Книга: ДНК и её человек [litres]
Назад: Ракетное топливо и другие вещества
Дальше: К Нобелевской премии и далее

Ночь на трассе

Итак, майской ночью 1983 г. Кэри Муллис, как обычно, ехал на своей серебристой “хонде” по трассе 128, направляясь из Беркли в Мендосино, в летний домик, где собирался провести выходные. С ним в машине была его девушка Дженнифер Барнетт, химик компании Cetus. (Роман их протекал столь бурно, что в Нобелевской лекции Муллиса о Дженнифер рассказывается едва ли не больше, чем о ПЦР.) Дорога поднималась в горы, вокруг цвели каштаны. Дженнифер спала, Кэри вел машину и думал, куда девать олиги.
В соседней лаборатории под руководством Генри Эрлиха занимались детекцией точечных мутаций в ДНК. Вот, скажем, мутации, которые гарантированно приводят к тяжелому заболеванию или смерти плода (ряд таких мутаций уже был известен). Беременная женщина по какой-то причине беспокоится, есть ли мутация у ее ребенка, если есть – это показание к аборту по страховке. Как бы это выяснить быстро, недорого и с гарантией?
Современная молекулярная диагностика все это умеет: и выделить ДНК плода из крови матери (теперь даже биопсия не нужна!), и прочитать ее определенный участок. Но в 1983 г. это казалось абсолютной утопией. Не так просто было даже получить нужный фрагмент ДНК – то есть были способы, но Кэри Муллис хотел придумать что-то побыстрее и подешевле.
Дано: мы можем синтезировать любой олигонуклеотид. Можем мы синтезировать нуклеотид, комплементарный участку рядом с мутацией, в наличии или отсутствии которой мы хотим убедиться? Нет проблем. А можем мы добавить к ДНК, которую хотим проанализировать, такой олигонуклеотид и ДНК-полимеразу, чтобы та наращивала цепочку ДНК, начиная от олигонуклеотида, совсем как в секвенировании по Сенгеру? (В такой реакции олигонуклеотид называется праймером, или затравкой, потому что с него начинается синтез ДНК.) Только пусть праймер будет вплотную к сайту (точке) мутации, а в смеси будут дидезоксинуклеотидтрифосфаты с радиоактивной меткой – те, которые у Сенгера останавливают синтез цепочки. Это будет как секвенирование одного нуклеотида. (И в самом деле, немного похоже на один цикл некоторых современных методов секвенирования!)
Теоретически мы все это можем. Практически – будут проблемы: на относительно коротком фрагменте ДНК, в несколько тысяч нуклеотидов, это сработало бы, но геном человека длинен, нужный участок короток, его концентрация исчезающе мала, к тому же есть ненулевая вероятность, что в нашем огромном геноме присутствуют другие похожие участки, с которыми может гибридизоваться олигонуклеотид. (Вспомним саузерн-блоттинги Алека Джеффриса: подобрать зонд, который не метил бы в ДНК все подряд, – непростая задача.) И как тогда отличить интересующий нас сигнал от ложного? Жизнь вечно портит самые прекрасные идеи. Ладно, пропустим это и будем думать дальше, как будто проблемы нет.
Но раз олигонуклеотидов у нас много, почему бы не сделать два олигонуклеотида, комплементарные обеим цепям ДНК, по обе стороны от сайта мутации? (Читатели не забыли, что нити ДНК имеют направление, от 5’ – к 3’ – концу, и только в этом направлении полимераза может наращивать цепь? Два таких олигонуклеотида “указывали” бы на возможную мутацию с двух сторон.) И пусть к одному олигу полимераза присоединит дидезоксинуклеотид А, а к другому – дидезоксинуклеотид Т, и мы точно убедимся, что А не заменен на G… не слишком красивая идея, зато простая и осуществимая.
Что может пойти не так? Ну, прежде всего, в образце могут быть обыкновенные свободные нуклеотиды, и ДНК-полимераза, конечно, будет присоединять их, тогда прощай радиоактивный фрагмент определенной длины. Но можно перед анализом обработать образец ферментом – бактериальной щелочной фосфатазой, которая отъест все фосфатные группы от нуклеотидов, и тогда полимеразе не с чем будет работать, кроме тех меченых нуклеотидов, которые добавим мы. Только как ее потом убрать, чтобы она добавленные нуклеотиды не съела? В то время считалось, что щелочную фосфатазу невозможно инактивировать нагреванием, якобы потом она восстанавливает активность (на самом деле инактивировать ее возможно, если не добавлять в раствор цинк, отмечал позднее Кэри Муллис, но хорошо, что я тогда об этом не знал…).
Думаем дальше: а что можно сделать, если не избавляться от обычных нуклеотидов? Пусть полимераза их использует, разрешаем. Пусть она нарастит такие длинные цепочки, какие сможет. А потом слегка нагреем раствор, чтобы двойные цепочки ДНК расплавились и разошлись, и охладим, чтобы к однонитевой ДНК присоединились новые праймеры. Олигов, как мы помним, у нас много, добавим в смесь, сколько не жалко…
Но позвольте, ведь теперь, кроме ДНК образца, у нас появились еще две нити, синтезированные в первой реакции, и каждая из них тоже содержит участок, комплементарный противоположно направленному праймеру. Четыре цепочки ДНК вместо двух изначальных… Стоп! Но это же как раз то самое, что нам было нужно: увеличение концентрации интересующего нас участка ДНК, чтобы он стал заметнее на фоне всей остальной ДНК, которая нас сейчас не интересует.
А если сделать это специально?
А если сделать это не один раз, а два, три, четыре, пять, шесть? И в каждом цикле число нитей ДНК будет удваиваться, как в той сказке про царя, изобретателя шахмат и рисовые зерна на шахматной доске…
Кэри остановил машину, нашел в бардачке ручку и бумагу и начал считать. Если, скажем, раз 30 повторить этот цикл – “добавить к образцу полимеразу, нуклеотиды и праймеры – провести реакцию – расплавить ДНК – провести реакцию” – то образец будет содержать множество копий интересующего нас фрагмента ДНК, а все остальное, ненужное и путающее, станет на его фоне малозначащей примесью.

 

 

Дженнифер проснулась и спросила, почему они не едут. Кэри снова тронулся в путь и примерно через милю сообразил, что праймеры необязательно должны быть разделены всего одним нуклеотидом. Черт с ними, с точечными мутациями – таким способом можно получить в достаточном количестве любой фрагмент ДНК!
До изобретения Кэри Муллиса эти фрагменты получали в основном клонированием. Слово “клонирование” вообще означает получение множества копий одного объекта. Клонирование животных – получение генетически идентичных копий особи из ее соматических, то есть неполовых клеток. Клонирование человека – популярный фантастический сюжет, с приматами дело пока не очень ладится (лишь в начале 2018 г., через 22 года после овцы Долли, китайцы опубликовали статью о клонировании детенышей макаки). Клонирование растений широко известно под названием “черенкование”. Клонирование клеток, например лимфоцитов, вырабатывающих антитела, – размножение клеток определенного типа.
Клонированием ДНК называли довольно сложную процедуру – включение нужного фрагмента в кольцевую ДНК (плазмиду), внедрение этой ДНК в кишечную палочку E.coli и выращивание этих кишечных палочек, сначала на чашке Петри, потом в колбе с питательной средой. Бактерии размножаются, копируют плазмиду и вместе с ней наш кусок ДНК; потом плазмиду можно будет выделить, вырезать нужный кусок рестриктазой и отделить его от других с помощью электрофореза. Дело долгое, к тому же культура кишечной палочки пахнет замоченным и протухшим бельем (точнее, наоборот, таз с бельем у нерадивой хозяйки имеет запах этой бактерии). Но ДНК нужна для работы, да и запах привычного человека радует: если так пахнет, значит, культура не загрязнена посторонними микроорганизмами.
Что представляло собой клонирование ДНК на тот момент, когда Кэри Муллис вез Дженнифер в горы? Ну, например, как-то так. Интересующую нас ДНК нарезаем рестриктазой на куски по несколько тысяч пар нуклеотидов. Затем фрагменты вставляем в плазмиду, или вектор, – колечко ДНК, предварительно разрезанное той же рестриктазой. Плазмиды бактерий – дополнительные, внехромосомные генетические элементы, которыми они могут обмениваться или поглощать их из внешней среды. Плазмида может содержать некие дополнительные гены, полезные в определенных условиях, например гены устойчивости к антибиотику. Внедрение вектора в бактерии называется трансформацией – это, по сути, тот самый процесс, который использовали для доказательства роли ДНК как наследственного материала Эвери с коллегами в первой главе, помните?
Чтобы бактерия не перестала копировать наш вектор, в нем как раз и содержатся гены устойчивости к антибиотику, и тот же антибиотик добавлен в агар-агар в чашке Петри. Кто отказался от вектора, тот не выживет. Но как отличить бактерию с “пустым” вектором от бактерии с вектором, в который вставлен фрагмент ДНК? Для этого фрагмент вставляется не куда попало, а в другой ген, отвечающий за синтез красителя. Трансформированные бактерии высевают на агар-агар – не густо, с таким расчетом, чтобы из каждой бактерии выросла одна точечка-колония. По цвету колонии отличают встройки от пустышек.
Стерильной зубочисткой колонии бактерий, содержащие плазмиды с нашей ДНК, перемещают в колбу с жидкой средой, колбу в термостат и наращивают биомассу. Игла в яйце, яйцо в утке… А куда деваться?
Коллекция клонированных фрагментов из одного образца называется ДНК-библиотекой.
Так вот, с самого начала было очевидно, что ПЦР намного удобнее! Клонирование in vitro, не в живой клетке, а в пробирке! Любой фрагмент ДНК в любом количестве, без всех этих танцев с бубнами вокруг кишечной палочки. И, что еще более важно, – определенный фрагмент, тот самый, который находится между нашими праймерами. Кэри снова затормозил: о такой потрясающей возможности опасно было думать на ходу.
Какой бы жуткой смесью ни была наша исходная ДНК, благодаря магии комплементарности мы получим именно нужный участок. Интересующий нас ген у конкретного человека. Ген, который мы еще не изучали, но который изучен для другого вида (мы помним, что большинство гомологичных генов млекопитающих сходны между собой)… Да это же бомба! Не какое-то там предложение по оптимизации, а открытие, которое перевернет молекулярную биологию! “«Тор всемогущий!» – вскричал я”.
…Нет, не может быть. Используя только хорошо известные методы, делая то, что все уже давно делают, разве что чуть-чуть по-другому, решить сразу несколько самых докучных проблем молекулярной биологии – это слишком просто и слишком здорово, такого не бывает. Или кто-то уже придумал это и прямо сейчас делает и вот-вот опубликуется или уже опубликовался. Или Кэри упускает что-то очевидное, и все это невозможно по какой-то фундаментальной причине, как невозможны вечный двигатель и летающая свинья.
Сонная Дженнифер не захотела выслушать его очередную гениальную идею. Сам же Муллис этой ночью не спал и все выходные проработал. Чертил бесконечные схемы своей реакции, взбадривался местным каберне, считал себя то гением, то идиотом, неспособным увидеть ошибку, которая обязана быть во всем этом, просто обязана, потому что жизнь – это боль. Интернета тогда не было, и телефона в коттедже не было, и до начала рабочей недели он не мог ни поделиться ни с кем, кроме Дженнифер (которая так и не проявила энтузиазма), ни проверить свои соображения по литературным данным.
Назад: Ракетное топливо и другие вещества
Дальше: К Нобелевской премии и далее