегда остаться там, куда ее нанесли. Разные краски добиваются этого разными способами. Акварель высыхает — высвобождает воду в воздух путем испарения, и на бумаге остаются только пигменты. Масляная краска сделана из масла — как правило, макового, орехового или льняного. Она не сохнет. У нее в запасе другой фокус: она реагирует с кислородом воздуха. Обычно реакций такого типа следует избегать, поскольку окисление делает сливочное масло и растительные пищевые масла прогорклыми и затхлыми. Но в случае красок это полезно. Масла состоят из длинных цепочек углеводородных молекул. Кислород выхватывает атом углерода из одной цепочки и присоединяет к другой с помощью реакции, открывая при этом молекулу для дальнейших реакций. Иными словами, кислород работает как отвердитель (точно так же, как вода для суперклея)… и да, это тоже реакция полимеризации.
Она очень полезна: благодаря ей на поверхности холста образуется твердая водонепроницаемая покровная пленка из пластмассы (картину, написанную масляными красками, точнее было бы назвать пластмассовой); она невероятно устойчива и прекрасно сохраняется. Однако полимеризация требует времени, поскольку кислород, прежде чем добраться до глубинных непрореагировавших слоев масла, должен просочиться сквозь верхний, затвердевший слой. Это недостаток масляной краски — приходится долго ждать, чтобы она схватилась. Но великие мастера масляной живописи, такие как Ван Эйк, Вермеер и Тициан, пользовались этим в своих интересах. Они накладывали много тонких слоев масляной краски, которые один за другим химически реагировали с кислородом и затвердевали, формируя множество слоев полупрозрачной пластмассы, один поверх другого; получается сложная упаковка для множества разных цветных пигментов.
Такое постепенное наложение красок позволяет художнику создавать чудесные полутоновые полотна. Ведь когда свет падает на холст, он не просто отражается от верхнего слоя — какая-то его часть проникает к внутренним слоям, взаимодействуя с пигментами глубоко в толще картины и выходя уже в виде цветного света. Или, наоборот, он полностью поглощается разными слоями и дает глубокие оттенки черного. Это хитроумный способ управления цветом, яркостью и текстурой — и именно поэтому художники Возрождения предпочитали масляные краски. При анализе картины Тициана «Воскресение Христа» были обнаружены девять слоев масляной краски, и все они участвуют в создании сложных визуальных эффектов. Именно выразительность масляной краски сделала искусство Возрождения таким чувственным и страстным. Эффект слоистости настолько силен, что он сумел выйти за пределы своих корней в классической живописи и теперь в обязательном порядке включается во все профессиональные инструменты работы с цифровой иллюстрацией. Если вы используете Photoshop, или Illustrator, или любую другую графическую компьютерную программу, то вы создаете образы по слоям.
Как и слоистость, льняное масло, помимо живописи, имеет множество применений; оно используется для обработки древесины, создавая прозрачный защитный пластиковый барьер — точно такой же, как и масляная краска, но бесцветный. Бита для крикета — один из многих деревянных предметов, которые традиционно покрывают льняным маслом. Можно довести это до логического конца и изготовить из льняного масла плотный материал под названием линолеум — опять же с помощью реакции полимеризации. Дизайнеры и декораторы используют его в качестве водонепроницаемого полового покрытия. Художники тоже применяют линолеум. Они вырезают на нем изображения, как на дереве, и делают отпечатки — получается линогравюра. Здесь тоже слои — главный способ наращивания сложности конечного произведения.
Руби Райт «Тайная любовь к лимонаду». Линогравюра. © Ruby Wright
Но, как бы захватывающе ни выглядели линогравюры или живописные полотна, ни то, ни другое не в состоянии дать нам движущееся изображение. Однако если взять молекулу на основе углерода, не слишком отличающуюся от той, что присутствует в льняном масле, — например, 4-циано-4’-пентилбифенил, — то движущееся изображение внезапно станет возможным.
Структурная формула 4-циано-4’-пентилбифенила, часто используемого в жидких кристаллах
Основа молекулы 4-циано-4’-пентилбифенила представляет собой два шестиугольных кольца. Этот «каркас» придает ей жесткость, но скрепляющие электроны распределены неравномерно: молекула представляет собой диполь. В ней есть области, где сосредоточен отрицательный электрический заряд, и другие, где сосредоточен заряд положительный. Положительный заряд одной молекулы притягивает к себе отрицательный заряд другой, усиливая склонность молекул образовывать упорядоченную пространственную структуру — кристалл. Но на хвосте молекулы 4-циано-4’-пентилбифенила имеется группа CH3, при этом хвост гибкий и извивается, противодействуя образованию кристалла. Поэтому 4-циано-4’-пентилбифениловые структуры частично организованные, а частично текучие; это и есть так называемые жидкие кристаллы.
При температуре выше 35°C влияние хвоста CH3 побеждает, и 4-циано-4’-пентилбифенил ведет себя как обычная прозрачная жидкость. Но стоит охладить ее до комнатной температуры, и она приобретает молочный вид. 4-циано-4’-пентилбифенил не твердый при этой температуре, но что-то странное с ним уже происходит. Молекулы начинают равняться друг на друга примерно так же, как рыбы в косяке. Для жидкостей такая структура очень нетипична. Одно из определяющих свойств жидкости — то, что ее атомы и молекулы слишком энергичны, чтобы оставаться на одном месте сколько-нибудь долго. Они непрерывно вращаются, колеблются и мигрируют. Жидкие кристаллы ведут себя иначе: молекулы в них динамичны и могут плавать, но сохраняют единство ориентации. Название «жидкий кристалл» происходит из аналогии между одинаковой ориентацией молекул в нем и правильным расположением атомов в настоящем кристалле.
Структурные различия между кристаллом, жидким кристаллом и жидкостью
Однако ориентация молекул в жидком кристалле не совсем одинаковая; они в жидком состоянии и постоянно движутся, меняются местами и перераспределяются между отдельными группами. При этом полярность придает жидкому кристаллу еще одно полезное свойство: его молекулы реагируют на внешнее электрическое поле. В ответ на него они все вместе меняют направление. Таким образом, включив электричество, вы можете сделать так, что целая группа молекул повернется в определенную сторону. Оказывается, это и есть ключ к технологическому успеху жидких кристаллов; вот что позволяет им работать в электронных устройствах.
Когда свет идет сквозь жидкий кристалл, в нем происходят тонкие изменения поляризации. Чтобы понять это, вспомните, что свет — волна из колеблющихся электрического и магнитного полей. Но в каком направлении они колеблются? Вверх и вниз, из стороны в сторону или вправо и влево? Солнечный свет колеблется во всех этих направлениях. Но если он отражается от гладкой поверхности, то она как бы поощряет колебания в одних направлениях и подавляет в других, в зависимости от того, как она ориентирована относительно света. В результате в отраженном свете колебания одних направлений присутствуют, а других — нет. Такой свет называется поляризованным.
Такое действие на свет производит не только отражение от поверхностей. Некоторые прозрачные материалы тоже способны менять поляризацию света; вспомним хотя бы поляризационные очки. Их линзы пропускают свет с колебаниями только одного направления. Это снижает интенсивность света, попадающего в глаза, — в результате мир кажется темнее. Особенно полезны такие очки на пляже, и не только потому, что затеняют ваши глаза. Солнечный свет, отраженный от гладкой морской поверхности, тоже поляризованный, и линзы способны блокировать его. Рыбаки пользуются такими очками, чтобы лучше видеть происходящее под водой, и фотографы с их помощью также защищают глаза от слепящего блеска.
Некоторые пауки различают поляризованный свет, и я иногда думаю, не отвечает ли это умение хоть отчасти за способность Человека-паука быстро реагировать на опасность — его «паучье чувство». На экране передо мной он только что с трудом ускользнул от доктора Осьминога при помощи необъяснимого мгновенного решения, которое позволило ему уйти от щупалец злодея. Спецэффекты в фильме поразительны, и я улыбнулся Сьюзен, забыв, что, несмотря на мой откровенный интерес к ее книге, она не отвечала мне взаимностью и не проявляла никакого интереса к моему «Человеку-пауку».
Жидкие кристаллы меняют поляризацию света — и образ Человека-паука волшебным образом появляется передо мной на экране. Когда вы подносите линзу из поляризационных очков к поверхности жидкого кристалла, свет, исходящий от него, кажется ярким, если его поляризация совпадет с поляризацией линзы, а в остальных случаях он выглядит темным. Но здесь-то и кроется фокус: если поменять структуру жидкого кристалла при помощи электрического поля, его поляризация тоже изменится. Так что одним щелчком вы можете включить — или выключить — свет. И внезапно у вас появляется устройство, способное испускать белый свет, а потом не испускать света, а потом вновь переключаться на белый, причем с той же скоростью, с какой вы сможете переключать жидкокристаллическую структуру на электронном устройстве. Вот вам и основа для черно-белого экрана.
Звучит просто, но на реализацию этого принципа ушло не одно десятилетие. Первым необычное поведение жидких кристаллов описал австрийский ботаник Фридрих Рейнитцер в 1888 г., за два года до того, как Оскар Уайльд создал «Портрет Дориана Грея». В следующие восемьдесят лет жидкие кристаллы исследовали многие ученые, но никто не мог найти для них полезное применение. Только в 1972 г., когда компания Hamilton Watch запустила в производство первые цифровые часы под названием Pulsar Time Computer, для жидких кристаллов началась новая эпоха. Часы выглядели великолепно и не были похожи ни на какие другие; стоили они, надо сказать, побольше среднего автомобиля. Те, кто покупал их, не сомневались, что приобретают продукт будущего. И они оказались правы: наступала эра цифровых технологий, и часы первыми вышли на массовый рынок в области, которой суждено было стать индустрией с оборотом в триллионы долларов.
Часы Pulsar Time Computer были созданы на основе LED (light-emitting diode) — светоизлучающих диодов, которые, в свою очередь, сделаны из полупроводниковых кристаллов, излучающих красный свет в ответ на электрический ток. Цифры выглядели великолепно, особенно на черном фоне, и богатые и знаменитые были от них без ума — такие часы носил даже Джеймс Бонд в фильме «Живи и дай умереть» 1973 года. Недостатком светоизлучающих диодов в то время было их высокое энергопотребление; в первых цифровых часах батарейки садились очень быстро. Чтобы удовлетворить возникший сенсационный спрос на них, необходима была более энергоэффективная технология индикации. Вдруг, после десятилетий пребывания в статусе лабораторной диковинки, жидкие кристаллы нашли применение. Они быстро захватили рынок цифровых часов, поскольку электрическая энергия, нужная для переключения жидкокристаллического пикселя с белого цвета на черный, мизерна. К тому же они дешевы — настолько, что производители начали делать из жидких кристаллов целые экраны. Именно из них состоит серый экранчик электронных часов. Часы направленными электрическими сигналами переключают некоторые области серого экрана, заставляя их блокировать поляризованный цвет и делая черными. Это позволяет выводить разные цифры, и вы можете видеть время, дату, всё, что можно передать на маленьком экранчике в цифровом формате.
Часы-калькулятор Casio
Одно из сильнейших моих детских воспоминаний — черная зависть, которую я почувствовал, когда мой приятель Мерул Пател пришел в школу после каникул с новыми часами-калькулятором Casio. Впечатление от того, как он небрежно нажимал на крохотные кнопочки, а часы радостно пищали в ответ, было до нелепости сильным. Конечно, сегодня я понимаю, что это как-то глупо — кому на самом деле нужен крохотный калькулятор? Но в то время я был им очарован. Так начиналось мое болезненное пристрастие к гаджетам.
Со временем электронные часы потеряли свою волшебную притягательность, но их сменила бесконечная череда других цифровых устройств, не последними из которых стали мобильные телефоны, где по-прежнему используются жидкокристаллические экраны. Как ни странно, та же базовая технология, что использовалась в электронных часах, применяется и в производстве экранов современных смартфонов, способных воспроизводить цветное видео. Это вновь возвращает нас к живописи и к задаче создания подвижной картины, описанной в «Портрете Дориана Грея». Очень может быть, что жидкие кристаллы — именно то, что для этого необходимо. Но как они создают цвет?
Мы все знаем: если взять желтую краску и смешать ее с синей, наши глаза воспримут получившийся цвет как зеленый. А если взять красную и добавить к ней синюю, получится фиолетовый. Теория цвета гласит, что любой оттенок можно получить смешением первичных цветов. В печатной индустрии обычно используются голубой, или циан (cyan, C), пурпурный, или маджента (magenta, M), и желтый (yellow, Y) с добавлением черного (K) для управления контрастом. Так же работают струйные принтеры, и поэтому мы видим аббревиатуру CMYK на коробках с картриджами для принтеров. Именно эти цвета печатает на странице ваш принтер, точку за точкой, а в общий цвет их соединяют ваши глаза и зрительная система. Мы давно знаем, что глаз можно обмануть таким способом. Ньютон писал об этом в XVII в., а пуантилисты в XIX в. использовали такой прием в живописи. Главное преимущество этого метода — то, что капельки пигментов физически не смешиваются и их яркость и блеск легко контролировать для создания желаемого эффекта. Теория цвета предсказывает, что можно получить любой цвет, если смешать краски таким способом, при условии, что точки будут достаточно маленькими и располагаться близко друг к другу. Но вот изменить однажды созданный цвет — совсем другое дело. Вам придется физически скорректировать соотношение пигментов на холсте — а значит, придется одни точки удалить, другие добавить. Если, конечно, вы не найдете способа наносить точки с готовыми комбинациями любых возможных цветов.
Так, по сути, и работают жидкокристаллические цветные экраны — и на вашем телефоне, и на телевизоре, и, в моем случае, на спинке кресла передо мной в самолете. Точки мы называем пикселями. Каждый из них имеет три цветных фильтра, пропускающих соответственно один из трех основных цветов. Для экранов основные цвета красный (red, R), зеленый (green, G) и синий (blue, B), отсюда аббревиатура RGB. Если все три цвета излучаются в равных пропорциях, пиксель выглядит белым, хоть и состоит из трех отдельных цветов. В этом можно убедиться, если уронить на телефон маленькую капельку воды и посмотреть сквозь нее на экран. Она сыграет роль увеличительного стекла, и вы сможете разглядеть отдельные группы из трех точек: красной, зеленой и синей.
Если мастерам живописи приходилось ломать голову над тем, как привнести в картины тьму и тень, смешивая краски и изобретая теорию восприятия цвета, то современные конструкторы жидкокристаллических экранов и ученые раздвигают границы воспроизведения цвета применительно к движущимся изображениям. И если в эпоху Возрождения масляным краскам приходилось конкурировать с другими техниками и материалами для живописи, такими как фреска или яичная темпера, то сегодня жидкокристаллические экраны (liquid crystal display, LCD) конкурируют с экранами на базе органических светоизлучающих диодов (organic light-emitting diode, OLED). В этой баталии, которая разыгрывается в каждом новом поколении телевизоров, планшетов и смартфонов, есть даже свой тайный язык. ЖК-экраны, как вам, может быть, доводилось читать в каком-нибудь специализированном блоге, не могут показывать глубокие черные цвета, поскольку поляризаторы, которые не пропускают свет к экрану во время темных сцен, эффективны не на 100%; цвета выходят серыми. Из-за способа создания цвета в ЖК-экранах страдает и яркость некоторых оттенков. Отсюда проблема со шторкой на окне в салоне и с попаданием солнечного света на экран, которое сильно затрудняет просмотр.
Однако экраны становятся всё лучше благодаря великолепным инновациям, которые, по сути, не слишком отличаются от техники послойного наложения масляных красок. Так, добавление слоя с активной матрицей позволяет некоторым пикселям включаться независимо от остальных. При этом отдельные части изображения можно сделать более контрастными, чем другие, вместо того чтобы устанавливать единый уровень контрастности для всей картинки. Это полезно для тех сцен в кино, которые снимаются при неполном освещении. Конечно, всё это делается автоматически на транзисторной технологии — именно это подразумевает слово «активная» в применении к матрице. Кроме того, инженеры научились делать так, чтобы при изменении угла зрения изображение ухудшалось не так сильно. Раньше экран под определенными углами было видно плохо, но теперь в него добавлен «рассеивающий слой», который распределяет свет, покидающий экран, по разным направлениям. По сравнению с этим технология OLED — наследница красных светоизлучающих диодов, использовавшихся в первых цифровых часах, — сегодня более энергоэффективна. Кроме того, в ней доступна гораздо более широкая палитра цветов, да и угол зрения почти не играет роли. Но, несмотря на значительно более высокую по сравнению с ЖК-экранами стоимость, экраны OLED до сих пор не достигли того же уровня яркости.
Возможно, жидкие кристаллы не идеальны, но они представляют собой, по сути, тот самый динамический холст, о котором мечтал Оскар Уайльд. Теперь каждый может завести у себя в холле (или на чердаке) собственный портрет на экране, который будет обновляться ежедневно. Когда жидкокристаллические экраны несколько лет назад стали по-настоящему дешевыми, люди начали дарить их друг другу в виде динамических фоторамок. Но популярными они так и не стали. Мало того, многие их просто ненавидели, как Дориан Грей — свой меняющийся портрет. Я убежден, что причина для ненависти заключалась не в качестве изображения — многие с удовольствием разглядывают себя на жидкокристаллическом экранчике собственного смартфона; дело, скорее, в самой природе таких экранов. Это, по сути, самозванцы, нечто текучее, волшебное и призрачное, что пытается притвориться прочной, надежной и настоящей фотографией момента, застывшего во времени.
А вот в плоских телевизорах та же технология стала невероятно популярной. Согласованное переключение цвета пикселей позволяет телеэкранам демонстрировать движущиеся картинки. Именно благодаря этому мы можем видеть, как актеры разговаривают, жестикулируют и меняют выражение лица, а также (в случае кино, которое я смотрел в самолете) прыгают от дома к дому, спасая мир от вселенского зла. Я, конечно, понимал, что увиденное не происходит на самом деле, это всего лишь набор точек основных цветов, согласно мигающих под сопровождающий саундтрек. Но всё это стимулировало меня и интеллектуально, и эмоционально; я был поглощен происходящим на экране. Однако есть момент, который мне по-настоящему трудно понять. Если сравнить впечатление от просмотра этого фильма в самолете с впечатлением от рассматривания какого-нибудь шедевра живописи, вроде «Воскресения Христа» Тициана, в картинной галерее, то я точно знаю, что подействует на меня сильнее. Боюсь, это будет кино. Я не горжусь этим. Я понимаю, что картины Тициана — великое искусство, а кино про супергероя на десятидюймовом экране — нет. Почему я настолько неглубок? Может ли быть, что на высоте 12 000 м я теряю всякий вкус к искусству? Или всё дело в эмоциональном подъеме, связанном с полетом?
Статичные образы, в частности картины и фотографии, позволяют нам заглянуть вглубь себя и оценить, насколько сильно мы изменились со временем. На протяжении жизни мы неоднократно сталкиваемся с шедеврами, например, Тициана, Ван Гога или Фриды Кало, которые физически остаются прежними, но с годами обретают в наших глазах иной смысл, поскольку мы сами становимся другими, наше восприятие меняется. А волшебные жидкие экраны в самолетах действуют наоборот; они динамичны и предлагают нам живое окно в иной мир. Позволяют убежать от себя. Пролетая над облаками на высоте 12 000 м в затемненном салоне, мы попадаем в фантастический мир. Какое-то недолгое время мы можем действовать как боги, глядя вниз на дела людские сквозь наши жидкие порталы. Мы наблюдаем за людьми, смеемся над их глупостями, качаем головами, видя их безумные поступки. При этом наши эмоции обостряются. Некоторые академические исследования позволяют предположить, что причина тому — сильнейший контраст между чувством близости и симпатии по отношению к героям фильма и жесткой реальностью полета сквозь пространство в трубе рядом с чужими людьми на высоте 12 000 м над землей. Мне это кажется безусловной истиной. Я плачу во время просмотра кино только в самолете; даже самый сентиментальный фильм вызывает слезы, и я готов громко хохотать над комедиями, которые на земле не вызвали бы у меня даже улыбки.
К тому времени, когда мой фильм закончился, Человек-паук, конечно, вышел из испытаний победителем, но в жидких кристаллах передо мной не осталось никаких следов просмотренных сцен. Они погасли; они были готовы принять на себя следующую сказку. Я почувствовал себя менее богоподобным. Я посмотрел на Сьюзен, которая спала, завернувшись в одеяло и приняв позу, казавшуюся удобной, хотя, как я знал по собственному опыту, таковой не была. Я почувствовал искушение приоткрыть шторку и вновь порадовать глаза видом солнечного голубого небосвода, но побоялся разбудить ее. Я попробовал понять, хочется ли мне спать хоть чуть-чуть, и решил попробовать подремать. Я снял ботинки, опустил спинку кресла и постарался забыть, насколько трудно мне обычно заснуть в самолете.