Книга: Мозг Брока. О науке, космосе и человеке
Назад: Глава 6 Белые карлики и зеленые человечки
Дальше: Глава 8 Норман Блум, посланник Бога

Глава 7
Венера и доктор Великовский

Если говорить о движении комет и задуматься о законах тяготения, будет очевидно, что их приближение к Земле может вызвать самые ужасные события: на нее снова обрушится всемирный потоп, или она сгорит в потоках пламени, или превратится в мельчайшую пыль, или по меньшей мере отклонится от своей орбиты и отойдет от Луны, или, еще хуже, выйдет за орбиту Сатурна, что приведет к долгой многовековой зиме, которую не смогут пережить ни люди, ни животные. Даже хвосты комет не стоит игнорировать, если кометы, уходя, оставят их полностью или частично в нашей атмосфере.
И. Ламберт. Космологические письма об устройстве Вселенной (1761)
Каким бы опасным ни было столкновение с кометой, оно может быть настолько легким, что повредит только ту часть Земли, где оно произойдет; возможно, мы даже успокоимся, если, в то время как одно королевство будет разрушено, остальная часть Земли будет наслаждаться редкостями, которые объект, прилетевший издалека, может принести с собой. Возможно, мы очень удивимся, когда обнаружим, что ее обломки, которыми мы гнушались, состоят из золота и алмазов; но кто был бы более удивлен – мы или жители кометы, которые бы врезались в нашу Землю? Какими странными существами мы бы посчитали друг друга!
Мопертюи. Письмо о комете (1752)
У ученых, как и у всех людей, есть свои надежды и страхи, они подвержены страстям и могут падать духом, и сильные эмоции могут иногда влиять на ход рассуждений и принятие здравых решений. Но наука при этом способна к самокорректировке. Самые фундаментальные аксиомы и заключения можно оспорить. Господствующие гипотезы должны пройти проверку наблюдением. Обращение к авторитету непозволительно. Все пункты аргументации должны быть ясно изложены. Эксперименты должны быть воспроизводимыми.
В истории науки полно случаев, когда ранее принятые теории и гипотезы были опровергнуты и заменены новыми идеями, которые более корректно объясняют данные. Хотя существует понятная психологическая инерция мышления – обычно продолжающаяся в течение одного поколения, – такие революционные идеи в развитии научной мысли принимаются как необходимый и желательный элемент научного прогресса. На самом деле разумная критика господствующих взглядов полезна для сторонников этого убеждения: если они не способны отстоять его, им стоит задуматься о том, чтобы отказаться от него. Такая критическая оценка собственных убеждений и корректировка ошибочных воззрений – самое поразительное свойство научного метода, отличающее его от многих других сфер человеческой деятельности, в которых нормой является доверчивость.
Идея науки как метода, а не совокупности знаний в основном не ценится за пределами научного сообщества, а на самом деле и в некоторых научных кругах. По этой причине мы с моими коллегами из Американской ассоциации содействия развитию науки на ежегодном собрании ассоциации выступаем в поддержку регулярных обсуждений тех гипотез, которые находятся в пограничных областях и привлекают значительный общественный интерес. Мы не пытаемся разрешить такие вопросы, а стремимся продемонстрировать процесс взвешенного обсуждения, показать, как ученые подходят к проблеме, которую нельзя проверить чисто экспериментальным путем, или которая необычна благодаря своей междисциплинарной природе, или вызывает сильные эмоции.
В науке принято жестко критиковать новые идеи. Хотя стиль критики может отличаться в зависимости от характера критика, чересчур мягкая критика не приносит пользу ни сторонникам новых идей, ни науке в целом. Любое существенное возражение разрешается и поощряется; единственное исключение – ad hominem – нападение на личность или мотивы автора. Не важно, по какой причине сторонник идеи ее продвигает или что заставляет его оппонентов ее критиковать: имеет значение только одно – верна или ошибочна идея, многообещающая она или реакционная.
Например, вот заключение квалифицированного рецензента – необычное, но не такое уж редкое – о статье, поданной в научный журнал Icarus: «По мнению обозревателя, эта статья абсолютно неприемлема для публикации в Icarus. Она не основана на объективном научном исследовании и в лучшем случае является некомпетентными рассуждениями. Автор не сформулировал предпосылки, выводы неясны, неоднозначны и безосновательны, ссылок на подобные работы нет, обозначения на рисунках и в таблицах нечеткие, и автор явно незнаком с основной научной литературой…» Затем рецензент продолжает подробно обосновывать свои замечания. Статье бы отказано в публикации. Такие отказы считаются благом как для науки, так и для автора. Большинство ученых привыкли получать (немного в более мягкой форме) критические отзывы от рецензентов каждый раз, когда они подают статью в научный журнал. Почти всегда критика полезна. Часто исправленную статью, в которой были учтены эти замечания, впоследствии принимают для публикации. С другим примером открытой критики в научной литературе по планетоведению заинтересованный читатель может ознакомиться в «Комментариях к “Эффекту Юпитера”» (Comments on The Jupiter Effect) Дж. Миуса (1975) и комментариях в Icarus.
В науке жесткая критика более конструктивна, чем в некоторых других сферах человеческой деятельности, потому что в науке есть точные стандарты приемлемости, согласованные между компетентными практиками по всему миру. Цель такой критики – не подавлять, а поощрять продвижение новых идей: те, что выдерживают скрупулезную скептическую проверку, получают шанс оказаться верными или по крайней мере полезными.
Фурор в научном сообществе вызвала тема исследования Иммануила Великовского, особенно его первой книги «Столкновение миров» (Worlds in Collision), опубликованной в 1950 г. Я знаю, что некоторые ученые были возмущены тем, что нью-йоркские литераторы и редактор Harper’s сравнивали Великовского с Эйнштейном, Ньютоном, Дарвином и Фрейдом, но это негодование вызвано слабостью человеческой природы и не является суждением ученого. В человеке зачастую присутствует и то и другое. Другие были обескуражены использованием индийских, китайских, ацтекских, ассирийских или библейских текстов для подтверждения чрезвычайно нетрадиционных взглядов в небесной механике. Также, я подозреваю, не многие физики или специалисты по небесной механике свободно владеют такими языками или знакомы с такими текстами.
Лично я считаю, что, каким бы нетрадиционным ни был процесс обоснования или какими бы неприемлемыми ни были заключения, это не повод подавлять новые идеи – тем более в научном сообществе. Так что я был очень рад, что Ассоциация содействия развитию науки провела обсуждение «Столкновения миров», в котором принимал участие и Великовский.
Заранее читая критическую литературу, я с удивлением обнаружил, как ее мало и как редко в ней рассматриваются главные пункты работы Великовского. На самом деле, похоже, ни критики, ни сторонники Великовского не читали ее внимательно, и я даже, кажется, нашел несколько случаев, когда сам Великовский не читал Великовского внимательно. Возможно, публикация симпозиума ассоциации (Goldsmith, 1977), а также данная глава, основные выводы которой были представлены на симпозиуме, помогут прояснить эти вопросы.
В этой главе я сделал все возможное, чтобы критически проанализировать работу «Столкновение миров», чтобы подойти к проблеме и с точки зрения Великовского, и с моей, то есть все время помнить о древних сочинениях, на которых основываются его аргументы, но в то же время противостоять его выводам, используя факты и логику, которыми я располагаю.
Основной тезис Великовского заключается в том, что главные события в истории и Земли, и других планет в Солнечной системе объясняются катастрофизмом, а не униформизмом. Эти причудливые слова используются геологами, чтобы подытожить главный спор, который они вели в период зарождения их науки и который, видимо, разрешился между 1785 и 1830 гг. исследованиями Джеймса Хаттона и Чарльза Лайеля в пользу униформистов. И названия, и теории этих двух течений напоминают знакомых предшественников в сфере теологии. Униформисты утверждают, что рельеф Земли образовался под воздействием процессов, которые мы можем наблюдать и сегодня при условии, что они происходят в течение чрезвычайно длительного времени. Катастрофисты утверждают, что достаточно небольшого количества катастрофических событий, занимающих гораздо меньше времени. Катастрофизм поддерживали в основном те геологи, которые признавали буквальную интерпретацию Ветхого Завета и в особенности повествование о Ное и потопе. Ясно, что бесполезно оспаривать точку зрения катастрофистов, утверждая, что мы никогда не видели таких катастроф в течение нашей жизни. Эта гипотеза подразумевает только редкие события. Но, если мы способны показать, что процессы, которые мы все можем наблюдать сегодня, происходят достаточное длительное время, чтобы сформировать рельеф или явление, о котором идет речь, тогда по крайней мере нет необходимости в теории катастроф. Очевидно, что и униформистские, и катастрофические процессы могли происходить – и почти определенно происходили – в истории нашей планеты.
Великовский утверждает, что в относительно недавней истории Земли произошел ряд небесных катастроф, были угрозы столкновений с кометами, малыми планетами и большими планетами. Ничего абсурдного в вероятности космических столкновений нет. Астрономы в прошлом не колеблясь использовали столкновения для объяснения природных явлений. Например, Спитцер и Бааде (1951) предположили, что внегалактические радиоисточники могли появиться вследствие столкновения целых галактик, содержащих сотни миллиардов звезд. Этот тезис сейчас опровергнут не потому, что космические столкновения невероятны, а потому, что частота и свойства таких столкновений не соответствуют тому, что сейчас известно о подобных радиоисточниках. Все еще популярная теория источника энергии квазаров связана с многочисленными звездными столкновениями в центре галактики, где в любом случае катастрофические события должны быть обычным явлением.
Столкновения и катастрофы являются неотъемлемой частью современной астрономии, то же самое касается и прошлого (смотрите эпиграфы в начале этой главы). Например, в ранней истории Солнечной системы, когда, возможно, в нее входило намного больше объектов, чем сейчас – включая объекты с эксцентричными орбитами, – столкновения могли происходить очень часто. Лекар и Франклин (1973) исследовали сотни столкновений, произошедших за период только нескольких тысяч лет в ранней истории астероидного пояса, чтобы понять нынешнюю конфигурацию этой области Солнечной системы. В другом научном труде под названием «Столкновения комет и геологические периоды» (Cometary Collisions and Geological Periods) Гарольд Юри (1973) проанализировал ряд последствий, включая землетрясения и нагревание океанов, которыми может грозить столкновение с Землей кометы со средней массой около 1018 г. Происшествие на реке Подкаменная Тунгуска в 1908 г., вследствие которого в этом месте оказался повален сибирский лес, часто приписывается столкновению с Землей небольшой кометы. Испещренные кратерами поверхности Меркурия, Марса, Фобоса, Деймоса и Луны ясно свидетельствуют о том, что в течение всей истории Солнечной системы происходило множество столкновений. В идее космических катастроф нет ничего необычного, и эта точка зрения была общепринята в физике Солнечной системы, по крайней мере в исследованиях лунной поверхности конце XIX в., осуществленных Г. Гилбертом, первым руководителем Геологической службы США.
Так почему тогда возникла вся эта шумиха? Из-за временной шкалы и достаточности представленных доказательств. За всю историю Солнечной системы продолжительностью 4,6 млрд лет в ней должно было происходить множество столкновений. Но были ли значительные столкновения за последние 3500 лет и могут ли древние письменные источники послужить доказательством таких столкновений? В этом суть проблемы.
Великовский привлек внимание к широкому ряду историй и легенд, принадлежащих разным, но имеющим много общего народам – народам, разделенным большими расстояниями. Я не специалист по культурам или языкам этих народов, но считаю, что подборка событий в легендах, которые собрал Великовский, поразительна. Правда, некоторые специалисты по этим культурам не столь впечатлены. Я прекрасно помню, как обсуждал «Столкновение миров» с выдающимся профессором, занимающимся семитскими языками в ведущем университете. Он сказал что-то вроде: «ассирийские, древнеегипетские, библейские учения и весь этот талмудический и мидрашский пилпул – конечно, чепуха, но астрономия меня впечатлила». У меня же было противоположное мнение. Но давайте не идти на поводу у других. Лично я считаю, что, если даже 20 процентов соответствий, которые Великовский нашел в легендах, реальны, ими можно объяснить что-то важное. Более того, в истории археологии известен впечатляющий ряд случаев – от раскопок Генриха Шлимана в Трое до раскопок Игаэля Ядина в Масаде, – когда достоверность событий, описанных в древних источниках впоследствии, была подтверждена.
Итак, если разные, живущие на большом расстоянии друг от друга народы рассказывают одну и ту же легенду, как это можно понять? Существует четыре варианта объяснений: общие наблюдения, распространение, коллективное бессознательное и совпадение. Давайте рассмотрим их по очереди.
Общие наблюдения: объяснение заключается в том, что все культуры, о которых идет речь, видели одно и то же событие и интерпретировали его одинаково. Конечно, интерпретаций этого общего события может быть несколько.
Распространение: легенда появилась только в одной культуре, но за время частых и дальних миграций человечества постепенно с некоторыми изменениями распространилась среди многих культур. Типичным примером является легенда о Санта-Клаусе в Америке, прародителем которого является европейский Святой Николас (Клаус – краткая форма имени от Николас в Германии), покровитель детей, культ которого, в свою очередь, пришел из дохристианской традиции.
Коллективное бессознательное: гипотеза, которую иногда также называют расовой памятью. Она утверждает, что определенные идеи, архетипы, легендарные фигуры и истории передаются людям при рождении, возможно, подобно тому, как новорожденный павиан знает, что нужно бояться змеи, птица, выросшая в изоляции от других птиц, знает, как строить гнездо. Очевидно, что, если история, появившаяся вследствие наблюдения или распространения, соответствует «коллективному бессознательному», скорее всего, она сохранится в культуре.
Совпадение: по чистой случайности две появившиеся независимо легенды могут иметь похожее содержание. На практике эта гипотеза сливается с гипотезой о коллективном бессознательном.
Если мы хотим критически оценить такие предполагаемые совпадения, следует сначала принять очевидные меры предосторожности. Действительно ли истории рассказывают одно и то же или имеют одинаковые главные составные части? Если они интерпретируются как общие наблюдения, датируются ли они одним и тем же периодом? Можем ли мы исключить вероятность физического контакта между представителями данных культур в обсуждаемую эпоху или до нее? Великовский явно придерживается гипотезы об общем наблюдении, но он слишком небрежно игнорирует гипотезу о распространении; например, он говорит: «Как могли необычные повторяющиеся детали фольклора достичь изолированных островов, где у аборигенов нет никаких средств, чтобы пересечь море?» Я не знаю, на какие острова и на каких аборигенов ссылается здесь Великовский, но очевидно, что жители острова должны были как-то туда попасть. Я не думаю, что Великовский верит в независимое сотворение людей, скажем, на островах Гилберта и Эллис. Для Полинезии и Меланезии сейчас найдено множество доказательств морских путешествий на тысячи километров за последнее тысячелетие и, вероятно, гораздо раньше (Dodd, 1972).
Или как, например, Великовский объяснил бы тот факт, что в языке толтеков слову «бог» соответствовало слово «тео», как в городе больших пирамид Теотиуакане (Городе богов) рядом с нынешним Мехико, где его называют Сан Хуан Теотиуакан? Нет общего небесного события, которое могло бы убедительно объяснить это совпадение. Языки толтеков и науатль не относятся к индоевропейской группе языков, и маловероятно, что слово, обозначающее «бог», было заложено на уровне подсознания у всех людей. И все же «тео» явно имеет общее происхождение с индоевропейским корнем слова «бог», сохраненное, среди прочего, в словах «божество» и «теология». Предпочтительные гипотезы в этом случае – совпадение или распространение. Существуют доказательства контактов Старого и Нового Света до Колумба. Но совпадение также не стоит недооценивать: если мы сравним два языка, каждый с 10 000 слов, на котором говорят люди с одинаковой гортанью, языком и зубами, то нет ничего удивительного в том, что некоторые слова совпадают. Так что мы не должны удивляться, если некоторые элементы ряда легенд совпадают. Но я считаю, что таким образом можно объяснить все совпадения, которые приводит Великовский.
Давайте рассмотрим, как Великовский подходит к этому вопросу. Он указывает на совпадающие истории, прямо или неким образом связанные с небесными событиями, в которых фигурируют ведьма, мышь, скорпион или дракон. Его объяснение: разные кометы при приближении к Земле под действием приливов и отливов или электричества деформировались и приобретали форму ведьмы, мыши, скорпиона или дракона, которую народы из изолированных культур и с разной историей четко интерпретировали как одно и то же животное. Даже если мы допустим, что комета настолько приблизилась к Земле, не было сделано ни одной попытки продемонстрировать, что таким способом могла получиться столь отчетливая форма (например, женщина на метле и в остроконечной шляпе). Из результатов теста Роршаха и других психологических проективных тестов мы знаем, что разные люди видят одно и то же абстрактное изображение по-разному. Великовский идет еще дальше и утверждает, что приближение к Земле «звезды», которую он сразу же идентифицирует с планетой Марс, так деформировало кометы, что они принимали четкую форму львов, шакалов, собак, свиней и рыб, и, по его мнению, это объясняет, почему египтяне поклонялись животным. Это не очень впечатляющее обоснование. Мы можем с тем же успехом предположить, что весь этот зверинец мог летать во II тыс. до н. э., и дело с концом. Гораздо более вероятна гипотеза распространения. В другой ситуации я много времени посвятил изучению легенд о драконах на планете Земля, и меня впечатлило, какие же на самом деле разные эти мифические звери, которых западные писатели называют общим именем «драконы».
В качестве другого примера рассмотрим аргумент из главы 8 части 2 «Столкновения миров». Великовский утверждает, что у древних культур есть общемировая тенденция – верить (в свое время) в то, что в году 360 дней, что в месяце 36 дней и что в году десять месяцев. Великовский не дает этому физического обоснования, но утверждает, что древние астрономы не могли быть столь невежественны, чтобы пропускать пять дней каждый год или шесть дней каждый лунный месяц. Довольно скоро ночь сияла бы лунным светом в официальное новолуние, снежные бури происходили бы в июле и астрологов подвесили бы за уши. Имея дело с современными астрономами, я не уверен так, как Великовский, в безошибочной вычислительной точности древних астрономов. Великовский предполагает, что эти неточности в календаре отражают реальные изменения длины дня, месяца и/или года и что они являются доказательствами приближения к системе «Земля – Луна» комет, планет и других небесных визитеров.
Существует альтернативное объяснение, которое вытекает из того факта, что в солнечном году нет целого числа лунных месяцев, а в лунном месяце нет целого числа дней. Такая несоразмерность досадна для культуры, которая недавно изобрела арифметику, но еще не дошла до больших чисел или дробей. Она досаждает даже сегодня религиозным мусульманам и евреям, у которых Рамадан и еврейская Пасха, соответственно, от года к году приходятся на совершенно разные дни солнечного календаря. В человеческих делах присутствует явный шовинизм целых чисел, наиболее заметный в обсуждении арифметики с четырехлетним ребенком; и это гораздо более правдоподобное объяснение таких несоответствий календаря, если они существовали.
Очевидно, что 360 дней в году (временно) удобны для цивилизаций с шестидесятиричной системой счисления, таких как шумерская, аккадийская, ассирийская и вавилонская культуры. Аналогично 30 дней в месяце или десять месяцев в году привлекли бы сторонников десятичной системы счисления. Интересно, не наблюдаем ли мы здесь отголосок столкновения между шовинистами шестидесятиричной системы счисления и шовинистами десятичной системы счисления, а не столкновения Марса с Землей? Ряды древних астрологов действительно могли сильно поредеть, когда разные календари быстро устаревали, но это был профессиональный риск, и по крайней мере они были избавлены от интеллектуальных мучений, проистекающих из возни с дробями. На самом деле небрежные расчеты – похоже, характерная особенность этой науки.
Специалист по ранним исчислениям времени (Leach, 1957) указывает на то, что в древних культурах первые восемь или десять месяцев года имеют название, но последние несколько месяцев – нет, поскольку для аграрного общества они экономически несущественны. Наш месяц декабрь, чье название происходит от латинского decem, означает «десятый», не «двенадцатый» месяц. (Так же и сентябрь – седьмой, октябрь – восьмой, ноябрь – девятый.) Из-за величины чисел донаучным людям не свойственно считать дни в году, хотя они усердно считают месяцы. Ведущий историк древней науки и математики Отто Нойгебауэр (1957) отмечает, что и в Месопотамии, и в Египте велись два отдельных и взаимоисключающих календаря: гражданский календарь, который отличался удобством для подсчетов, и часто обновляемый сельскохозяйственный календарь – неудобный, но гораздо сильнее приближенный к сезонным и астрономическим реалиям. Многие древние культуры решили проблему двух календарей, просто добавив пятидневные выходные в конце года. С трудом верится, что существование года, состоящего из 360 дней, в календарной традиции донаучных людей является убедительным доказательством того, что тогда Земля совершала 360, а не 365¼ оборотов вокруг своей оси за один оборот вокруг Солнца.
Этот вопрос можно, в принципе, решить, изучив суточные кольца прироста кораллов, которые, как сейчас известно, показывают с некоторой точностью количество дней и месяцев в году; первое верно только для кораллов, растущих в приливно-отливной зоне. За последнее время, по всей видимости, не наблюдалось значительных отклонений от нынешнего количества дней в лунном месяце или году, и постепенное укорачивание (не удлинение) дня и месяца относительно года по мере того, как мы движемся обратно во времени, согласуется с теорией приливов и сохранением энергии и момента импульса внутри системы «Земля – Луна» без обращения к вмешательству кометы или других внешних факторов.
Другая проблема метода Великовского заключается в том, что в какой-то степени похожие истории могут относиться к совершенно разным периодам. Этот вопрос синхронизма легенд почти всецело игнорируется в «Столкновении миров», хотя поднимается в некоторых более поздних работах Великовского. Например, Великовский отмечает, что идея о том, что четыре древние эпохи закончились катастрофой, является общей и для индийских, и для западных священных писаний. Одко в «Бхагавадгите» и в «Ведах» даны совершенно разные количества таких эпох, включая их бесконечно большое число, но еще интереснее, что указанная длительность эпох между главными катастрофами (см., например, Campbell, 1974) составляет миллиарды лет. Это не совсем соответствует хронологии Великовского, которая подразумевает промежутки в сотни или тысячи лет. Здесь гипотеза Великовского и данные, которые должны подтверждать ее, отличаются приблизительно в миллион раз. Или приводятся отдаленно похожие темы извержения вулканов и потоков лавы в греческой, мексиканской и библейской традициях, но ничего не сказано о том, относятся ли они хотя бы к приблизительно сравнимым временам, и, поскольку вулканы извергались в исторические времена во всех трех областях, нет необходимости в общем внешнем событии, чтобы интерпретировать такие истории.
Несмотря на изобилие ссылок в рассуждениях Великовского также много важных недоказанных предположений. Я упомяну только несколько из них. Самая интересная идея заключается в том, что любые мифологические описания бога, который олицетворяет какое-либо небесное тело, представляют собой на самом деле прямое наблюдение этого небесного тела. Это смелая гипотеза, хотя я не представляю, как с ее помощью объяснить миф, в котором Юпитер представал перед Ледой в образе лебедя, а перед Данаей – золотого дождя. В главе 12 гипотеза о том, что боги и планеты идентичны, используется, чтобы датировать период жизни Гомера. В любом случае, когда Гесиод и Гомер говорят, что Афина родилась взрослой из головы Зевса, Великовский ловит их на слове и предполагает, что небесное тело Афина отделилось от планеты Юпитер. Но что есть небесное тело Афина? Снова оно идентифицируется с планетой Венера (часть 1, глава 9 и многие другие места в тексте). Читая «Столкновение миров», с трудом догадываешься, что греки обычно идентифицировали с Венерой Афродиту, а Афину – ни с каким небесным объектом. Более того, Афина и Афродита были богинями-«современницами», обе родились в то время, когда Зевс был верховным богом. В главе 12 Великовский отмечает, что Лукиан «не знает, что Афина – богиня планеты Венера». Бедный Лукиан, похоже, пребывает в заблуждении, считая, что богиня планеты Венера – Афродита. Но в сноске 208, видимо, оговорка, потому что здесь Великовский впервые и единственный раз использует форму «Венера (Афродита)». В главе 12 мы видим упоминание об Афродите, богине Луны. Кем тогда была Артемида, сестра Аполлона-Солнца, или ранее Селена? Насколько я знаю, можно обосновать отождествление Афины с Венерой, но это далеко от традиции и современной, и двухтысячелетней и является главным пунктом в доводах Великовского. Когда отождествление Афины с небесным телом превратно истолковывается, мы уже не так легко верим в толкование менее знакомых мифов.
Другие важные утверждения, которым дано совершенно неприемлемое объяснение и которые фигурируют в одной или нескольких главных темах Великовского: «метеориты, когда входят в атмосферу Земли, издают ужасный грохот», в то время как обычно это происходит тихо; «удар молнии, попав в магнит, меняет его полюса»; перевод слова «Barad» как «метеориты» и «как известно, Паллас – это другое имя Тифона». В главе 7 вводится принцип, что, когда имена двух богов пишут через дефис как одно имя, оно указывает на признаки небесного тела – как, например, Аштерот-Карнаим, рогатая Венера, которую Великовский интерпретирует как полумесяц Венеры и доказательство того, что Венера однажды настолько приблизилась к Земле, что ее фазы можно было различить невооруженным глазом. Но что этот принцип подразумевает, например, для бога Амона-Ра? Египтяне видели солнце (Ра) в виде барана (Амон)?
Есть утверждение, что вместо десятой казни египетской, гибели «перворожденных», в «Книге Исход» имеется в виду убийство «избранных». Это довольно серьезный вопрос и по крайней мере, вызывает подозрение, что, когда Библия не соответствует гипотезе Великовского, Великовский заново ее переводит. Все вышеупомянутые вопросы могут иметь простые ответы, но ответы не так легко найти в «Столкновении миров».
Я не хочу сказать, что все легендарные совпадения и древние знания у Великовского одинаково ложные, но многие из них кажутся таковыми, а остальные могут иметь альтернативное происхождение, например распространение.
При такой неясной ситуации с легендами и мифами те, кто поддерживает доводы Великовского, должны быть рады любому подтверждающему доказательству из других источников. Я поражен отсутствием таких доказательств в искусстве. Существует множество полотен, барельефов, цилиндрических печатей и других произведений искусства, созданных человечеством за период, начинающийся за 10 000 лет до н. э. Они представляют все объекты, особенно мифологические, важные для культуры, которая их создала. Астрономические события в таких произведениях искусства не редкость. Недавно (Brandt et al., 1974) в пещерных рисунках на юго-западе Америки было обнаружено впечатляющее доказательство наблюдений вспышки сверхновой звезды, породившей Крабовидную туманность, сделанных непосредственно в то время, в 1054 г. Это событие также было записано в китайских, японских и арабских анналах. К археологам обращались за информацией по поводу пещерных рисунков с изображениями более ранней сверхновой звезды, породившей туманность Гама (Brandt et al., 1971). Но взрывы сверхновых звезд не так впечатляющи, как приближение другой планеты с сопровождающими межпланетными завихрениями и разрядами молнии, связывающими ее с Землей. Существует много незатопляемых пещер на больших высотах, далеко от моря. Если катастрофы Великовского действительно происходили, почему нет связанных с этими событиями графических изображений, сделанных в соответствующее время?
Я, следовательно, не могу считать гипотезу Великовского, основанную на легендах, убедительной. Тем не менее, если бы его идея о недавних столкновениях планет и глобальных катастрофах была подтверждена физическими доказательствами, мы могли бы в нее поверить. Но, если физические доказательства не будут очень убедительными, мифологические доказательства сами по себе точно не выдержат критики.
А теперь позвольте мне кратко резюмировать основные аспекты главной гипотезы Великовского, как я их понимаю. Я буду соотносить их с событиями, описанными в «Книге Исход», хотя говорят, что предания многих других культур соответствуют событиям, описанным в «Исходе».
Планета Юпитер извергла большую комету, которая прошла по касательной относительно Земли приблизительно за 1500 лет до н. э. Различные напасти и бедствия, которые постигли фараона из «Книги Исход», – все прямо или косвенно связаны с этим соприкосновением с кометой. Вещество, которое заставило реку Нил превратиться в кровь, попало в него с кометы. Мошки, описанные в «Исходе», появились из-за кометы – возможно, они вылетели с кометы, а местные земные лягушки стали размножаться под действием тепла, исходящего от кометы. Землетрясения, вызванные кометой, разрушили египетские, но не еврейские жилища. (Единственное, что, видимо, попало не с кометы, – это холестерин, который ужесточил сердце фараона.)
Все это, очевидно, упало из комы кометы, потому что в тот момент, когда Моисей поднимает свой посох и протягивает руку, Красное море расходится – или из-за приливного действия гравитационного поля кометы, или из-за какого-то электромагнитного взаимодействия между кометой и Красным морем. К тому моменту, когда евреи успешно его пересекли, комета, очевидно, ушла достаточно далеко, чтобы разошедшиеся воды снова сомкнулись и потопили войско фараона. Сыны Израилевы в течение последующих сорока лет блуждания по Синайской пустыне питались манной с небес, которая оказалась углеводородами (или углеводами) из хвоста кометы.
При другом прочтении «Столкновения миров» оказывается, что бедствия и события на Красном море являются последствиями двух разных прохождений кометы с разницей в месяц или два. Затем, после смерти Моисея и передачи руководства Иисусу Навину, та же комета возвращается и, издавая зловещие звуки, снова проходит по касательной к Земле. В тот момент, когда Иисус Навин говорит: «Стой, солнце, над Гаваоном и луна над долиною Аиалонскою», – Земля – возможно, снова из-за приливного влияния кометы или из-за неуточненной магнитной индукции в коре Земли – любезно прекращает свое вращение, чтобы позволить Иисусу победить в битве. Затем комета проходит рядом с Марсом, так близко, что он отклоняется от своей орбиты и два раза практически сталкивается с Землей, что приводит к уничтожению армии Синаххериба, ассирийского царя, поскольку он портил жизнь нескольким поколениям израильтян. В конечном итоге Марс вернулся на нынешнюю орбиту, а комета – на орбиту вокруг Солнца, где она стала планетой Венерой, которая раньше, как считает Великовский, не существовала. Земля тем временем каким-то образом начала вращаться снова почти с той же скоростью, как и до этих столкновений. В последующие времена, с VII столетия до н. э., поведение планет больше не отклонялось от нормы, хотя это могло бы происходить во II тыс.
То, что это выдающаяся история, никто – ни сторонники, ни противники – не будет спорить. Ее правдоподобность, к счастью, можно проверить научным путем. Гипотеза Великовского делает определенные прогнозы и выводы: что кометы отделяются от планет, что кометы могут проходить по касательной к планетам или вплотную к ним, что мошки живут на кометах и в атмосфере Юпитера и Венеры, что там же могут находиться углеводы, что углеводы упали на Синайский полуостров в достаточном количестве, чтобы прокормить блуждающих в пустыне в течение сорока лет, что эксцентричные орбиты комет или планет могут стать круговыми за сотни лет, что вулканические и тектонические события на Земле и связанные с ними события на Луне происходили одновременно с этими катастрофами и так далее. Я рассмотрю каждую из этих идей, а также некоторые другие: например, что поверхность Венеры горячая, что стоит не на первом месте в его гипотезе, но что широко рекламировалось как мощное ее подтверждение post hoc. Я также изучу дополнительный «прогноз» Великовского: например, что полярные шапки Марса состоят из углерода или углеводородов. Я прихожу к выводу, что, когда Великовский предлагает собственную идею, он, скорее всего, ошибается, а когда он прав, идея уже была выдвинута кем-то до него. Также есть много случаев, когда он ни прав, ни оригинален. Вопрос оригинальности важен из-за деталей (например, высокая температура на поверхности Венеры), которые, как считает Великовский, он предсказал в то время, когда все были другого мнения. Как мы увидим, это не совсем так.
В последующем обсуждении я постараюсь как можно больше использовать простую количественную аргументацию. Очевидно, что количественные аргументы – более мелкое сито для отсеивания гипотез, чем аргументы, ориентирующиеся на качественные признаки. Например, если я скажу, что большая приливная волна затопила Землю, существует широкий ряд катастроф – от затопления прибрежных регионов до глобального наводнения, на которые можно сослаться в подтверждение моего утверждения. Но, если я уточню, что высота прилива – 160 км, значит, я говорю о глобальном наводнении, и кроме того, могут быть важные доказательства, позволяющие опровергнуть или подтвердить прилив такого масштаба. Однако, чтобы количественные аргументы были понятны читателю, который не очень знаком с элементарной физикой, я постарался, особенно в «Приложении» (после «Библиографии»), изложить все главные этапы количественного исследования, используя простейшие аргументы, основанные на элементарной физике. Возможно, мне не нужно упоминать, что такая количественная проверка гипотез – привычное дело в современных физических и биологических науках. Отвергая гипотезы, которые не отвечают этим стандартам анализа, мы можем быстрее перейти к гипотезам, которые лучше соответствуют фактам.
Следует еще кое-что сказать о научном методе. Не все научные утверждения имеют равный вес. Динамика Ньютона, законы сохранения энергии и момента импульса имеют очень прочную основу. Были выполнены буквально миллионы отдельных экспериментов в их подтверждение – не только на Земле, но с помощью методов наблюдения современных астрофизиков везде в Солнечной системе, в других звездных системах или даже в других галактиках. С другой стороны, вопросы о природе поверхности, атмосферы и внутреннем составе планет не так однозначны, как явно показывают бурные дебаты последних лет по этим вопросам между учеными, изучающими планеты. Хорошим примером такого различия служит появление в 1975 г. кометы Когоутека. Эта комета была впервые замечена на большом расстоянии от Солнца. На основе ранних наблюдений было сделано два прогноза. Первый, касающийся орбиты кометы Когоутека: где она будет обнаружена в будущем, когда ее можно будет наблюдать с Земли до рассвета, когда после заката – это прогноз, основанный на ньютоновской динамике. Эти прогнозы оказались абсолютно точными. Второй прогноз касался яркости кометы. Он был основан на предположительной скорости испарения льдов кометы, вследствие чего образуется большой хвост, который дает яркое отражение солнечного света. Этот прогноз оказался ошибочным, и комету – несравнимую по яркости с Венерой – нельзя было увидеть невооруженным глазом. Но скорость испарения зависит от химического состава и геометрической формы кометы, которые мы знаем в лучшем случае плохо. При любом анализе «Столкновения миров» следует помнить то же самое различие между хорошо обоснованными научными аргументами и аргументами, базирующимися на физических или химических процессах, которые мы не вполне понимаем. Аргументам, опирающимся на ньютоновскую динамику или физические законы сохранения энергии, нужно придавать большое значение. Аргументам, основанным, например, на свойствах поверхности планет, нужно придавать, соответственно, меньший вес. Мы убедимся, что аргументы Великовского сталкиваются с большими трудностями по обоим показателям, но один тип трудностей намного хуже, чем другой.

Проблема 1
Oтделение Венеры от Юпитера

Гипотеза Великовского начинается с события, которое никогда не наблюдали астрономы и которое противоречит тому, что мы знаем о физике планет и комет, а именно – отделение объекта, имеющего размеры планеты, от Юпитера возможно при его столкновении с другой гигантской планетой. Такое распространение катастроф, обещал Великовский, будет «темой продолжения “Столкновения миров”». Тридцать лет спустя продолжения этого описания так и не появилось. Основываясь на том факте, что афелии (самые удаленные от Солнца точки) орбит короткопериодических комет по статистике чаще всего находятся рядом с Юпитером, Лаплас и другие первые астрономы предположили, что Юпитер является источником таких комет. В этой гипотезе нет необходимости, потому что сейчас мы знаем, что долгопериодические кометы могут перейти на траектории с коротким орбитальным периодом из-за гравитационных возмущений со стороны Юпитера; в течение одного или двух столетий эту точку зрения никто не поддерживал, кроме советского астронома С. К. Всехсвятского, который считает, что спутники Юпитера извергают кометы из гигантских вулканов.
Чтобы оторваться от Юпитера, такая комета должна обладать кинетической энергией ½ mvs2, где m – это масса кометы и vs– это вторая космическая скорость (для Юпитера она составляет около 60 км/с). Каким бы ни было событие, вызвавшее извержение кометы – вулканы или столкновения, – некоторая значительная доля, не менее 10 %, этой кинетической энергии пойдет на нагревание кометы. Минимальная кинетическая энергия на единицу отделенной массы тогда составит ½ vs2 = 1,3 × 1013 эрг/г, а количество, которое пойдет на нагревание, – более чем 2,5 × 1012 эрг/г. Скрытая теплота плавления горной породы составляет около 4 × 109 эрг/г. Это количество теплоты, которое нужно передать, чтобы горячая твердая горная порода с температурой, близкой к точке плавления, превратилась в жидкую лаву. Около 1011 эрг/г нужно передать, чтобы нагреть горную породу с низкой температуры до ее точки плавления. Таким образом, любое событие, которое отделило комету или планету от Юпитера, разогрело бы ее до температуры по крайней мере несколько тысяч градусов и, если бы она состояла из горной породы, льда или органических веществ, полностью расплавило бы ее. Возможно даже, что она бы полностью рассыпалась дождем маленьких частиц пыли и атомов, обладающих собственным гравитационным полем, что не особенно подходит для описания планеты Венера. (Кстати, это был бы хороший аргумент для Великовского в защиту высокой температуры поверхности Венеры, но, как описано ниже, это не его аргумент.)
Другая проблема заключается в том, что вторая космическая скорость, позволяющая преодолеть гравитацию Солнца на расстоянии Юпитера, составляет около 20 км/с. Механизм отрыва от Юпитера, конечно, этого не знает. Таким образом, если комета покидает Юпитер со скоростью менее 60 км/с, комета упадет обратно на Юпитер, если больше чем [(20)2 + (60)2]1 / s = 63 км/с, она уйдет из Солнечной системы. Гипотезе Великовского соответствует только узкий и, следовательно, маловероятный интервал скорости.
Еще одна проблема заключается в том, что масса Венеры очень большая – больше чем 4 × 1027 г, или, вероятно, по гипотезе Великовского, первоначально, до того, как она прошла вблизи от Солнца, еще больше. Общую кинетическую энергию, требуемую, чтобы разогнать Венеру до второй космической скорости для Юпитера, в таком случае легко вычислить: она должна быть порядка 1041 эрг, что эквивалентно всей энергии, которую излучает Солнце в космос за целый год, и в сотню миллионов раз мощнее самой большой вспышки на Солнце, которая когда-либо наблюдалась. Нас просят верить без дальнейших доказательств или обсуждений в событие выброса, намного более мощное, чем что-либо происходившее на Солнце, которое обладает значительно большей энергией, чем Юпитер.
Любой процесс, в ходе которого создаются большие объекты, создает и меньшие объекты. Это особенно верно в ситуации, где решающую роль играют столкновения, как в гипотезе Великовского. Здесь действует физика измельчения, и частиц, в десять раз меньших нашей самой большой частицы, должно быть в сотню или тысячу раз больше. На самом деле у Великовского в разгар гипотетического столкновения планет камни падают с небес, и он представляет, что Венера и Марс тащат за собой хвост из камней. Он говорит, что камни с Марса уничтожили войска Синаххериба. Но, если это верно, если мы прошли вплотную к объектам планетной массы только тысячу лет назад, нас должны были бомбардировать объекты лунной массы сотни лет назад, а объекты, которые могут оставлять кратеры диаметром полтора километра, должны бомбардировать нас каждый второй вторник. Однако ни на Земле, ни на Луне нет признаков частых недавних столкновений с такими объектами с меньшей массой. Вместо этого тех нескольких объектов, которые движутся по стационарным орбитам, пересекающимся с орбитой Луны, как раз достаточное количество, чтобы объяснить возникновение за геологическое время кратеров, наблюдаемых на лунной поверхности. Отсутствие большого количества малых объектов с орбитами, пересекающими земную, – еще одно фундаментальное возражение против основного тезиса Великовского.

Проблема 2
Повторные столкновения Земли, Венеры и Марса

«То, что комета может столкнуться с нашей планетой, не очень вероятно, но эта идея не абсурдна». Это абсолютно точно: остается только посчитать вероятности, что Великовский, к несчастью, не сделал.
К счастью, физические процессы, имеющие отношение к данному вопросу, очень просты, и их можно применить для оценки величин, даже не учитывая гравитацию. Объекты с сильно эксцентричными орбитами, путешествуя от Юпитера к Земле, пролетают на таких больших скоростях, что сила их взаимного притяжения с объектом, по касательной к которому они должны пройти, играет незначительную роль в определении траектории. Вычисление выполнено в приложении 1, где мы видим, что одиночной «комете» с афелием (самой дальней точкой от Солнца), находящимся рядом с орбитой Юпитера, и перигелием (ближайшей точкой к Солнцу), расположенным внутри орбиты Венеры, потребуется по крайней мере 30 млн лет, чтобы столкнуться с Землей. Мы также видим в приложении 1, что если этот объект является членом семьи объектов с такими траекториями, наблюдаемой в наше время, его срок существования до столкновения превышает возраст Солнечной системы.
Но давайте возьмем число 30 млн лет – максимальное количество в пользу идеи Великовского. Следовательно, вероятность столкновения с Землей в течение года равна 1 к 3 × 107; его вероятность в любом данном тысячелетии равна 1 к 30 000. Но у Великовского не одно, а пять или шесть опасных сближений Венеры, Марса и Земли друг с другом – все эти события статистически независимы; то есть, по его собственной оценке, это не регулярное множество столкновений по касательной, определяемых орбитальными периодами трех планет относительно друг друга. (Если бы это было так, нам бы следовало усомниться, что такая партия в планетный биллиард могла быть разыграна во временны́х рамках, предложенных Великовским.) Если события независимы, тогда совместная вероятность пяти таких столкновений в одном тысячелетии равна не больше чем (3 × 107 / 103) –5 = (3 × 104)–5 = 4,1 × 10–23, или почти 100 млн триллионов к 1. Для шести столкновений в одном тысячелетии вероятность возрастает до (3 × 107 / 103)–6 = (3 × 104)–6 = 7,3 × 10–28, или около 1 трлн квадрильона к 1. На самом деле это нижний предел – и по причине, указанной выше, и потому, что прохождение по соседству с Юпитером, скорее всего, выбросит объект столкновения из Солнечной системы так же, как Юпитер отбросил космический зонд «Пионер-10». Эти вероятности хорошо проверяют обоснованность гипотезы Великовского, даже если бы с ней не было других сложностей. Гипотезы с такими малыми вероятностями в их пользу обычно считаются несостоятельными. В сочетании с другими проблемами, упомянутыми и выше, и ниже, вероятность того, что идеи, изложенные в «Столкновении миров», верны, становится пренебрежимо малой.

Проблема 3
Вращение Земли

Наибольшее возмущение в «Столкновении миров» вызвала интерпретация Великовского истории об Иисусе Навине и связанных с ней легенд, которая заключалась в том, что вращение Земли однажды остановилось. Образ, который, по-видимому, пришел на ум самым яростным противникам, – это экранизация рассказа Г. Уэллса «Человек, который мог творить чудеса»: Земля чудесным образом прекратила вращение, но по недосмотру не принято никаких мер предосторожности в отношении объектов, которые не закреплены, и они продолжают двигаться с обычной скоростью и, следовательно, улетают с Земли со скоростью 1600 км/ч. Но легко увидеть (приложение 2), что постепенное замедление вращения Земли на 10–2 g может произойти гораздо меньше чем за день. Тогда никто не улетит и даже сталактиты и другие нежные геоморфологические формы могли бы сохраниться. Также мы видим в приложении 2, что энергии, которая требуется, чтобы остановить Землю, недостаточно, чтобы расплавить ее, хотя это приведет к заметному повышению температуры: океаны нагрелись бы до точки кипения воды – событие, которое упущено из виду в древних источниках Великовского.
Однако это еще не самые серьезные возражения против предложенного Великовским толкования истории об Иисусе Навине. Возможно, самое серьезное кроется с другой стороны: как Земля снова начала вращаться приблизительно с той же скоростью? Земля не может сделать это сама в силу закона сохранения момента импульса. Великовский, похоже, даже не осознает этой проблемы.
Нет и намека на то, что остановка Земли вследствие столкновения с кометой более вероятна, чем изменение ее периода обращения на любой другой. На самом деле шанс в точности компенсировать момент вращения Земли при столкновении с кометой ничтожно мал, и вероятность того, что последующие столкновения, если бы они произошли, привели хотя бы к приблизительному восстановлению периода обращения Земли вокруг своей оси за 24 часа, мала в квадрате.
Великовский не уточняет механизм, который остановил вращение Земли. Возможно, он приливной гравитационный, возможно, магнитный. Сила действия обоих этих полей очень быстро ослабевает с расстоянием. Сила тяготения обратно пропорциональна квадрату расстояния, приливные силы обратно пропорциональны кубу расстояния, а приливное взаимодействие пары небесных тел, вращающихся вокруг общего центра вращения, обратно пропорционально расстоянию в шестой степени. Магнитное поле диполя обратно пропорционально кубу расстояния, а любые равные по величине магнитные волны ослабевают даже быстрее, чем гравитационные. Следовательно, торможение может произойти на расстоянии наибольшего сближения. Характерное время этого наибольшего сближения составляет примерно 2R/v, где R – радиус Земли, а v – относительные скорости кометы и Земли. Если v равно около 25 км/с, характерное время будет менее десяти минут. Это самое большее, что есть у кометы, чтобы оказать влияние на вращение Земли. Соответствующие ускорение составляет менее 0,1 g, так что армии все равно не улетят в космос. Но характерное время акустического распространения по Земле – минимальное время для того, чтобы внешнее воздействие ощущалось по всей Земле – 85 минут. Таким образом, никакое влияние кометы, даже при столкновении по касательной, не могло привести к тому, чтобы Солнце застыло над Гаваоном.
Историю вращения Земли, рассказанную Великовским, сложно проследить. В главе 11 рассказывается о движении Солнца в небе, которое случайно соответствует появлению и видимому движению Солнца, если наблюдать с поверхности Меркурия, а не с поверхности Земли; а в главе 23 мы, похоже, наблюдаем полное отступление Великовского, поскольку здесь он утверждает, что то, что произошло, было не изменением угловой скорости вращения Земли, а перемещением в течение нескольких часов вектора момента импульса Земли от положения, при котором он указывал приблизительно под прямым углом на плоскость эклиптики, как сейчас, до положения, при котором он указывал на Солнце, как у планеты Уран. Кроме того, что это утверждение противоречит законам физики, это не соответствует собственному утверждению Великовского, потому что раньше он придавал большое значение тому факту, что в культурах Евразии и Ближнего Востока говорилось об удлиненном дне, а в культурах Северной Америки – об удлиненной ночи. В этом варианте нет объяснения для ситуации в Мексике. Я считаю, что в этом случае Великовский или увиливает, или забывает свои же сильные аргументы, почерпнутые из древних писаний. В главе 23 мы видим хороший довод, утверждающий, что Землю могло остановить сильное магнитное поле. Требуемая сила поля не упоминается, но явно (смотрите вычисления в приложении 4) должна быть огромной. Намагниченность горных пород на Земле не указывает на то, что они когда-либо подвергались воздействию полей такой интенсивности, и, что не менее важно, мы располагаем вполне убедительным доказательством и советской, и американской космических станций, что интенсивность магнитного поля Венеры чрезвычайно мала – намного меньше, чем величина собственного магнитного поля у поверхности Земли, составляющая 0,5 гаусса, которая сама по себе не соответствует замыслу Великовского.

Проблема 4
Геология Земли и лунные кратеры

Великовский достаточно разумно считает, что прохождение другой планеты рядом с Землей должно было иметь для нее драматические последствия – из-за гравитационного приливного или электромагнитного воздействия (этого Великовский не уточняет). Он считает, «что в дни “Исхода”, когда мир сотрясался и качался… все вулканы извергали лаву и все континенты содрогались (выделено мной. – Авт.)».
Несомненно, такие опасные сближения сопровождались бы землетрясениями. С помощью лунных сейсмометров «Аполлона» было обнаружено, что лунотрясения чаще всего происходят во время лунного перигея, когда Земля находится ближе всего к Луне, и в это же время происходят хотя бы слабые землетрясения. Но утверждение, что были обильные потоки лавы и извержения всех вулканов, – совсем другая история. Вулканическую лаву легко датировать, и то, что Великовский должен был предъявить, – это график числа лавовых потоков на Земле как функцию времени. Такой график, я считаю, покажет, что не все вулканы были активными между 1500 и 600 гг. до н. э. и что не было ничего особенно примечательного в вулканических явлениях той эпохи.
Великовский считает, что приближение кометы вызвало инверсию геомагнитного поля. Но данные о намагниченности горных пород ясно показывают, что такие инверсии происходят примерно раз в миллион лет, а не за последние несколько тысяч, и они повторяются более-менее как часы. Существуют ли в Юпитере часы, которые направляют кометы к Земле раз в миллион лет? Согласно традиционной точке зрения, происходит инверсия полярности самоподдерживающегося генератора, который создает магнитное поле Земли; это гораздо более вероятное объяснение.
Утверждение Великовского, что образование гор происходило несколько тысяч летназад, опровергается всеми геологическими данными, которые указывают, что этот процесс происходил более 10 млн лет назад. Идею, что мамонты подверглись заморозке при быстром движении географического полюса Земли несколько тысяч лет назад, можно проверить, например, с помощью радиоуглеродного анализа или по рацемизации аминокислот. Я был бы очень удивлен, если бы результаты таких исследований показали незначительный возраст.
Великовский считает, что, поскольку Луна не защищена от катастроф, которые происходили на Земле, то несколько тысяч лет назад на ее поверхности происходили схожие тектонические события и образовались многие ее кратеры (см. часть 2, глава 9). У этой идеи есть свои недочеты: по образцам, привезенным с Луны миссиями «Аполлона», видно, что горные породы плавились не позднее нескольких сотен миллионов лет назад.
Более того, если лунные кратеры образовывались в большом количестве 2700 или 3500 лет назад, в то же время должны были образовываться кратеры на Земле диаметром больше километра. Эрозия на поверхности Земли не могла бы за 2700 лет уничтожить кратер такого размера. Но земных кратеров такого размера и возраста нет; на самом деле нет ни одного. По этим вопросам Великовский, судя по всему, игнорирует данные, которые при проверке противоречат его гипотезе.
Великовский считает, что близкое прохождение Венеры или Марса к Земле вызвало прилив высотой не менее нескольких километров; на самом деле, если бы эти планеты проходили когда-нибудь на расстоянии десятков тысяч километров, как он, видимо, думает, приливы воды и приливные деформации твердого тела нашей планеты достигали бы сотен километров в высоту. Это легко посчитать по высоте лунного прилива в настоящее время, поскольку высота прилива пропорциональна массе объекта, который его вызывает, и обратно пропорциональна кубу расстояния. Насколько я знаю, геологических доказательств глобального наводнения во всех частях мира между VI и XV столетиями до н. э. нет. Если такие наводнения происходили, даже будучи краткими, они должны были оставить какой-то ясный след в геологической летописи. А что насчет археологических и палеонтологических доказательств? Где повсеместное исчезновение фауны в соответствующее время как результат таких наводнений? И где доказательства повсеместного плавления горных пород в эти столетия там, где приливная деформация наиболее сильна?

Проблема 5
Химия и биология планет земной группы

Из гипотезы Великовского следует несколько странных биологических и химических выводов, которые отягощаются откровенными неувязками в простых вопросах. По-видимому, он не знает, что кислород на Земле производится зелеными растениями посредством фотосинтеза. Он игнорирует тот факт, что Юпитер состоит, в первую очередь, из водорода и гелия, а атмосфера Венеры, которая, как он предполагает, образовалась внутри Юпитера, состоит почти полностью из углекислого газа. Эти вопросы занимают в его гипотезе центральное положение и сильно ее подтачивают. Великовский утверждает, что манна, которая упала с небес на Синайский полуостров, была кометного происхождения и, следовательно, и на Юпитере, и на Венере есть углеводы. С другой стороны, он цитирует множество источников, в которых говорится, что с небес падали огонь и нафта, что он интерпретирует как упавшую с небес нефть, загоревшуюся в кислородсодержащей атмосфере Земли. Поскольку Великовский верит в реальность и идентичность обеих цепочек событий, его книга пестрит непрерывной путаницей углеводов и углеводородов; и на каком-то этапе он, кажется, воображает, что израильтяне во время их сорокалетнего блуждания по пустыне ели моторное масло, а не божественную пищу.
Читать текст становится еще сложнее из-за очевидного вывода, что марсианские полярные шапки состоят из манны, которая неопределенно описана как «вероятно, имеющая углеродную природу». Углеводы поглощают инфракрасные волны в диапазоне 3,5 мк из-за валентных колебаний углерод-водородных связей. В инфракрасных спектрах марсианских полярных шапок, полученных космическими аппаратами «Маринер-6» и «Маринер-7» в 1969 г., такие полосы поглощения не были обнаружены. С другой стороны, «Маринер-6», «Маринер-7» и «Маринер-9» и «Викинг-1» и «Викинг-2» добыли множество убедительных доказательств наличия замерзшей воды и замерзшего углекислого газа, входящих в состав полярных шапок.
Сложно понять, почему Великовский настаивает на небесном происхождении нефти. Некоторые из его источников, например у Геродота, дают абсолютно естественное описание горения нефти в местах ее выхода на поверхность в Месопотамии и Иране. Как Великовский сам же отмечает, истории об огненном дожде и сырой нефти рассказываются как раз в тех регионах Земли, где есть природные залежи нефти. Следовательно, есть прямое земное объяснение данных историй. Количество просачивающейся вниз нефти за 2700 лет не было очень большим. Извлечение нефти из земли, которое сопровождается определенными практическими проблемами и сегодня, было бы намного легче, если бы гипотеза Великовского оказалась верна. Также по его гипотезе очень трудно понять, каким образом оказалось (если нефть падала с небес в 1500 г. до н. э.), что залежи нефти смешались с химическими и биологическими ископаемыми, возраст которых измеряется десятками и сотнями миллионов лет. Но это обстоятельство легко объяснить, если, как заключили большинство геологов, нефть образуется из разложившейся растительности каменноугольного периода и других ранних геологических эпох, а не падает с комет.
Взгляды Великовского на внеземную жизнь еще более странные. Он считает, что большинство «вредных насекомых» и, в частности, мошки, упомянутые в «Исходе», действительно упали с его кометы, хотя он уклончиво говорит о внеземном происхождении лягушек, одобрительно цитируя иранский текст Bundahis, который, похоже, признает дождь из космических лягушек. Давайте рассмотрим только мух. Должны ли мы ожидать, что обнаружим комнатных мух или Drosophila melanogaster во время предстоящего исследования облаков Венеры и Юпитера? Он высказывается достаточно недвусмысленно: «Венера – и, следовательно, Юпитер – населены вредными насекомыми». Будет ли опровергнута гипотеза Великовского, если мошки не будут найдены?
Идея, что из всех организмов на Земле только мошки имеют внеземное происхождение, любопытно напоминает яростное заключение Мартина Лютера, что, в то время как все живое было создано Богом, муха, должно быть, была создана дьяволом, потому что она не имеет возможной практической пользы. Но мухи – совершенно респектабельные насекомые, близко связанные своей анатомией, физиологией и биохимией с другими insecta. Допускать вероятность того, что за 4,6 млрд лет в ходе независимой эволюции на Юпитере (даже если он был физически идентичен Земле) возникло создание, неотличимое от других земных организмов, – значит, неправильно понимать эволюционный процесс. Мухи имеют те же ферменты, те же нуклеиновые кислоты и даже тот же генетический код (который переводит информацию, закодированную в нуклеиновой кислоте, в информацию белка), как и все другие организмы на Земле. Между мухами и другими земными организмами слишком много близких связей и сходных черт, чтобы они имели различное происхождение, что ясно показывает любое серьезное исследование.
В «Книге Исход», глава 9, сказано, что весь египетский скот погиб, но из скота сынов Израилевых «не умерло ничего». В той же главе говорится про бедствие, которое уничтожило посевы льна и ячменя, но не рожь и пшеницу. Эта тонкая избирательность очень странна для вредителей с кометы, которые ранее не имели биологического контакта с Землей, но объяснима для домашних земных вредителей.
Затем есть любопытный факт: в метаболизме мух участвует молекулярный кислород. На Юпитере нет молекулярного кислорода и не может быть, потому что кислород термодинамически нестабилен при избытке водорода. Должны ли мы представить, что механизм переноса электронов, необходимый для того, чтобы живые существа могли использовать в своем метаболизме молекулярный кислород, был случайно выработан живыми организмами на Юпитере в надежде, что однажды их отправят на Землю? Это было бы еще бо́льшим чудом, чем главная гипотеза Великовского о столкновении. Великовский делает неудачное отступление о «способности многих мелких насекомых… жить в атмосфере, лишенной кислорода», что не относится к делу. Вопрос заключается в том, как живой организм, появившийся на Юпитере, может существовать в атмосфере, насыщенной кислородом.
Еще есть проблема – абляция мошек. Мелкие мухи имеют ту же массу и размеры, что и мелкие метеоры, которые сгорают на высоте около 100 км, когда они входят в атмосферу Земли по траектории кометы. Абляция объясняет видимость таких метеоров. Насекомые с комет не только сразу же превратились бы в жареных мух на входе в атмосферу Земли, они, как кометные метеоры сегодня, распылились бы на атомы и никогда бы не «роились тучами» в Египте к ужасу фараона. Также температуры, сопровождающие исторжение кометы из Юпитера, описанные ранее, поджарили бы мух Великовского. Кроме того, что это невероятно, дважды прожаренные и разобранные на атомы кометные мухи не выдерживают критического рассмотрения.
И наконец, в «Столкновении миров» есть любопытная отсылка к разумной внеземной жизни. В главе 21 Великовский утверждает, что прохождение Марса рядом с Землей и Венерой «делает в высшей степени невероятным выживание на Марсе любых высших форм жизни, если они там ранее существовали». Но когда мы изучаем Марс по фотографиям, сделанным «Маринером-9», «Викингом-1» и «Викингом-2», мы обнаруживаем, что более трети планеты имеет испещренную кратерами поверхность, напоминающую лунную, и на ней нет очевидных признаков катастроф, кроме следов древних столкновений. В других частях планеты – и это около двух третей ее – почти нет признаков таких столкновений, но есть явные свидетельства значительной тектонической активности, истечения лавы и вулканической деятельности, происходивших около миллиарда лет назад. Небольшое, но заметное количество ударных кратеров в этой местности показывает, что они образовались гораздо раньше, чем несколько тысяч лет назад. Невозможно сопоставить эту картину с видом планеты, недавно настолько опустошенной катастрофическими столкновениями, что вся разумная жизнь была уничтожена. Также непонятно, почему, если вся жизнь на Марсе была уничтожена при таких столкновениях, вся жизнь на Земле не была истреблена таким же образом.

Проблема 6
Манна

Слово «манна», согласно «Исходу», происходит от еврейских слов man-hu, которые означают «Что это?». Действительно, отличный вопрос! Идея пищи, падающей с комет, не так проста. Оптическая спектроскопия хвостов комет, даже до того, как было опубликовано «Столкновение миров» (1950), показала наличие простых фрагментов углеводородов, но альдегиды – строительные блоки углеводов – не были тогда известны. Тем не менее они могут присутствовать в составе комет. Однако теперь, после прохождения кометы Когутека рядом с Землей, известно, что кометы содержат в больших количествах простые нитрилы, в частности цианистый водород и ацетонитрил. Это яды, и не очень очевидно, что кометы подходят для еды.
Но давайте отбросим это возражение, примем гипотезу Великовского и подсчитаем последствия. Сколько манны требуется, чтобы накормить сотни тысяч сынов Израилевых в течение сорока лет (см. «Книга Исход», глава 16, стих 35)?
В «Книге Исход», глава 16, стих 20, мы видим, что манна, оставленная на ночь, наутро кишела червями – событие, возможное с углеводами, но чрезвычайно невероятное с углеводородами. Моисей, возможно, был лучшим химиком, чем Великовский. Это событие также показывает, что манна не подлежала хранению. Она падала каждый день в течение сорока лет, согласно библейской притче. Предположим, что количества, которое падало каждый день, было как раз достаточно, чтобы накормить сынов Израилевых, хотя Великовский заверяет нас, используя мидрашские источники, что количества, которое падало, хватило бы на 2000 лет, а не просто на 40. Давайте предположим, что каждый израильтянин съедал порядка 300 г манны в день, что несколько меньше, чем необходимо для жизни. Тогда каждый съест 100 кг в год и 4000 кг за 40 лет. Сотни тысяч израильтян – количество, точно упомянутое в «Исходе», – тогда употребят более 1 млн кг манны за время сорокалетнего блуждания по пустыне. Но мы не можем представить, чтобы обломки хвоста кометы падали каждый день, причем именно в той части Синайской пустыни, по которой блуждали израильтяне. Это было бы не меньшим чудом, чем библейские притчи, воспринятые буквально. Площадь той области, которая была занята несколькими сотнями тысяч кочующих соплеменников под предводительством одного лидера, очень приблизительно равна 10–7 площади поверхности Земли. Следовательно, во время сорокалетнего блуждания на всей поверхности Земли должно было накопиться порядка 1018 г манны; этого достаточно, чтобы покрыть всю поверхность планеты слоем манны глубиной около 2,4 см. Если бы это и правда произошло, то определенно было бы запоминающимся событием и, может, даже объяснило пряничный домик в сказке «Гензель и Гретель».
Итак, нет причин, чтобы манна падала только на Землю. За сорок лет хвост кометы, если он был ограничен внутренней Солнечной системой, пролетел бы около 1010 км. Делая только небольшое допущение о соотношении объема Земли и объема хвоста, мы находим, что масса манны, распределенной по внутренней Солнечной системе во время этого события, составляет больше 1028 г. Это не только на много порядков тяжелее, чем самые большие кометы из известных, это уже тяжелее планеты Венера. Но кометы не могут состоять только из манны. (На самом деле пока что на кометах не было обнаружено никакой манны.) Известно, что кометы состоят в первую очередь из льда, и заниженная оценка соотношения массы кометы и массы манны гораздо больше чем 103. Следовательно, масса кометы должна быть гораздо больше 1031 г. Это масса Юпитера. Если бы мы приняли мидрашский источник Великовского, упомянутый выше, мы бы вывели, что у кометы была масса, сравнимая с Солнцем. Межпланетное пространство во внутренней Солнечной системе должно было бы быть заполнено манной даже сегодня. Пусть читатель сам судит о правдоподобности гипотезы Великовского в свете таких вычислений.

Проблема 7
Облака Венеры

Предсказание Великовского, что облака Венеры состоят из углеводородов или углеводов, много раз приводилось как пример успешного научного прогноза. Из общей гипотезы Великовского и вычислений, описанных выше, ясно, что Венера должна быть насыщена манной – углеводом. Великовский говорит (с. х.), что «присутствие углеводородных газов и пыли в облачном покрове Венеры послужило бы главной проверкой» его идей. Также не ясно, имеется ли в виду под «пылью» в вышеприведенной цитате углеводородная пыль или просто обычная силикатная пыль. На этой же странице Великовский цитирует себя: «На основе этого исследования я предполагаю, что Венера должна быть насыщена попутными нефтяными газами», – что является прямой ссылкой на компоненты природного газа, такие как метан, этан, этилен и ацетилен.
Тут нам нужно обратиться к истории. В 30-е и в начале 40-х гг. прошлого столетия единственным астрономом в мире, который занимался химией планет, был покойный Руперт Вильдт – сначала в Гёттингене и позже в Йеле. Именно Вильдт первым обнаружил метан в атмосфере Юпитера и Сатурна, и именно он первым предположил наличие высших газообразных углеводородов в атмосфере этих планет. Таким образом, идею, что «нефтяные газы» могут существовать на Юпитере, впервые выдвинул не Великовский. Также именно Вильдт предположил, что формальдегид может входить в состав атмосферы Венеры и что облака состоят из полимерного углевода, образовавшегося из формальдегида. Идея присутствия углеводов в облаках Венеры тоже изначально не принадлежала Великовскому, и сложно поверить, что тот, кто так тщательно изучил астрономическую литературу 1930-х и 1940-х гг., не знал об этих исследованиях Вильдта, которые так тесно связаны с центральной темой Великовского. И все же нет никаких упоминаний об исследованиях Юпитера Вильдтом, и есть только сноска о формальдегиде без ссылок и признания, что Вильдт предположил, что на Венере присутствуют углеводы. В отличие от Великовского, Вильдт хорошо понимал разницу между углеводородами и углеводами; более того, он осуществил безуспешные поиски предполагаемого мономерного формальдегида с помощью методов спектроскопии в ближней ультрафиолетовой области. Не найдя мономер, он отказался от гипотезы в 1942 г. Великовский же – нет.
Как я указывал много лет назад (Саган, 1961), вблизи облаков Венеры должны обнаруживаться пары простых углеводородов в том случае, если облака состоят из этих углеводородов. Тогда их не удавалось найти, и в течение всех последующих лет, несмотря на широкий ряд используемых аналитических методов, ни углеводороды, ни углеводы не были обнаружены. Эти молекулы искали посредством оптической спектроскопии высокого разрешения с поверхности Земли, с использованием методов преобразования Фурье, с помощью Висконсинского экспериментального ультрафиолетового спектрометра, с Орбитальной астрономической обсерватории OAO-2, посредством наземных наблюдений в инфракрасном диапазоне, а также с помощью советских и американских зондов. Ни одной молекулы так и не удалось обнаружить. Максимальное содержание простейших углеводородов и альдегидов – строительных блоков углеводов – обычно составляет несколько миллионных долей (Connes et al., 1967, Owen and Sagan, 1972). [Соответствующее максимальное содержание для Марса также составляет несколько миллионных долей (Owen and Sagan, 1972).] Все наблюдения показывают, что атмосфера Венеры состоит в основном из углекислого газа. Конечно, поскольку углерод присутствует в такой окисленной форме, то простые углеводороды присутствуют не более чем в следовых количествах. При рассмотрении крыльев полос в области 3,5 мкм признаков полос поглощения C – H-связи, которые характерны и для углеводородов, и для углеводов, не обнаруживается (Pollack et al., 1974). Все другие полосы поглощения в спектре Венеры – от ультрафиолетовой области спектра до инфракрасного – сейчас объяснены; ни одна из них не связана с наличием углеводородов или углеводов. Как теперь известно, предположение о том, присутствием какой конкретной органической молекулы можно с точностью объяснить инфракрасный спектр Венеры, так и не было высказано.
Более того, вопрос состава облаков Венеры – столетиями волновавший ученых – был решен не так давно (Young and Young, 1973; Sill, 1972; Young, 1973; Pollack et al., 1974). Облака Венеры состоят приблизительно из 75 %-ного раствора серной кислоты. Это согласуется с химическим составом атмосферы Венеры, где, кроме прочих компонентов, были обнаружены хлороводород и плавиковая кислота с действительной частью показателя преломления по данным поляриметрии, равной 1,44 (с точностью до третьей значащей цифры), поглощением в области 11, 2 и 3 мкм (теперь это дальняя инфракрасная область) и со скачкообразным изменением содержания паров воды над облаками и под ними. Эти наблюдаемые особенности не соответствуют гипотезе об облаках, состоящих их углеводородов или углеводов.
Хотя идея таких органических облаков сейчас полностью опровергнута, почему мы слышим, что космические исследования подтвердили гипотезу Великовского? Здесь тоже нужно рассказать одну историю. 14 декабря 1962 г. первый успешно запущенный американский межпланетный космический зонд «Маринер-2» приблизился к Венере. Построенный Лабораторией реактивного движения, он был оборудован, наряду с другими более важными приборами, инфракрасным радиометром, спроектированным четырьмя экспериментаторами, одним из которых был я. Это было еще до первого успешного запуска на Луну космического аппарата «Рейнджер», и ученые в НАСА не имели большого опыта обнародования научных открытий. Чтобы объявить о результатах, в Вашингтоне провели пресс-конференцию, и доктора Л. Каплана, одного из экспериментаторов нашей команды, уполномочили описать результаты собравшимся репортерам. Ясно, что, когда подошла его очередь, он описал результаты в таком ключе (это не точные его слова): «В ходе нашего эксперимента был использован двухканальный инфракрасный радиометр; один канал центрирован на длину волны 10,4 мкм, соответствующую горячей полосе CO2, другой – на 8,4 мкм, что соответствует окну прозрачности газовой атмосферы Венеры. Наша цель заключалась в том, чтобы измерить яркостную температуру и дифференциальный коэффициент пропускания в обоих каналах. Был подтвержден закон потемнения диска к краю, согласно которому нормализованная интенсивность изменялась как μ в степени альфа, где мю – это арккосинус угла между нормалью к поверхности планеты и лучом зрения, а…»
В какой-то подобный момент его прервали нетерпеливые репортеры, не привыкшие к тонкостям науки, выкрикнув что-то вроде: «Все это скука смертная, дайте нам настоящие факты! Насколько плотные облака, на какой высоте они расположены и из чего состоят?» Каплан ответил совершенно правильно, что эксперимент с инфракрасным радиометром не был рассчитан на то, чтобы дать ответ на такие вопросы, и действительно не дал. Но затем он сказал что-то вроде: «Я скажу вам, что я думаю». Он поведал свою точку зрения, что парниковый эффект, при котором атмосфера прозрачна для видимого солнечного света, но непроницаема для инфракрасного излучения с поверхности, и из-за которого поверхность Венеры должна оставаться горячей, может не действовать на Венере, потому что компоненты атмосферы, видимо, прозрачны на длине волны около 3,5 мкм. Если бы в атмосфере Венеры существовало некое вещество, поглощающее излучение на этой длине волны, окно прозрачности было бы перекрыто, парниковый эффект сохранился бы, и это объясняло бы высокую температуру поверхности. Он предположил, что углеводороды были бы отличными парниковыми молекулами.
Предупреждения Каплана остались незамеченными прессой, и на следующий день во многих американских газетах можно было найти заголовки «“Маринер-2” обнаружил углеводородные облака на Венере». Тем временем несколько публицистов из Лаборатории реактивного движения находились в процессе написания популярного доклада о миссии, с тех пор названного «Маринер: миссия к Венере». Представьте, как кто-нибудь из них взял утреннюю газету и воскликнул: «Слушайте! А я и не знал, что мы обнаружили углеводородные облака на Венере». И в самом деле, в этой публикации углеводородные облака перечислены как одно из главных открытий «Маринера-2»: «В основании температура облаков около 200 градусов по Фаренгейту, и, вероятно, они состоят из конденсированных углеводородов, находящихся в масляной суспензии». (Этот доклад также подтверждает парниковое нагревание поверхности Венеры, но Великовский решил поверить только части из того, что было напечатано.)
Теперь представьте, что администратор НАСА передает хорошие известия президенту в ежегодном отчете Космической администрации, президент передает это дальше в своем ежегодном Послании конгрессу и авторы книг по элементарной астрономии, которые всегда стремятся включить самые последние результаты, запечатлевают это «открытие» на своих страницах. Учитывая такое количество, казалось бы, надежных, подтверждающих друг друга докладов на высоком уровне о том, что «Маринер-2» обнаружил углеводородные облака на Венере, неудивительно, что Великовский и несколько беспристрастных ученых, не ведающих о загадочных путях НАСА, могли сделать вывод, что это классическая проверка научной теории: явно странный прогноз, сделанный до наблюдений, и затем неожиданно подтвержденный экспериментом.
На самом деле, как мы видели, ситуация совершенно другая. Ни при запуске «Маринера-2», ни при последующем исследовании атмосферы Венеры углеводороды или углеводы не были обнаружены ни в газовой, ни в жидкой или твердой фазе. Сейчас известно (Pollack, 1969), что углекислый газ и водяной пар в достаточной степени перекрывают окно прозрачности на 3,5 мкм. Миссия «Пионер-Венера» в конце 1978 г. обнаружила, что для объяснения высокой температуры поверхности парниковым эффектом кроме количества углекислого газа, за которым долго наблюдали, нужен только водяной пар. Как ни парадоксально, «аргумент» «Маринера-2» в пользу углеводородных облаков на Венере фактически следует из попытки спасти объяснение высокой температуры поверхности парниковым эффектом, которое Великовский не поддерживает. Также парадоксально, что профессор Каплан позже стал соавтором работы, в которой говорилось об очень низком содержании метана – «нефтяного газа», – установленном посредством спектроскопического изучения атмосферы Венеры (Connes et al., 1967).
Короче говоря, идея Великовского, что облака Венеры состоят из углеводородов или углеводов, не оригинальна и не верна. «Решающее испытание» не пройдено.

Проблема 8
Температура Венеры

Другое любопытное обстоятельство касается температуры поверхности Венеры. Хотя высокая температура Венеры часто приводится как успешный прогноз и подтверждение гипотезы Великовского, ход мысли, приведший к такому заключению, и выводы из него, похоже, не так широко известны и не обсуждаются.
Давайте начнем с того, что рассмотрим взгляды Великовского на температуру Марса. Он считает, что Марс, будучи относительно малой планетой, серьезнее пострадал при столкновении с более массивными Венерой и Землей и, следовательно, Марс должен иметь высокую температуру. Он предполагает, что причиной может быть «превращение движения в теплоту», что немного размыто, так как теплота и есть движение молекул, или, что еще более нереально, «межпланетные электрические заряды», которые «могут также вызывать расщепление атомов с последующей радиоактивностью и выделением тепла».
В том же разделе он смело утверждает, что Марс «отдает больше тепла, чем получает от Солнца», что, казалось бы, соответствует его гипотезе о столкновениях. Это утверждение, однако, абсолютно неверно. Температуру Марса неоднократно измеряли советские и американские космические аппараты и наблюдатели с Земли, и температуры всех частей Марса как раз равны тем, которые можно вычислить, зная количество солнечного света, поглощенного поверхностью. Более того, это было хорошо известно в 40-х гг. ХХ в., до того как книга Великовского была опубликована. И хотя он упоминает четверых выдающихся ученых, которые занимались измерением температуры Марса до 1950 г., он не указывает их работы и однозначно и ошибочно утверждает, что они пришли к выводу, что Марс излучает больше энергии, чем получает от Солнца.
Этот ряд ошибок сложно понять, и самое щадящее объяснение, которое я могу предложить, заключается в том, что Великовский перепутал видимую часть электромагнитного спектра, в которой солнечный свет нагревает Марс, с инфракрасной частью этого спектра, в которой Марс в основном излучает энергию в космос. Но вывод очевиден. Марс, даже больше чем Венера, согласно рассуждениям Великовского, должен быть «горячей планетой». Если бы Марс оказался неожиданно горячим, возможно, это послужило бы подтверждением взглядов Великовского. Но, когда оказывается, что Марс имеет точно такую температуру, как все ожидали, это не становится основанием для опровержения взглядов Великовского. Это общемировые двойные стандарты в действии.
Когда мы переходим к Венере, мы находим, что в ход пускаются похожие аргументы. Мне кажется странным, что Великовский не приписывает температуру Венеры ее отделению от Юпитера (см. проблему 1), но это так. Вместо этого нам говорят, что из-за близкого прохождения мимо Земли и Марса Венера должна была нагреться, но также «голова кометы… прошла близко к Солнцу и раскалилась добела». Затем, когда комета превратилась в планету Венеру, она все еще была «очень горячей» и «отдавала тепло» (с. ix). Снова приводятся астрономические наблюдения до 1950 г., которые показывают, что темная сторона Венеры приблизительно такая же горячая, как и яркая сторона Венеры, до уровня, определенного по излучению в средней инфракрасной области. Здесь Великовский точно цитирует исследования астрономов и из их работ делает вывод, что «ночная сторона Венеры отдает тепло, потому что Венера горячая». Конечно!
Я думаю, Великовский пытается здесь сказать, что его Венера, как и его Марс, отдает больше тепла, чем получает от Солнца, и что наблюдаемые температуры и на ночной, и на дневной стороне вызваны, скорее, «белым калением» Венеры, чем энергией, которую она сейчас получает от Солнца. Но это серьезная ошибка. Болометрическое альбедо (доля солнечного света, отражаемая объектом на всех длинах волн) Венеры составляет около 0,73, что полностью соответствует наблюдаемому излучению облаков Венеры в инфракрасной области, температура которого примерно равна 240 К, то есть температура облаков Венеры точно такая, как и ожидалось из расчета количества солнечного света, который они поглощают.
Великовский предположил, что и Венера, и Марс отдают больше тепла, чем получают от Солнца. Он ошибается в обоих случаях. В 1949 г. Койпер (см. раздел «Библиография») предположил, что Юпитер отдает больше тепла, чем получает, и последующие наблюдения показали, что он прав. Но о теории Койпера в «Столкновении миров» даже не упоминается.
Великовский предположил, что Венера горячая из-за ее столкновений с Марсом и Землей и прохождения вблизи от Солнца. Поскольку Марс не является аномально горячим, высокую температуру поверхности Венеры можно объяснить главным образом прохождением Венеры рядом с Солнцем во время ее превращения из кометы в планету. Но легко вычислить, сколько энергии получила бы Венера во время прохождения вблизи от Солнца и в течение какого времени она излучала бы эту энергию в космос. Эти вычисления приведены в приложении 3, где мы видим, что вся эта энергия отдается за несколько месяцев/лет после прохождения по соседству с Солнцем и что это тепло никак не может сохраниться до настоящего времени по хронологии Великовского. Великовский не упоминает, насколько близко к Солнцу должна была пройти Венера, но очень близкое прохождение представляет чрезвычайно серьезные проблемы, связанные с физикой соударения, которые изложены в приложении 1. Кстати, в «Столкновении миров» есть указание на то, что, по мнению Великовского, кометы светят излученным, а не отраженным светом. Если это так, это может быть причиной его заблуждения насчет Венеры.
Великовский нигде не называет температуру, которая, по его мнению, должна была быть у Венеры в 1950 г. Как упоминалось выше, в главе 5 он расплывчато говорит о том, что комета, которая позже стала Венерой, находилась в состоянии «белого каления», но в предисловии к изданию 1965 г. (с. xi) он утверждает, что прогнозировал «раскаленное состояние Венеры». Это совершенно не одно и то же, поскольку после предполагаемого прохождения рядом с Солнцем она быстро охладилась (приложение 3). Более того, Великовский сам предполагает, что Венера охлаждается со временем, поэтому, что именно имел в виду Великовский, сказав, что Венера «горячая», непонятно.
Великовский пишет в предисловии 1965 г., что его заявление о высокой температуре поверхности «полностью противоречило тому, что было известно в 1946 г.» Оказывается, это не совсем так. Влиятельная фигура Руперта Вильдта снова бросает тень на астрономическую сторону гипотезы Великовского. Вильдт, который, в отличие от Великовского, понимал природу этой проблемы, верно спрогнозировал, что Венера, а не Марс будет «горячей». В статье 1940 г. в Astrophysical Journal Вильдт утверждал, что поверхность Венеры гораздо горячее, чем считается в астрономических кругах, из-за парникового эффекта, вызванного присутствием углекислого газа. Незадолго до этого углекислый газ был обнаружен в атмосфере Венеры с помощью спектроскопии, и Вильдт правильно указал, что СО2, присутствующий в большом количестве, будет поглощать инфракрасное излучение, исходящее с поверхности планеты, пока температура поверхности не вырастет до такого уровня, когда поступающий видимый солнечный свет будет равен исходящему инфракрасному излучению планеты. Вильдт посчитал, что температура поднимется почти до 400 К, или до обычной точки кипения воды (373 К = 212 °F = 100 °С). Несомненно, это было наиболее тщательное вычисление температуры поверхности Венеры, сделанное до 1950-х гг., и опять же странно, что Великовский, который должен был прочесть все статьи по Венере и Марсу, опубликованные в Astrophysical Journal в 1920-х, 1930-х и 1940-х гг., как-то проглядел эту исторически значимую статью.
Благодаря наблюдениям с помощью наземных радиотелескопов, а также благодаря уникальным данным, полученным советскими спускаемыми аппаратами, теперь мы знаем, что температура поверхности Венеры приблизительно равна 750 К (Marov, 1972). Атмосферное давление на поверхности приблизительно в 90 раз больше, чем на поверхности Земли, и нижние слои атмосферы состоят преимущественно из углекислого газа. Это изобилие углекислого газа плюс менее значительное количество водяного пара, которые были обнаружены на Венере, создают парниковый эффект, благодаря которому поверхность нагревается до наблюдаемой температуры. Спускаемый модуль «Венера-8» – первый космический аппарат, который приземлился на полушарии Венеры, обращенном к Солнцу, – обнаружил, что ее поверхность освещена, и советские экспериментаторы сделали вывод, что тот солнечный свет, который достигает поверхности, и состав атмосферы в совокупности создают условия, требуемые для радиационно-конвективного парникового эффекта (Marov, et al., 1973). Эти результаты подтвердились миссиями «Венера-9» и «Венера-10», в ходе которых были получены четкие, в солнечном свете, фотографии горных пород на поверхности планеты. Таким образом, Великовский точно ошибается, когда говорит (с. ix), что «свет не проникает сквозь пелену облаков», и вероятно ошибается, когда говорит (с. ix), что «парниковый эффект не мог бы объяснить такую высокую температуру». Эти выводы получили дополнительное подтверждение в конце 1978 г. в ходе американской миссии «Пионер-Венера».
Великовский неоднократно утверждает, что Венера со временем остывает. Как мы уже видели, он приписывает ее высокую температуру нагреванию от Солнца во время прохождения поблизости от него. Во многих своих работах Великовский сравнивает опубликованные значения температуры Венеры, полученные в разное время, и пытается показать желаемое охлаждение. Объективно воспроизведенные значения яркостной температуры Венеры в микроволновом диапазоне – единственные данные, полученные не из космоса, которые имеют отношение к температуре поверхности планеты – представлены на рис. 1. Погрешности представляют собой неточности процессов измерения в ходе радиоастрономических наблюдений по оценке самих исследователей. Мы видим, что нет ни малейшего намека на понижение температуры со временем (если уж на то пошло, предполагается ее повышение со временем, но погрешности достаточно велики, так что такое заключение также не подтверждается данными). Подобные результаты показывает измерение температуры облаков в инфракрасной части спектра: она ниже по абсолютному значению и не понижается со временем. Более того, если рассмотреть простейшее решение уравнения линейной теплопроводности, мы увидим, что по сценарию Великовского, по сути, все охлаждение посредством излучения в космос должно было произойти давным-давно. Даже если Великовский был прав насчет источника высокой температуры поверхности Венеры, его прогноз постоянного понижения температуры оказался ошибочным.

 

 

Высокая температура поверхности Венеры является еще одним из так называемых доказательств гипотезы Великовского. Мы видим, что (1) данная температура никогда не была установлена; (2) механизм, предложенный для обеспечения этой температуры, совершенно некорректный; (3) поверхность планеты не охлаждается со временем, как было заявлено; и (4) идея о высокой температуре поверхности Венеры была опубликована в главном астрономическом журнале своего времени и с верным обоснованием за десять лет до публикации «Столкновения миров».

Проблема 9
Кратеры и горы Венеры

В 1973 г. доктор Ричард Голдстейн с коллегами в ходе радиолокационных наблюдений в обсерватории Голдстоун Лаборатории реактивного движения выявили важные особенности поверхности Венеры, что было многократно подтверждено впоследствии. С помощью радиолокатора, излучение которого проникает сквозь облака Венеры и отражается от ее поверхности, они обнаружили на планете горы и множество кратеров; возможно, как и Луна в некоторых частях, поверхность Венеры перенасыщена кратерами – их настолько много, что один кратер накладывается на другой. Поскольку при извержениях вулканов, следующих одно за другим, лава стремится течь по одним и тем же лавовым трубкам, наблюдаемый характер взаимного расположения кратеров является следствием скорее столкновений, нежели извержения вулканов. Этот вывод не прогнозировал Великовский, но не в этом суть. Эти кратеры, как и кратеры в лунных морях, на Меркурии и на Марсе, образовались почти исключительно при столкновении с межпланетными обломками. Большие кратерообразующие объекты не сгорают, когда входят в атмосферу Венеры, несмотря на ее высокую плотность. Так вот, эти объекты не могли столкнуться с Венерой за прошедшие 10 000 лет; иначе Земля была бы так же испещрена кратерами. Самый вероятный источник этих столкновений – Аполлоны (астероиды, чьи орбиты пересекают орбиту Земли) и малые кометы, которые мы уже обсуждали (приложение 1). Но чтобы они образовали столько кратеров, сколько есть на Венере, потребовались бы миллиарды лет. Кратерообразование могло происходить быстрее в самый ранний период истории Солнечной системы, когда межпланетных обломков было намного больше. Но в более позднее время такого не могло быть. С другой стороны, если Венера несколько тысяч лет назад была частью Юпитера, столько столкновений не могло произойти. Следовательно, можно сделать только один вывод: Венера в течение миллиардов лет подвергалась межпланетным столкновениям, что прямо противоречит основному тезису гипотезы Великовского.
Кратеры Венеры значительно разрушены. Некоторые горы на поверхности планеты, как видно на фотографиях, сделанных «Венерой-9» и «Венерой-10», довольно молодые; другие серьезно разрушены. Я описывал всевозможные механизмы эрозии на поверхности Венеры, включая химическое выветривание и медленную деформацию при высоких температурах (Sagan, 1976). Однако эти открытия не имеют никакого отношения к гипотезам Великовского: более нет никакой необходимости связывать вулканическую активность на Венере с прохождением рядом с Солнцем или с тем, что Венера в каком-то неясном смысле является «молодой» планетой по сравнению с недавней вулканической деятельностью на Земле.
В 1967 г. Великовский написал: «Очевидно, что, если планете миллиарды лет, она не смогла сохранить первоначальную теплоту; а любой радиоактивный процесс, приводящий к выделению такого количества теплоты, должен очень быстро затухнуть (sic!), и это опять же не соответствует возрасту планеты, исчисляемому миллиардами лет». К сожалению, Великовский не понял два классических и основных геофизических следствия. Теплопроводность – гораздо более медленный процесс, чем излучение или конвекция, и, например, на Земле изначальная теплота ощутимо влияет на геотермальный градиент и тепловой поток, исходящий из внутренних слоев Земли. То же касается и Венеры. К тому же радионуклиды, которые отвечают за нагревание земной коры за счет радиоактивности, – это долгоживущие изотопы урана, тория и калия, изотопы с периодом полураспада, сравнимым с возрастом планеты. Опять же это применимо и к Венере.
Если, как считает Великовский, всего несколько тысяч лет назад Венера полностью расплавилась – от столкновения с планетами или по какой-то другой причине, – с тех пор посредством охлаждения путем теплопроводности могла образоваться только тонкая внешняя кора, толщиной самое большее 100 м. Но радиолокационные наблюдения показывают громадные вытянутые горные гряды, кольцевидные впадины и большую рифтовую долину – все это размером от сотен до тысяч километров. Маловероятно, чтобы тонкая и хрупкая кора могла стабильно поддерживать такие ярко выраженные последствия столкновений и тектонических процессов поверх жидких внутренних слоев.

Проблема 10
Округление орбиты Венеры и негравитационные силы в Солнечной системе

Идея о том, что орбита Венеры могла преобразоваться за несколько тысяч лет из сильно вытянутой, или эксцентричной, в нынешнюю орбиту, чья форма из всех планет, кроме Нептуна, наиболее приближена к почти совершенно круговой, расходится с тем, что мы знаем о задаче трех тел в небесной механике. Однако следует признать, что эта проблема еще не полностью решена и что, хотя вероятность мала, в этом отношении гипотеза Великовского пока не опровергнута. Более того, когда Великовский обращается к электромагнитным силам, не пытаясь вычислить их величины или подробно описать их воздействие, мы вынуждены давать оценку его идеям. Однако простые аргументы, основанные на плотности магнитной энергии, требуемой для округления орбиты кометы, показывают, что требующаяся для этого интенсивность поля чрезмерно велика (приложение 4) – это противоречит исследованиям намагниченности горных пород.
Мы можем также подойти к этой проблеме эмпирическим путем. Простая ньютоновская механика способна прогнозировать с примечательной точностью траектории космического корабля – так что, например, орбиты зондов «Викинг» пролегали в 100 км от намеченной орбиты; посадка «Венеры-8» состоялась точно на освещенной стороне недалеко от экваториального терминатора Венеры, а «Вояджер-1» был направлен непосредственно в коридор входа в окрестностях Юпитера, чтобы затем направиться в сторону Сатурна и пройти рядом с ним. Им не помешало никакое загадочное электромагнитное воздействие. Ньютоновская механика может прогнозировать с большой точностью, например, моменты времени, когда Галилеевы спутники Юпитера закрывают друг друга.
Кометы, правда, имеют менее прогнозируемые орбиты, но это объясняется испарением льдов по мере приближения к Солнцу и небольшим реактивным эффектом. Преобразование из кометы в Венеру, если оно имело место быть, могло также сопровождаться таким испарением льдов, но реактивный эффект никак не мог отправить эту комету к Земле или Марсу. Орбита кометы Галлея, за которой, вероятно, наблюдали 2000 лет, остается эллиптической, и не было замечено ни малейшей тенденции к округлению, однако она почти такого же возраста, как «комета» Великовского. Совершенно невероятно, чтобы комета Великовского, если бы она когда-то существовала, превратилась в планету Венера.

Некоторые другие проблемы

Предыдущие десять пунктов – это главные научные изъяны в теории Великовского, которые я могу определить. Я уже говорил о некоторых проблемах его подхода к древним письменным источникам. Теперь я перечислю еще несколько проблем, с которыми я столкнулся при чтении «Столкновения миров».
В главе 15 сказано, что спутники Марса Фобос и Деймос «захватили некоторое количество атмосферы Марса» и поэтому кажутся очень яркими. Но очевидно, что вторая космическая скорость для этих небесных тел – возможно, 20 миль в час – так мала, что они не могут удержать атмосферу даже временно; фотографии «Викинга» крупным планом не показывают никакой атмосферы и замороженных участков, а это одни из темнейших объектов в Солнечной системе.
В главе 15 идет сравнение «Книги пророка Иоиля» и ряда ведических гимнов, описывающих «марутов». Великовский полагает, что «маруты» были метеоритами, которые предшествовали Марсу и следовали за ним во время его прохождения рядом с Землей, что, как он считает, также описано у «Иоиля». Великовский говорит: «Иоиль не заимствовал у Вед, а Веды не заимствовали у Иоиля». В главе 16 Великовский говорит, что «отрадно» обнаружить, что слова «Марс» и «марут» однокоренные. Но как, если истории у «Иоиля» и в Ведах не связаны друг с другом, эти два слова могли быть однокоренными?
В главе 18 мы находим, что Исайя точно предсказывает время возвращения Марса для нового столкновения с Землей, «основываясь на предыдущих перемещениях». Если это так, Исайя должен был полностью решить проблему трех тел с электромагнитными силами, и жаль, что эти знания не были также переданы нам в Ветхом Завете.
В конце главы 21 и начале главы 22 мы находим довод, что Венера, Марс и Земля при взаимодействии обменялись атмосферами. Если земной молекулярный кислород в огромных количествах (20 % нашей атмосферы) был передан Марсу и Венере 3500 лет назад, он все еще должен быть там в огромных количествах. Временная шкала для круговорота О2 в атмосфере Земли составляет 2000 лет, и это происходит в ходе биохимических превращений. При отсутствии повсеместно распространенного дыхания биологических объектов на Марсе и Венере в течение 3500 лет О2 должен все еще находиться там. Но мы знаем совершенно точно по результатам спектроскопии, что О2 в лучшем случае является ничтожно малой составляющей очень разреженной марсианской атмосферы (и его так же мало на Венере). «Маринер-10» обнаружил кислород в атмосфере Венеры, но при этом не молекулярный кислород в больших количествах в нижних слоях атмосферы, а очень малые количества атомарного кислорода в ее верхних слоях.
Дефицит О2 на Венере также опровергает убеждение Великовского в горении нефти в нижних слоях атмосферы Венеры – ни горючее, ни окислитель не присутствуют в ощутимых количествах. В результате этого горения, как считал Великовский, выделилась вода, которая посредством фотохимической диссоциации распалась на О и Н2. Таким образом, Великовский объясняет наличие атомарного кислорода в верхних слоях атмосферы значительным количеством молекулярного кислорода в нижних слоях. На самом деле обнаруженный атомарный кислород объясняется фотохимическим распадом главного компонента атмосферы – СО2 – на СО и О. Некоторые сторонники теории Великовского, видимо, не учли эти различия, когда ухватились за открытия, сделанные «Маринером-10», как подтверждение «Столкновения миров».
Поскольку кислород и водяной пар присутствуют в марсианской атмосфере в чрезвычайно малых количествах, Великовский утверждает, что, должно быть, какая-то другая составляющая марсианской атмосферы произошла с Земли. Этот аргумент, к сожалению, non sequitur. Великовский говорит об аргоне и неоне, несмотря на то что это довольно редкие компоненты атмосферы Земли. Первый опубликованный довод в подтверждение того, что аргон и неон являются главными составляющими марсианской атмосферы, выдвинул Харрисон Браун в 1940-х гг. В настоящее время найдены лишь следовые количества неона, и «Викинг» обнаружил около одного процента аргона. Но даже если бы на Марсе нашли аргон в больших количествах, это бы не послужило доказательством атмосферного обмена Великовского, потому что самый распространенный изотоп аргона 40Ar получается в результате распада калия-40, который, как ожидается, должен присутствовать в коре Марса.
Гораздо более серьезная проблема для Великовского – крайне малое количество N2 (молекулярный азот) в марсианской атмосфере. Этот газ относительно нереактивный, не замерзающий при марсианских температурах, и он не может быстро испариться из марсианской экзосферы. Это главный компонент атмосферы Земли, но он составляет только 1 % марсианской атмосферы. Если такой обмен газов произошел, где весь N2 на Марсе? Проверка предполагаемого обмена газами между Марсом и Землей, который отстаивает Великовский, плохо продумана в его тексте, и исследования противоречат его утверждениям.
«Столкновение миров» – это попытка представить Библию и фольклор как историю, если не теологию. Я пытался подойти к этой книге без предрассудков. Я считаю, что мифологические совпадения представляют интерес и заслуживают дальнейшего исследования, но они, вероятно, объяснимы распространением культуры или другими причинами. Научная часть текста, несмотря на все заявления о «доказательствах», сталкивается по крайней мере с десятью очень серьезными проблемами.
Из десяти описанных выше проверок исследования Великовского нет ни одного случая, когда его идеи были бы одновременно и оригинальными, и соответствовали простой физической теории и наблюдениям. Более того, многие противоречия – особенно проблемы I, II, III и X – очень серьезные, основанные на законах физики – о законах движении и сохранения энергии. В науке приемлемое утверждение должно иметь четко выстроенную цепочку доказательств. Если одно звено в цепи сломано, утверждение отвергается. «Столкновение миров» – это противоположный случай: буквально каждое звено в цепи сломано. Для спасения гипотезы требуется специальное обоснование, туманное измышление из области новой физики и выборочное игнорирование множества противоречащих ей доказательств. Соответственно, основная гипотеза Великовского представляется мне недоказуемой с физической точки зрения.
Более того, с мифологическим материалом существует опасная потенциальная проблема. Предполагаемые события воссозданы из легенд и народных сказаний. Но эти глобальные катастрофы отсутствуют в исторических записях или фольклоре многих культур. Такие странные пробелы объясняются, если вообще замечаются, «коллективной амнезией». Великовский хочет усидеть на двух стульях. Когда он находит совпадения, он готов сделать на их основании самые широкие выводы. Когда совпадений нет, проблема игнорируется как «коллективная амнезия». С такими неопределенными стандартами доказательств «доказать» можно что угодно.
Я должен также указать, что большинству событий в «Книге Исход», о которых говорит Великовский, существует гораздо более правдоподобное объяснение – объяснение, которое гораздо больше соответствует законам физики. События, описанные в «Исходе», отнесены в «Первой книге Царств» к 480 г., до начала сооружения храма Соломона. С помощью других вспомогательных вычислений дата библейского Исхода определяется примерно как 1447 г. до н. э. (Covey, 1975). Другие ученые, изучающие Библию, с этим не согласны, но эта дата соответствует хронологии Великовского и удивительно близка к полученным с помощью разнообразных научных методов датам последнего колоссального извержения вулкана на острове Тира (или Санторин), менее чем в 400 км к югу, которое могло уничтожить минойскую цивилизацию на Крите и имело серьезные последствия для Египта. Самая лучшая имеющаяся в наличии датировка была сделана с помощью радиоуглеродного метода по образцу дерева, погребенного под вулканическим пеплом на острове Тира, и указывает на 1456 г. до н. э. с погрешностью как минимум плюс-минус 43 года. Количества вулканической пыли более чем достаточно, чтобы объяснить три дня темноты в дневное время, и сопутствующие события могут объяснить землетрясения, голод, появление вредителей и целый ряд знакомых катастроф Великовского. Это извержение также могло вызвать на Средиземном море огромное цунами, или приливную волну, которая, как считает Ангелос Галанопулос (1964), сделавший большинство недавних геологических и археологических открытий на Тире, может также объяснить, почему разошлось Красное море. В определенном смысле объяснение событий «Исхода», которое дает Галанопулос, даже более провокационное, чем объяснение Великовского, потому что Галанопулос представил более-менее убедительные доказательства, что Тира соответствует почти по всем главным параметрам легендарной цивилизации – Атлантиде. Если он прав, именно разрушение Атлантиды, а не появление кометы позволило израильтянам покинуть Египет.
В «Столкновении миров» много странных несоответствий, но на предпоследней странице книги небрежно представлено ошеломляющее отступление от основной гипотезы. Мы читаем о древней ошибочной аналогии между строением Солнечной системы и атомов. Внезапно мы знакомимся с гипотезой, что предполагаемое беспорядочное движение планет вызвано не столкновениями, а изменениями квантовых уровней энергии гравитационного поля планет, сопровождающими поглощение одного фотона или, возможно, нескольких. Солнечная система удерживается гравитационными силами, атомы – электрическими силами. Хотя оба вида сил обратно пропорциональны квадрату расстояния, это абсолютно разные характеристики и величины: например, одно из многих отличий – есть положительные и отрицательные электрические заряды, но гравитационная масса имеет только один знак. Мы достаточно хорошо понимаем и Солнечную систему, и атомы, чтобы видеть, что предложенные Великовским «квантовые скачки» планет основаны на непонимании и теорий, и доказательств.
Насколько я знаю, в «Столкновении миров» нет ни одного правильного астрономического прогноза, сделанного с достаточной точностью, чтобы не быть удачной догадкой, и множество, как я пытался указать, явно ложных утверждений. Существование сильного радиоизлучения от Юпитера иногда приводится как самый поразительный пример точного прогноза Великовского, но все объекты излучают радиоволны, если их температура выше абсолютного нуля. Главные особенности радиоизлучения Юпитера – что это нетепловое, поляризованное, прерывистое излучение, связанное с широкими поясами окружающих Юпитер заряженных частиц, захваченных его сильным магнитным полем, – Великовский нигде не прогнозировал. Более того, его «прогноз» явно не связан по своей сути с главными положениями гипотезы Великовского.
Простая правильная догадка не обязательно доказывает наличие априорных знаний или верность теории. Например, в одном из первых научно-фантастических романов, еще в 1949 г., Макс Эрлих описал столкновение Земли с другим космическим объектом, который закрыл небо и испугал жителей Земли. Самое страшное, что у этой проходящей планеты была естественная особенность, делающая ее очень похожей на огромный глаз. Это один из многих вымышленных и реальных предшественников идеи Великовского о том, что такие столкновения происходят довольно часто. Но не об этом речь. При обсуждении того, почему на той стороне Луны, которая смотрит на Землю, есть большие неглубокие моря, а на обратной стороне Луны их почти нет, Джон Вуд из Смитсоновской астрофизической обсерватории предположил, что та сторона Луны, которая сейчас повернута к Земле, находилась когда-то на краю диска – лимбе – Луны, на ее ведущем полушарии, смотрящем в направлении движения Луны вокруг Земли. В этом положении миллиарды лет назад она взметнула вверх кольцо космических обломков, которые окружали Землю и которые могли участвовать в образовании системы «Земля – Луна». По законам Эйлера Луна должна была тогда изменить ось вращения в соответствии с новым главным моментом инерции, так что ее ведущее полушарие стало смотреть на Землю. Из этого следует, что было время, согласно Вуду, когда то, что сейчас является восточным лимбом Луны, было повернуто к Земле. Но на восточном лимбе Луны есть огромный след от столкновения, произошедшего миллиарды лет назад, который называется Морем Восточным и выглядит как гигантский глаз. Никто не предполагал, что Эрлих полагался на расовую память о событии, произошедшем 3 млрд лет назад, когда писал «Большой глаз». Это просто совпадение. Когда написано достаточно много фантастических книг и предложено много научных гипотез, рано или поздно будут обнаружены случайные совпадения.
Как «Столкновение миров» стало таким популярным с таким количеством ошибок? Здесь я могу только догадываться. Во-первых, это попытка подтвердить истинность религии. Великовский говорит нам, что старые библейские истории буквально правдивы, только нужно их правильно интерпретировать. Еврейский народ, например, спасенный от египетских фараонов, ассирийских царей и других бесчисленных катастроф, вызванных вторжением кометы, имел право, как утверждает он, считать себя избранным. Великовский пытается оправдать не только религию, но и астрологию: исход войн, судьбы целых народов определяются положением планет. В каком-то смысле его работа содержит обещание космической связи человечеству – мнение, которое я разделяю, но немного в другом контексте («Космическая связь» – The Cosmic Connection) – и заверение, что древние люди и другие культуры были отнюдь не так глупы.
Ярость, которая охватила многих обычно спокойных ученых при обсуждении «Столкновения миров», имела ряд последствий. Некоторых людей оттолкнуло самомнение ученых по этому поводу, или они были обеспокоены тем, что сочли опасностью, которую несут науки и технологии, или, возможно, им просто сложно понимать науку. Они могут найти некоторое утешение в том, что ученые набивают шишки.
В общем, в деле Великовского единственным аспектом, который был хуже, чем небрежный, невежественный и доктринерский подход Великовского и многих его сторонников, стала позорная попытка некоторых из тех, кто называет себя учеными, запретить его работы. Из-за этого пострадало все научное сообщество. Великовский не претендует на объективность или неопровержимость своей теории. В его упорном отрицании огромного количества данных, противоречащих его гипотезе, по крайней мере нет лицемерия. Но ученые должны быть благоразумными, понимать, что идеи можно будет оценить по заслугам, если мы разрешим свободно задавать вопросы и вести активное обсуждение.
В той степени, в которой ученые не дали Великовскому обоснованного отзыва на его работу, мы сами ответственны за распространение его теории. Но ученые не могут иметь дело со всеми областями псевдонауки. Размышления, вычисления и подготовка этой главы, например, заняли время, необходимое для моих собственных исследований. Но это было точно не скучно, и по меньшей мере я узнал много интересных легенд.
Попытка обосновать древнюю религию в эпоху, которая, похоже, отчаянно ищет религиозные корни, некий космический смысл для человечества, может быть оправданной или нет. Я считаю, что в древних религиях много хорошего и много плохого. Но я не понимаю потребности в полумерах. Если мы вынуждены выбирать между ними – а мы решительно не должны, – разве доказательства существования пророка Моисея, Иисуса и Мухаммеда не лучше доказательств кометы Великовского?
Назад: Глава 6 Белые карлики и зеленые человечки
Дальше: Глава 8 Норман Блум, посланник Бога