Книга: Гендерный мозг. Современная нейробиология развенчивает миф о женском мозге
Назад: Благодарности
Дальше: Примечания

Примечания

Глава 1
Что скрывается в ее хорошенькой головке, или Охота начинается
1. F. Poullain de la Barre, De l’égalité des deux sexes, discours physique et moral où l’on voit l’importance de se défaire des préjugés (Paris, Jean Dupuis, 1673), translated by D. M. Clarke as The Equality of the Sexes (Manchester, Manchester University Press, 1990). Значение исследований Франсуа Пулена де ля Барра подробно рассмотрела Лонда Шибингер в своей прекрасной и всеобъемлющей книге о женщинах в науке «Имеет ли разум пол?» – The Mind Has No Sex? Women in the Origins of Modern Science (Cambridge, MA, Harvard University Press, 1991). • 2. F. Poullain de la Barre, De l’éducation des dames pour la conduite de l’esprit, dans les sciences et dans les moeurs: entretiens (Paris, Jean Dupuis, 1674). • 3. ‘Si l’on y fait attention, l’on trouvera que chaque science de raisonnement demande moins d’esprit de temps qu’il n’en faut pour bien apprendre le point ou la tapisserie.’ («Стоит только посмотреть, и вы увидите, что для изучения любой серьезной науки требуется меньше ума и меньше времени, чем для обучения шитью и вышиванию на высоком уровне» (Poullain de la Barre, The Equality of the Sexes, p. 86.) • 4. ‘L’anatomie la plus exacte ne nous fait remarquer aucune différence dans cette partie entre les hommes et les femmes; le cerveau de celles-si est entièrement semblable au notre.’ (Poullain de la Barre, The Equality of the Sexes, p. 88.) • 5. ‘Il est aisé de remarquer que les différences des sexe ne regardent que le corps… l’esprit… n’a point de sexe.’ («Несложно заметить, что половые различия относятся только к телу, разум… не имеет пола») (Poullain de la Barre, The Equality of the Sexes, p. 87.) • 6. L. K. Kerber, ‘Separate Spheres, Female Worlds, Woman’s Place: The Rhetoric of Women’s History’, Journal of American History 75:1 (1988), pp. 9–39. • 7. E. M. Aveling, ‘The Woman Question’, Westminster Review 125:249 (1886), pp. 207–22. • 8. C. Darwin, The Descent of Man and Selection in Relation to Sex, 2nd edn (London, John Murray, 1888), vol. 1. • 9. G. Le Bon (1879) цитируется в S. J. Gould, The Panda’s Thumb: More Reflections in Natural History (New York, W. W. Norton, 1980). • 10. G. Le Bon (1879) цитируется в Gould, The Panda’s Thumb. • 11. S. J. Morton, Crania Americana; or, a comparative view of the skulls of various aboriginal nations of North and South America: to which is prefixed an essay on the varieties of the human species (Североамериканские черепа, или Сравнительное исследование черепов представителей аборигенных наций Северной и Южной Америки: вариабельность человеческой нации) (Philadelphia, J. Dobson, 1839). • 12. G. J. Romanes, ‘Mental Differences of Men and Women’, Popular Science Monthly 31 (1887), pp. 383–401; J. S. Mill, The Subjection of Women (London, Transaction, [1869] 2001). • 13. T. Deacon, The Symbolic Species: The Co-evolution of Language and the Human Brain (Allen Lane, London, 1997). • 14. E. Fee, ‘Nineteenth-Century Craniology: The Study of the Female Skull’, Bulletin of the History of Medicine 53:3 (1979), pp. 415–33. • 15. A. Ecker, ‘On a Characteristic Peculiarity in the Form of the Female Skull, and Its Significance for Comparative Anthropology’, Anthropological Review 6:23 (1868), pp. 350–56. • 16. J. Cleland, ‘VIII. An Inquiry into the Variations of the Human Skull, Particularly the Anteroposterior Direction’, Philosophical Transactions of the Royal Society, 160 (1870), pp. 117–74. • 17. J. Barzan, Race: A Study in Superstition (New York, Harper & Row, 1965). • 18. A. Lee, ‘V. Data for the Problem of Evolution in Man – VI. A First Study of the Correlation of the Human Skull’, Philosophical Transactions of the Royal Society A 196:274–86 (1901), pp. 225–64. • 19. K. Pearson, ‘On the Relationship of Intelligence to Size and Shape of Head, and to Other Physical and Mental Characters’, Biometrika 5:1–2 (1906), pp. 105–46. • 20. F. J. Gall, On the Functions of the Brain and of Each of Its Parts: with observations on the possibility of determining the instincts, propensities, and talents, or the moral and intellectual dispositions of men and animals, by the configuration of the brain and head (О функциях мозга и каждой его части: наблюдения за возможностями предопределенности инстинктов, наклонностей и талантов, или Моральные и умственные характеристики человека и животных на основании строения мозга и головы) (Boston, Marsh, Capen & Lyon, 1835), vol. 1. • 21. J. G. Spurzheim, The Physiognomical System of Drs Gall and Spurzheim: founded on an anatomical and physiological examination of the nervous system in general, and of the brain in particular; and indicating the dispositions and manifestations of the mind (Физиогномия, основанная на анатомическом и физиологическом исследовании нервной системы в целом и мозга в частности; с указанием расположения и проявления разума) (London, Baldwin, Cradock & Joy, 1815). • 22. C. Bittel, ‘Woman, Know Thyself: Producing and Using Phrenological Knowledge in 19th-Century America’, Centaurus 55:2 (2013), pp. 104–30. • 23. P. Flourens, Phrenology Examined (Philadelphia, Hogan & Thompson, 1846). • 24. P. Broca, ‘Sur le siège de la faculté du langage articulé (15 juin)’, Bulletins de la Société d’Anthropologie de Paris 6 (1865), pp. 377–93; E. A. Berker, A. H. Berker and A. Smith, ‘Translation of Broca’s 1865 Report: Localization of Speech in the Third Left Frontal Convolution’ (Локализация речи в третьей левой фронтальной извилине), Archives of Neurology 43:10 (1986), pp. 1065–72. • 25. J. M. Harlow, ‘Passage of an Iron Rod through the Head’, Boston Medical and Surgical Journal 39:20 (1848), pp. 389–93; J. M. Harlow, ‘Recovery from the Passage of an Iron Bar through the Head’, History of Psychiatry 4:14 (1993), pp. 274–81. • 26. H. Ellis, Man and Woman: A Study of Secondary and Tertiary Sexual Characteristics (Мужчина и Женщина: исследование вторичных и третичных половых признаков), 8th edn (London, Heinemann, 1934), цитируется в S. Shields, ‘Functionalism, Darwinism, and the Psychology of Women’, American Psychologist 30:7 (1975), p. 739. • 27. G. T. W. Patrick, ‘The Psychology of Women’, Popular Science Monthly, June 1895, pp. 209–25, цитируется в S. Shields, ‘Functionalism, Darwinism, and the Psychology of Women’, American Psychologist 30:7, (1975), p. 739. • 28. Schiebinger, The Mind Has No Sex? p. 217. • 29. J-J. Rousseau, Émile, ou de l’éducation (Paris, Firmin Didot, [1762] 1844). • 30. J. McGrigor Allan, ‘On the Real Differences in the Minds of Men and Women’, Journal of the Anthropological Society of London, 7 (1869), pp. cxcv – ccxix, at p. cxcvii. • 31. McGrigor Allan, ‘On the Real Differences in the Minds of Men and Women’, p. cxcviii. • 32. W. Moore, ‘President’s Address, Delivered at the Fifty-Fourth Annual Meeting of the British Medical Association, Held in Brighton, August 10th, 11th, 12th, and 13th, 1886’, British Medical Journal, 2:295 (1886), pp. 295–9. • 33. R. Malane, Sex in Mind: The Gendered Brain in Nineteenth-Century Literature and Mental Sciences (New York, Peter Lang, 2005). • 34. H. Berger, ‘Über das Elektrenkephalogramm des Menschen’, Archiv für Psychiatrie und Nervenkrankheiten, 87 (1929), pp. 527–70; D. Millett, ‘Hans Berger: From Psychic Energy to the EEG’, Perspectives in Biology and Medicine, 44:4 (2001), pp. 522–42. • 35. D. Millet, ‘The Origins of EEG’, 7th Annual Meeting of the International Society for the History of the Neurosciences, Los Angeles, 2 June 2002. • 36. R. S. J. Frackowiak, K. J. Friston, C. D. Frith, R. J. Dolan, C. J. Price, S. Zeki, J. T. Ashburner and W. D. Penny (eds), Human Brain Function, 2nd edn (San Diego, Academic Press, 2004). • 37. Friston et al., Human Brain Function. • 38. A. Fausto-Sterling, Sexing the Body: Gender Politics and the Construction of Sexuality (New York, Basic, 2000). • 39. R. L. Holloway, ‘In the Trenches with the Corpus Callosum: Some Redux of Redux’, Journal of Neuroscience Research 95:1–2 (2017), pp. 21–3. • 40. E. Zaidel and M. Iacoboni, The Parallel Brain: The Cognitive Neuroscience of the Corpus Callosum (Cambridge, MA, MIT Press, 2003). • 41. C. DeLacoste-Utamsing and R. L. Holloway, ‘Sexual Dimorphism in the Human Corpus Callosum’, Science, 216:4553 (1982), pp. 1431–2. • 42. N. R. Driesen and N. Raz, ‘The Influence of Sex, Age, and Handedness on Corpus Callosum Morphology: A Meta-analysis’, Psychobiology 23:3 (1995), pp. 240–47. • 43. Cleland, ‘VIII. An Inquiry into the Variations of the Human Skull’. • 44. W. Men, D. Falk, T. Sun, W. Chen, J. Li, D. Yin, L. Zang and M. Fan, ‘The Corpus Callosum of Albert Einstein’s Brain: Another Clue to His High Intelligence?’, Brain 137:4 (2014), p. e268. • 45. R. J. Smith, ‘Relative Size versus Controlling for Size: Interpretation of Ratios in Research on Sexual Dimorphism in the Human Corpus Callosum’, Current Anthropology 46:2 (2005), pp. 249–73. • 46. Там же, p. 264. • 47. S. P. Springer and G. Deutsch, Left Brain, Right Brain: Perspectives from Cognitive Neuroscience, 5th edn (New York, W. H. Freeman, 1998). • 48. G. D. Schott, ‘Penfield’s Homunculus: A Note on Cerebral Cartography’, Journal of Neurology, Neurosurgery and Psychiatry 56:4 (1993), p. 329. • 49. K. Woollett, H. J. Spiers and E. A. Maguire, ‘Talent in the Taxi: a Model System for Exploring Expertise’, Philosophical Transactions of the Royal Society B: Biological Sciences 364:1522 (2009), pp. 1407–16. • 50. H. Vollmann, P. Ragert, V. Conde, A. Villringer, J. Classen, O. W. Witte and C. J. Steele, ‘Instrument Specific Use-Dependent Plasticity Shapes the Anatomical Properties of the Corpus Callosum: A Comparison between Musicians and Non-musicians’, Frontiers in Behavioral Neuroscience 8 (2014), p. 245. • 51. L. Eliot, ‘Single-Sex Education and the Brain’, Sex Roles 69:7–8 (2013), pp. 363–81. • 52. R. C. Gur, B. I. Turetsky, M. Matsui, M. Yan, W. Bilker, P. Hughett and R. E. Gur, ‘Sex Differences in Brain Gray and White Matter in Healthy Young Adults: Correlations with Cognitive Performance’, Journal of Neuroscience 19:10 (1999), pp. 4065–72. • 53. J. S. Allen, H. Damasio, T. J. Grabowski, J. Bruss and W. Zhang, ‘Sexual Dimorphism and Asymmetries in the Gray – White Composition of the Human Cerebrum, NeuroImage 18:4 (2003), pp. 880–94; M. D. De Bellis, M. S. Keshavan, S. R. Beers, J. Hall, K. Frustaci, A. Masalehdan, J. Noll and A. M. Boring, ‘Sex Differences in Brain Maturation during Childhood and Adolescence’, Cerebral Cortex 11:6 (2001), pp. 552–7; J. M. Goldstein, L. J. Seidman, N. J. Horton, N. Makris, D. N. Kennedy, V. S. Caviness Jr, S. V. Faraone and M. T. Tsuang, ‘Normal Sexual Dimorphism of the Adult Human Brain Assessed by In Vivo Magnetic Resonance Imaging’, Cerebral Cortex 11:6 (2001), pp. 490–97; C. D. Good, I. S. Johnsrude, J. Ashburner, R. N. A. Henson, K. J. Friston and R. S. Frackowiak, ‘A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains’, NeuroImage 14:1 (2001), pp. 21–36. • 54. A. N. Ruigrok, G. Salimi-Khorshidi, M. C. Lai, S. Baron-Cohen, M. V. Lombardo, R. J. Tait and J. Suckling, ‘A Meta-analysis of Sex Differences in Human Brain Structure’, Neuroscience & Biobehavioral Reviews 39 (2014), pp. 34–50. • 55. R. J. Haier, R. E. Jung, R. A. Yeo, K. Head and M. T. Alkire, ‘The Neuroanatomy of General Intelligence: Sex Matters’, NeuroImage 25:1 (2005), pp. 320–27.
Глава 2
Ее неконтролируемые гормоны
1. C. Fine, Testosterone Rex: Unmaking the Myths of our Gendered Minds (London, Icon, 2017); G. Breuer, Sociobiology and the Human Dimension (Cambridge, Cambridge University Press, 1983). • 2. C. H. Phoenix, R. W. Goy, A. A. Gerall and W. C. Young, ‘Organizing Action of Prenatally Administered Testosterone Propionate on the Tissues Mediating Mating Behavior in the Female Guinea Pig’, Endocrinology 65:3 (1959), pp. 369–82; K. Wallen, ‘The Organizational Hypothesis: Reflections on the 50th Notes 367 Anniversary of the Publication of Phoenix, Goy, Gerall, and Young (1959)’, Hormones and Behavior 55:5 (2009), pp. 561–5; M. Hines, Brain Gender (Oxford, Oxford University Press, 2005); R. M. Jordan-Young, Brain Storm: The Flaws in the Science of Sex Differences (Cambridge, MA, Harvard University Press, 2011). • 3. J. D. Wilson, ‘Charles-Edouard Brown-Sequard and the Centennial of Endocrinology’, Journal of Clinical Endocrinology and Metabolism 71:6 (1990), pp. 1403–9. • 4. J. Henderson, ‘Ernest Starling and “Hormones”: An Historical Commentary’, Journal of Endocrinology 184:1 (2005), pp. 5–10. • 5. B. P. Setchell, ‘The Testis and Tissue Transplantation: Historical Aspects’, Journal of Reproductive Immunology 18:1 (1990), pp. 1–8. • 6. M. L. Stefanick, ‘Estrogens and Progestins: Background and History, Trends in Use, and Guidelines and Regimens Approved by the US Food and Drug Administration’, American Journal of Medicine 118:12 (2005), pp. 64–73. • 7. ‘Origins of Testosterone Replacement’, Urological Sciences Research Foundation website, https://www.usrf.org/news/000908-origins.html (accessed 4 November 2018). • 8. J. Schwarcz, ‘Getting “Steinached” was all the rage in roaring ’20s’, 20 March 2017, McGill Office for Science and Security website, https://www.mcgill.ca/oss/article/health-history-science-scienceeverywhere/getting-steinached-was-all-rage-roaring-20s (accessed 4 November 2018). • 9. A. Carrel and C. C. Guthrie, ‘Technique de la transplantation homoplastique de l’ovaire’, Comptes rendus des séances de la Société de biologie 6 (1906), pp. 466–8, cited in E. Torrents, I. Boiso, P. N. Barri and A. Veiga, ‘Applications of Ovarian Tissue Transplantation in Experimental Biology and Medicine’, Human Reproduction Update 9:5 (2003), pp. 471–81; J. Woods, ‘The history of estrogen’, menoPAUSE blog, February 2016, https://www.urmc.rochester.edu/ob-gyn/gynecology/menopause-blog/february-2016/the-history-of-estrogen.aspx (accessed 4 November 2018). • 10. J. M. Davidson and P. A. Allinson, ‘Effects of Estrogen on the Sexual Behavior of Male Rats’, Endocrinology 84:6 (1969), pp. 1365–72. • 11. R. H. Epstein, Aroused: The History of Hormones and How They Control Just About Everything (New York, W. W. Norton, 2018). • 12. R. T. Frank, ‘The Hormonal Causes of Premenstrual Tension’, Archives of Neurology and Psychiatry 26:5 (1931), pp. 1053–7. • 13. R. Greene and K. Dalton, ‘The Premenstrual Syndrome’, British Medical Journal 1:4818 (1953), p. 1007. • 14. C. A. Boyle, G. S. Berkowitz and J. L. Kelsey, ‘Epidemiology of Premenstrual Symptoms’, American Journal of Public Health 77:3 (1987), pp. 349–50. • 15. J. C. Chrisler and P. Caplan, ‘The Strange Case of Dr Jekyll and Ms Hyde: How PMS Became a Cultural Phenomenon and a Psychiatric Disorder’, Annual Review of Sex Research 13:1 (2002), pp. 274–306. • 16. J. T. E. Richardson, ‘The Premenstrual Syndrome: A Brief History’, Social Science and Medicine 41:6 (1995), pp. 761–7. • 17. ‘Raging hormones’, New York Times, 11 January 1982, http://www.nytimes.com/1982/01/11/opinion/raging-hormones.html (accessed 4 November 2018). • 18. K. L. Ryan, J. A. Loeppky and D. E. Kilgore Jr, ‘A Forgotten Moment in Physiology: The Lovelace Woman in Space Program (1960–1962)’, Advances in Physiology Education 33:3 (2009), pp. 157–64. • 19. R. K. Koeske and G. F. Koeske, ‘An Attributional Approach to Moods and the Menstrual Cycle’, Journal of Personality and Social Psychology 31:3 (1975), p. 473. • 20. D. N. Ruble, ‘Premenstrual Symptoms: A Reinterpretation’, Science 197:4300 (1977), pp. 291–2. • 21. Chrisler and Caplan, ‘The Strange Case of Dr Jekyll and Ms Hyde’. • 22. R. H. Moos, ‘The Development of a Menstrual Distress Questionnaire’, Psychosomatic Medicine 30:6 (1968), pp. 853–67. • 23. J. Brooks- Gunn and D. N. Ruble, ‘The Development of Menstrual-Related Beliefs and Behaviors during Early Adolescence’, Child Development 53:6 (1982), pp. 1567–77. • 24. S. Toffoletto, R. Lanzenberger, M. Gingnell, I. Sundström-Poromaa and E. Comasco, ‘Emotional and Cognitive Functional Imaging of Estrogen and Progesterone Effects in the Female Human Brain: A Systematic Review’, Psychoneuroendocrinology 50 (2014), pp. 28–52. • 25. D. B. Kelley and D. W Pfaff, ‘Generalizations from Comparative Studies on Neuroanatomical and Endocrine Mechanisms of Sexual Behaviour’, in J. B. Hutchison (ed.), Biological Determinants of Sexual Behaviour (Chichester, John Wiley, 1978), pp. 225–54. • 26. M. Hines, ‘Gender Development and the Human Brain’, Annual Review of Neuroscience 34 (2011), pp. 69–88. • 27. Phoenix et al., ‘Organizing Action of Prenatally Administered Testosterone Propionate’. • 28. M. Hines and F. R. Kaufman, ‘Androgen and the Development of Human Sex-Typical Behavior: Rough-and-Tumble Play and Sex of Preferred Playmates in Children with Congenital Adrenal Hyperplasia (CAH)’, Child Development 65:4 (1994), pp. 1042–53; C. van de Beek, S. H. van Goozen, J. K. Buitelaar and P. T. Cohen-Kettenis, ‘Prenatal Sex Hormones (Maternal and Amniotic Fluid) and Gender-Related Play Behavior in 13-Month-Old Infants’, Archives of Sexual Behavior 38:1 (2009), pp. 6–15. • 29. J. B. Watson, ‘Psychology as the Behaviorist Views It’, Psychological Review 20:2 (1913), pp. 158–77. • 30. G. Kaplan and L. J. Rogers, ‘Parental Care in Marmosets (Callithrix jacchus jacchus): Development and Effect of Anogenital Licking on Exploration’, Journal of Comparative Psychology 113:3 (1999), p. 269. • 31. S. W. Bottjer, S. L. Glaessner and A. P. Arnold, ‘Ontogeny of Brain Nuclei Controlling Song Learning and Behavior in Zebra Finches’, Journal of Neuroscience 5:6 (1985), pp. 1556–62. • 32. D. W. Bayless and N. M. Shah, ‘Genetic Dissection of Neural Circuits Underlying Sexually Dimorphic Social Behaviours’, Philosophical Transactions of the Royal Society B: Biological Sciences, 371:1688 (2016), 20150109. • 33. R. M. Young and E. Balaban, ‘Psychoneuroindoctrinology’, Nature 443:7112 (2006), p. 634. • 34. A. Fausto-Sterling, Sexing the Body. • 35. D. P. Merke and S. R. Bornstein, ‘Congenital Adrenal Hyperplasia’, Lancet 365:9477 (2005), pp. 2125–36. • 36. Jordan-Young, Brain Storm. • 37. Hines and Kaufman, ‘Androgen and the Development of Human Sex-Typical Behavior’. • 38. P. Plumb and G. Cowan, ‘A Developmental Study of Destereotyping and Androgynous Activity Preferences of Tomboys, Nontomboys, and Males’, Sex Roles 10:9–10 (1984), pp. 703–12. • 39. J. Money and A. A. Ehrhardt, Man and Woman, Boy and Girl: The Differentiation and Dimorphism of Gender Identity from Conception to Maturity (Baltimore, Johns Hopkins University Press, 1972). • 40. M. Hines, Brain Gender. • 41. D. A. Puts, M. A. McDaniel, C. L. Jordan and S. M. Breedlove, ‘Spatial Ability and Prenatal Androgens: Meta-analyses of Congenital Adrenal Hyperplasia and Digit Ratio (2D:4D) Studies’, Archives of Sexual Behavior 37:1 (2008), p. 100. • 42. Jordan-Young, Brain Storm. • 43. Там же, p. 289. • 44. J. Colapinto, As Nature Made Him: The Boy Who Was Raised as a Girl (New York, HarperCollins, 2001). • 45. J. Colapinto, ‘The True Story of John/Joan’, Rolling Stone, 11 December 1997, pp. 54–97. • 46. M. V. Lombardo, E. Ashwin, B. Auyeung, B. Chakrabarti, K. Taylor, G. Hackett, E. T. Bullmore and S. Baron-Cohen, ‘Fetal Testosterone Influences Sexually Dimorphic Gray Matter in the Human Brain’, Journal of Neuroscience 32:2 (2012), pp. 674–80. • 47. S. Baron-Cohen, S. Lutchmaya and R. Knickmeyer, Prenatal Testosterone in Mind: Amniotic Fluid Studies (Cambridge, MA, MIT Press, 2004). • 48. R. Knickmeyer, S. Baron-Cohen, P. Raggatt and K. Taylor, ‘Foetal Testosterone, Social Relationships, and Restricted Interests in Children’, Journal of Child Psychology and Psychiatry 46:2 (2005), pp. 198–210; E. Chapman, S. Baron-Cohen, B. Auyeung, R. Knickmeyer, K. Taylor and G. Hackett, ‘Fetal Testosterone and Empathy: Evidence from the Empathy Quotient (EQ) and the “Reading the Mind in the Eyes” Test’, Social Neuroscience 1:2 (2006), pp. 135–48. • 49. S. Lutchmaya, S. Baron-Cohen, P. Raggatt, R. Knickmeyer and J. T. Manning, ‘2nd to 4th Digit Ratios, Fetal Testosterone and Estradiol’, Early Human Development 77:1–2 (2004), pp. 23–8. • 50. J. Hönekopp and C. Thierfelder, ‘Relationships between Digit Ratio (2D:4D) and Sex-Typed Play Behavior in Pre-school Children’, Personality and Individual Differences 47:7 (2009), pp. 706–10; D. A. Putz, S. J. Gaulin, R. J. Sporter and D. H. McBurney, ‘Sex Hormones and Finger Length: What Does 2D:4D Indicate?’, Evolution and Human Behavior 25:3 (2004), pp. 182–99. • 51. J. M. Valla and S. J. Ceci, ‘Can Sex Differences in Science Be Tied to the Long Reach of Prenatal Hormones? Brain Organization Theory, Digit Ratio (2D/4D), and Sex Differences in Preferences and Cognition’, Perspectives on Psychological Science, 6:2 (2011), pp. 134–46. • 52. S. M. Van Anders, K. L. Goldey and P. X. Kuo, ‘The Steroid/Peptide Theory of Social Bonds: Integrating Testosterone and Peptide Responses for Classifying Social Behavioral Contexts’, Psychoneuroendocrinology 36:9 (2011), pp. 1265–75.
Глава 3
Околопсихологическая болтовня
1. H. T. Woolley, ‘A Review of Recent Literature on the Psychology of Sex’, Psychological Bulletin 7:10 (1910), pp. 335–42. • 2. C. Fine, Delusions of Gender: How Our Minds, Society, and Neurosexism Create Difference (New York, W. W. Norton, 2010), p. xxvii. • 3. C. Darwin, On the Origin of Species by Means of Natural Selection (London, John Murray, 1859); C. Darwin, The Descent of Man and Selection in Relation to Sex (London, John Murray, 1871). • 4. S. A. Shields, Speaking from the Heart: Gender and the Social Meaning of Emotion (Cambridge, Cambridge University Press, 2002), p. 77. • 5. Darwin, The Descent of Man, p. 361. • 6. S. A. Shields, ‘Passionate Men, Emotional Women: Psychology Constructs Gender Difference in the Late 19th Century’, History of Psychology 10:2 (2007), pp. 92–110, at p. 93. • 7. Shields, ‘Passionate Men, Emotional Women’, p. 97. • 8. Там же., p. 94. • 9. L. Cosmides and J. Tooby, ‘Cognitive Adaptations for Social Exchange’, in J. H. Barkow, L. Cosmides and J. Tooby (eds), The Adapted Mind: Evolutionary Psychology and the Generation of Culture (New York, Oxford University Press, 1992). • 10. L. Cosmides and J. Tooby, ‘Beyond Intuition and Instinct Blindness: Toward an Evolutionarily Rigorous Cognitive Science’, Cognition 50:1–3 (1994), pp. 41–77. • 11. A. C. Hurlbert and Y. Ling, ‘Biological Components of Sex Differences in Color Preference’, Current Biology 17:16 (2007), pp. R623–5. • 12. S. Baron-Cohen, The Essential Difference (London, Penguin, 2004). • 13. Там же., p. 26. • 14. Там же., p. 63. • 15. Там же., p. 127. • 16. Там же, p. 185. • 17. Там же., p. 123. • 18. Там же, p. 185. • 19. S. Baron-Cohen, J. Richler, D. Bisarya, N. Gurunathan and S. Wheelwright, ‘The Systemizing Quotient: An Investigation of Adults with Asperger Syndrome or High-Functioning Autism, and Normal Sex Differences’, Philosophical Transactions of the Royal Society B: Biological Sciences 358:1430 (2003), pp. 361–74; S. Baron-Cohen and S. Wheelwright, ‘The Empathy Quotient: An Investigation of Adults with Asperger Syndrome or High Functioning Autism, and Normal Sex Differences’, Journal of Autism and Developmental Disorders 34:2 (2004), pp. 163–75; A. Wakabayashi, S. Baron-Cohen, S. Wheelwright, N. Goldenfeld, J. Delaney, D. Fine, R. Smith and L. Weil, ‘Development of Short Forms of the Empathy Quotient (EQ-Short) and the Systemizing Quotient (SQ-Short)’, Personality and Individual Differences 41:5 (2006), pp. 929–40. • 20. B. Auyeung, S. Baron-Cohen, F. Chapman, R. Knickmeyer, K. Taylor and G. Hackett, ‘Foetal Testosterone and the Child Systemizing Quotient’, European Journal of Endocrinology 155:Supplement 1 (2006), pp. S123–30; E. Chapman, S. Baron-Cohen, B. Auyeung, R. Knickmeyer, K. Taylor and G. Hackett, ‘Fetal Testosterone and Empathy: Evidence from the Empathy Quotient (EQ) and the “Reading the Mind in the Eyes” Test’, Social Neuroscience 1:2 (2006), pp. 135–48. • 21. S. Baron-Cohen, S. Wheelwright, J. Hill, Y. Raste and I. Plumb, ‘The “Reading the Mind in the Eyes” Test Revised Version: A Study with Normal Adults, and Adults with Asperger Syndrome or High-Functioning Autism’, Journal of Child Psychology and Psychiatry 42:2 (2001), pp. 241–51. • 22. J. Billington, S. Baron-Cohen and S. Wheelwright, ‘Cognitive Style Predicts Entry into Physical Sciences and Humanities: Questionnaire and Performance Tests of Empathy and Systemizing’, Learning and Individual Differences 17:3 (2007), pp. 260–68. • 23. Baron-Cohen, The Essential Difference, pp. 185, 1. • 24. Там же., pp. 185, 8. • 25. E. B. Titchener, ‘Wilhelm Wundt’, American Journal of Psychology 32:2 (1921), pp. 161–78; W. C. Wong, ‘Retracing the Footsteps of Wilhelm Wundt: Explorations in the Disciplinary Frontiers of Psychology and in Völkerpsychologie’, History of Psychology 12:4, (2009), p. 229. • 26. R. W. Kamphaus, M. D. Petoskey and A. W. Morgan, ‘A History of Intelligence Test Interpretation’, in D. P. Flanagan, J. L. Genshaft and P. L Harrison (eds), Contemporary Intellectual Assessment: Theories, Tests, and Issues (New York, Guilford, 1997), pp. 3–16. • 27. R. E. Gibby and M. J. Zickar, ‘A History of the Early Days of Personality Testing in American Industry: An Obsession with Adjustment’, History of Psychology 11:3 (2008), p. 164. • 28. Woodworth Psychoneurotic Inventory, https://openpsychometrics.org/tests/WPI.php (accessed 4 November 2018). • 29. J. Jastrow, ‘A Study of Mental Statistics’, New Review 5 (1891), pp. 559–68. • 30. Woolley, ‘A Review of the Recent Literature on the Psychology of Sex’, p. 335. • 31. N. Weisstein, ‘Psychology Constructs the Female; or the Fantasy Life of the Male Psychologist (with Some Attention to the Fantasies of his Friends, the Male Biologist and the Male Anthropologist)’, Feminism and Psychology 3:2 (1993), pp. 194–210. • 32. S. Schachter and J. Singer, ‘Cognitive, Social, and Physiological Determinants of Emotional State’, Psychological Review 69:5 (1962), p. 379. • 33. E. E. Maccoby and C. N. Jacklin, The Psychology of Sex Differences, Vol. 1: Text (Stanford, CA, Stanford University Press, 1974). • 34. J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd edn (Hillsdale, NJ, Laurence Erlbaum Associates, 1988); K. Magnusson, ‘Interpreting Cohen’s deffect size: an interactive visualisation’, R Psychologist blog, 13 January 2014, http://rpsychologist.com/d3/cohend (accessed 4 November 2018); SexDifference website, https://sexdifference.org (accessed 4 November 2018). • 35. K. Magnusson, ‘Interpreting Cohen’s d effect size’; SexDifference website. • 36. SexDifference website. • 37. T. D. Satterthwaite, D. H. Wolf, D. R. Roalf, K. Ruparel, G. Erus, S. Vandekar, E. D. Gennatas, M. A. Elliott, A. Smith, H. Hakonarson and R. Verma, ‘Linked Sex Differences in Cognition and Functional Connectivity in Youth’, Cerebral Cortex 25:9 (2014), pp. 2383–94, at p. 2383. • 38. A. Kaiser, S. Haller, S. Schmitz and C. Nitsch, ‘On Sex/Gender Related Similarities and Differences in fMRI Language Research’, Brain Research Reviews 61:2 (2009), pp. 49–59. • 39. R. Rosenthal, ‘The File Drawer Problem and Tolerance for Null Results’, Psychological Bulletin 86:3 (1979), p. 638. • 40. D. J. Prediger, ‘Dimensions Underlying Holland’s Hexagon: Missing Link between Interests and Occupations?’, Journal of Vocational Behavior 21:3 (1982), pp. 259–87. • 41. Там же, p. 261. • 42. United States Bureau of the Census, 198 °Census of the Population: Detailed Population Characteristics (US Department of Commerce, Bureau of the Census, 1984). • 43. B. R. Little, ‘Psychospecialization: Functions of Differential Orientation towards Persons and Things’, Bulletin of the British Psychological Society 21 (1968), p. 113. • 44. P. I. Armstrong, W. Allison and J. Rounds, ‘Development and Initial Validation of Brief Public Domain RIASEC Marker Scales’, Journal of Vocational Behavior 73:2 (2008), pp. 287–99. • 45. V. Valian, ‘Interests, Gender, and Science’, Perspectives on Psychological Science 9:2 (2014), pp. 225–30. • 46. R. Su, J. Rounds and P. I. Armstrong, ‘Men and Things, Women and People: A Meta-analysis of Sex Differences in Interests’, Psychological Bulletin 135:6 (2009), p. 859. • 47. M. T. Orne, ‘Demand Characteristics and the Concept of Quasi-controls’, in R. Rosenthal and R. L. Rosnow, Artifacts in Behavioral Research (Oxford, Oxford University Press, 2009), pp. 110–37. • 48. J. C. Chrisler, I. K. Johnston, N. M Champagne and K. E. Preston, ‘Menstrual Joy: The Construct and Its Consequences’, Psychology of Women Quarterly 18:3 (1994), pp. 375–87. • 49. J. L. Hilton and W. Von Hippel, ‘Stereotypes’, Annual Review of Psychology 47:1 (1996), pp. 237–71. • 50. N. Eisenberg and R. Lennon, ‘Sex Differences in Empathy and Related Capacities’, Psychological Bulletin 94:1 (1983), p. 100. • 51. C. M. Steele and J. Aronson, ‘Stereotype Threat and the Intellectual Test Performance of African Americans’, Journal of Personality and Social Psychology 69:5 (1995), p. 797; S. J. Spencer, C. Logel and P. G. Davies, ‘Stereotype Threat’, Annual Review of Psychology 67 (2016), pp. 415–37. • 52. S. J. Spencer, C. M. Steele and D. M. Quinn, ‘Stereotype Threat and Women’s Math Performance’, Journal of Experimental Social Psychology 35:1 (1999), pp. 4–28. • 53. M. A. Pavlova, S. Weber, E. Simoes and A. N. Sokolov, ‘Gender Stereotype Susceptibility’, PLoS One 9:12 (2014), e114802. • 54. Fine, Delusions of Gender. • 55. D. Carnegie, How to Win Friends and Influence People (New York, Simon & Schuster, 1936).
Глава 4
Мифы о мозге, нейромусор и нейросексизм
1. N. K. Logothetis, ‘What We Can Do and What We Cannot Do with fMRI’, Nature 453:7197 (2008), p. 869. • 2. R. S. J. Frackowiak, K. J. Friston, C. D. Frith, R. J. Dolan, C. J. Price, S. Zeki, J. T. Ashburner and W. D. Penny (eds), Human Brain Function, 2nd edn (San Diego and London, Academic Press, 2004). • 3. A. L. Roskies, ‘Are Neuroimages like Photographs of the Brain?’, Philosophy of Science 74:5 (2007), pp. 860–72. • 4. R. A. Poldrack, ‘Can Cognitive Processes Be Inferred from Neuroimaging Data?’, Trends in Cognitive Sciences 10:2 (2006), pp. 59–63. • 5. J. B. Meixner and J. P. Rosenfeld, ‘A Mock Terrorism Application of the P300-Based Concealed Information Test’, Psychophysiology 48:2 (2011), pp. 149–54. • 6. A. Linden and J. Fenn, ‘Understanding Gartner’s Hype Cycles’, Strategic Analysis Report R-20–1971 (Stamford, CT, Gartner, 2003). • 7. J. Devlin and G. de Ternay, ‘Can neuromarketing really offer you useful customer insights?’, Medium, 8 October 2016, https://medium.com/@GuerricdeTernay/can-neuromarketingreally-offer-you-useful-customer-insights-e4d0f515f1ec (accessed 13 November 2018). • 8. A. Orlowski, ‘The Great Brain Scan Scandal: It isn’t just boffins who should be ashamed’, Register, 7 July 2016, https://www.theregister.co.uk/2016/07/07/the_great_brain_scan_scandal_it_isnt_just_boffins_who_should_be_ashamed (accessed 13 November 2018). • 9. S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle and K. Ugurbil, ‘Intrinsic Signal Changes Accompanying Sensory Stimulation: Functional Brain Mapping with Magnetic Resonance Imaging’, Proceedings of the National Academy of Sciences 89:13 (1992), pp. 5951–5. • 10. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen and R. Turner, ‘Dynamic Magnetic Resonance Imaging of Human Brain Activity during Primary Sensory Stimulation’, Proceedings of the National Academy of Sciences 89:12 (1992), pp. 5675–9. • 11. K. Smith, ‘fMRI 2.0’, Nature 484:7392 (2012), p. 24. • 12. Presidential Proclamation 6158, 17 July 1990, Project on the Decade of the Brain, https://www.loc.gov/loc/brain/proclaim.html (accessed 4 November 2018); E. G. Jones and L. M. Mendell, ‘Assessing the Decade of the Brain’, Science, 30 April 1999, p. 739. • 13. ‘Neurosociety Conference: What Is It with the Brain These Days?’, Oxford Martin School website, https://www.oxfordmartin.ox.ac.uk/event/895 (accessed 4 November 2018). • 14. B. Carey, ‘A neuroscientific look at speaking in tongues’, New York Times, 7 November 2006, https://www.nytimes.com/2006/11/07/health/07brain.html (accessed 4 November 2018); M. Shermer, ‘The political brain’, Scientific American, 1 July 2006, https://www.scientificamerican.com/article/thepolitical-brain (accessed 4 November 2018); E. Callaway, ‘Brain quirk could help explain financial crisis’, New Scientist, 24 March 2009, https://www.newscientist.com/article/dn16826-brain-quirk-could-help-explain-financialcrisis (accessed 4 November 2018). • 15. ‘“Beliebers” suffer a real fever: How fans of the pop sensation have brains hard wired to be obsessed with him’, Mail Online, 1 July 2012, https://www.dailymail.co.uk/sciencetech/article-2167108/Beliebers-suffer-real-fever-How-fans-Justin-Bieber-brainshard-wired-obsessed-him.html (accessed 4 November 2018). • 16. J. Lehrer, ‘The neuroscience of Bob Dylan’s genius’, Guardian, 6 April 2012, https://www.theguardian.com/music/2012/apr/06/neuroscience-bob-dylan-geniuscreativity (accessed 4 November 2018). • 17. ‘The neuroscience of kitchen cabinetry’, The Neurocritic blog, 5 December 2010, https://neurocritic.blogspot.com/2010/12/neuroscience-of-kitchen-cabinetry.html (accessed 4 November 2018). • 18. ‘Spanner or sex object?’, Neurocritic blog, 20 February 2009, https://neurocritic.blogspot.com/2009/02/spanner-or-sexobject.html (accessed 4 November 2018). • 19. I. Sample, ‘Sex objects: pictures shift men’s view of women’, Guardian, 16 February 2009, https://www.theguardian.com/science/2009/feb/16/sex-object-photograph (accessed 4 November 2018). • 20. E. Rossini, ‘Princeton study: “Men view halfnaked women as objects”, Illusionists website, 18 February 2009, https://theillusionists.org/2009/02/princeton-objectification (accessed 4 November 2018). • 21. C. dell’Amore, ‘Bikinis make men see women as objects, scans confirm’, National Geographic, 16 February 2009, https://www.nationalgeographic.com/science/2009/02/bikinis-women-men-objects-science (accessed 4 November 2018). • 22. E. Landau, ‘Men see bikini-clad women as objects, psychologists say’, CNN website, 2 April 2009, http://edition.cnn.com/2009/HEALTH/02/19/women.bikinis.objects (accessed 4 November 2018). • 23. C. O’Connor, G. Rees and H. Joffe, ‘Neuroscience in the Public Sphere’, Neuron 74:2 (2012), pp. 220–26. • 24. J. Dumit, Picturing Personhood: Brain Scans and Biomedical Identity (Princeton, NJ, Princeton University Press, 2004). • 25. http://www.sandsresearch.com/coke-heist.html (accessed 4 November 2018). • 26. D. P. McCabe and A. D. Castel, ‘Seeing Is Believing: The Effect of Brain Images on Judgments of Scientific Reasoning’, Cognition 107:1 (2008), pp. 343–52; D. S. Weisberg, J. C. V. Taylor and E. J. Hopkins, ‘Deconstructing the Seductive Allure of Neuroscience Explanations’, Judgment and Decision Making, 10:5 (2015), p. 429. • 27. K. A. Joyce, ‘From Numbers to Pictures: The Development of Magnetic Resonance Imaging and the Visual Turn in Medicine’, Science as Culture, 15:01 (2006), pp. 1–22. • 28. M. J. Farah and C. J. Hook, ‘The Seductive Allure of “Seductive Allure”’, Perspectives on Psychological Science 8:1 (2013), pp. 88–90. • 29. R. B. Michael, E. J. Newman, M. Vuorre, G. Cumming and M. Garry, ‘On the (Non) Persuasive Power of a Brain Image’, Psychonomic Bulletin and Review 20:4 (2013), pp. 720–25. • 30. D. Blum, ‘Winter of Discontent: Is the Hot Affair between Neuroscience and Science Journalism Cooling Down?’, Undark, 3 December 2012, https://undark.org/2012/12/03/winter-discontent-hotaffair-between-neu (accessed 4 November 2018). • 31. A. Quart, ‘Neuroscience: under attack’, New York Times, 23 November 2012, https://www.nytimes.com/2012/11/25/opinion/sunday/neuroscience-under-attack.html (accessed 4 November 2018). • 32. S. Poole, ‘Your brain on pseudoscience: the rise of popular neurobollocks’, New Statesman, 6 September 2012, https://www.newstatesman.com/culture/books/2012/09/your-brain-pseudoscience-risepopular-neurobollocks (accessed 4 November 2018). • 33. E. Racine, O. Bar-Ilan and J. Illes, ‘fMRI in the Public Eye’, Nature Reviews Neuroscience 6:2 (2005), p. 159. • 34. ‘Welcome to the Neuro-Journalism Mill’, James S. McDonnell Foundation website, https://www.jsmf.org/neuromill/about.htm (accessed 4 November 2018). • 35. E. Vul, C. Harris, P. Winkielman and H. Pashler, ‘Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition’, Perspectives on Psychological Science 4:3 (2009), pp. 274–90. • 36. C. M. Bennett, M. B. Miller and G. L. Wolford, ‘Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An Argument for Multiple Comparisons Correction’, NeuroImage 47:Supplement 1 (2009), p. S125. • 37. A. Madrigal, ‘Scanning dead salmon in fMRI machine highlights risk of red herrings’, Wired, 18 September 2009, https://www.wired.com/2009/09/fmrisalmon (accessed 4 November 2018); Neuroskeptic, ‘fMRI gets slap in the face with a dead fish’, Discover, 16 September 2009, http://blogs.discovermagazine.com/neuroskeptic/2009/09/16/fmri-gets-slap-in-the-face-with-a-dead-fish (accessed 4 November 2018). • 38. Scicurious, ‘IgNobel Prize in Neuroscience: the dead salmon study’, Scientific American, 25 September 2012, https://blogs.scientificamerican.com/scicurious-brain/ignobel-prize-in-neuroscience-thedead-salmon-study (accessed 4 November 2018). • 39. S. Dekker, N. C. Lee, P. Howard-Jones and J. Jolles, ‘Neuromyths in Education: Prevalence and Predictors of Misconceptions among Teachers’, Frontiers in Psychology 3 (2012), p. 429. • 40. Human Brain Project website, https://www.humanbrainproject.eu/en/; H. Markram, ‘The human brain project’, Scientific American, June 2012, pp. 50–55. • 41. UK Biobank website, https://www.ukbiobank.ac.uk (accessed 4 November 2018); C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green, M. Landray and B. Liu, ‘UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age’, PLoS Medicine 12:3 (2015), e1001779. • 42. BRAIN Initiative website, https://www.braininitiative.nih.gov (accessed 4 November 2018); T. R. Insel, S. C. Landis and F. S. Collins, ‘The NIH Brain Initiative’, Science 340:6133 (2013), pp. 687–8. • 43. Human Connectome Project website, http://www.humanconnectomeproject.org (accessed 4 November 2018); D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub, K. Ugurbil and WU-Minn HCP Consortium, ‘The WU-Minn Human Connectome Project: An Overview’, NeuroImage 80 (2013), pp. 62–79. • 44. R. A. Poldrack and K. J. Gorgolewski, ‘Making Big Data Open: Data Sharing in Neuroimaging’, Nature Neuroscience 17:11 (2014), p. 1510. • 45. J. Gray, Men Are from Mars, Women Are from Venus (New York, HarperCollins, 1992). • 46. L. Brizendine, The Female Brain (New York: Morgan Road, 2006). • 47. Young and Balaban, ‘Psychoneuroindoctrinology’, p. 634. • 48. ‘Sex-linked lexical budgets’, Language Log, 6 August 2006, http://itre.cis.upenn.edu/~myl/languagelog/archives/003420.html (accessed 4 November 2018). • 49. ‘Neuroscience in the service of sexual stereotypes’, Language Log, 6 August 2006, http://itre.cis.upenn.edu/~myl/languagelog/archives/003419.html (accessed 4 November 2018). • 50. Fine, Delusions of Gender, p. 161. • 51. M. Liberman, ‘The Female Brain movie’, Language Log, 21 August 2016, http://languagelog.ldc.upenn.edu/nll/?p=27641 (accessed 4 November 2018). • 52. V. Brescoll and M. LaFrance, ‘The Correlates and Consequences of Newspaper Reports of Research on Sex Differences’, Psychological Science 15:8 (2004), pp. 515–20. • 53. Fine, Delusions of Gender, pp. 154–75; C. Fine, ‘Is There Neurosexism in Functional Neuroimaging Investigations of Sex Differences?’, Neuroethics 6:2 (2013), pp. 369–409. • 54. R. Bluhm, ‘New Research, Old Problems: Methodological and Ethical Issues in fMRI Research Examining Sex/Gender Differences in Emotion Processing’, Neuroethics, 6:2 (2013), pp. 319–30. • 55. K. McRae, K. N. Ochsner, I. B. Mauss, J. J Gabrieli and J. J. Gross, ‘Gender Differences in Emotion Regulation: An fMRI Study of Cognitive Reappraisal’, Group Processes and Intergroup Relations, 11:2 (2008), pp. 143–62; R. Bluhm, ‘Self-Fulfilling Prophecies: The Influence of Gender Stereotypes on Functional Neuroimaging Research on Emotion’, Hypatia 28:4 (2013), pp. 870–86. • 56. B. A. Shaywitz, S. E. Shaywitz, K. R. Pugh, R. T. Constable, P. Skudlarski, R. K. Fulbright, R. A. Bronen, J. M. Fletcher, D. P. Shankweiler, L. Katz and J. C. Gore, ‘Sex Differences in the Functional Organization of the Brain for Language’, Nature 373:6515 (1995), p. 607. • 57. G. Kolata, ‘Men and women use brain differently, study discovers’, New York Times, 16 February 1995, https://www.nytimes.com/1995/02/16/us/men-and-women-use-brain-differently-study-discovers.html (accessed 4 November 2018). • 58. Fine, ‘Is There Neurosexism’. • 59. Там же., p. 379. • 60. I. E. C. Sommer, A. Aleman, A. Bouma and R. S. Kahn, ‘Do Women Really Have More Bilateral Language Representation than Men? A Meta-analysis of Functional Imaging Studies’, Brain 127:8 (2004), pp. 1845–52. • 61. M. Wallentin, ‘Putative Sex Differences in Verbal Abilities and Language Cortex: A Critical Review’, Brain and Language 108:3 (2009), pp. 175–83. • 62. M. Ingalhalikar, A. Smith, D. Parker, T. D. Satterthwaite, M. A. Elliott, K. Ruparel, H. Hakonarson, R. E. Gur, R. C. Gur and R. Verma, ‘Sex Differences in the Structural Connectome of the Human Brain’, Proceedings of the National Academy of Sciences 111:2 (2014), pp. 823–8. • 63. Там же, p. 823, abstract. • 64. ‘Brain connectivity study reveals striking differences between men and women’, Penn Medicine press release, 2 December 2013, https://www.pennmedicine.org/news/news-releases/2013/december/brain-connectivity-study-revea (accessed 4 November 2018). • 65. D. Joel and R. Tarrasch, ‘On the Mis-presentation and Misinterpretation of Gender-Related Data: The Case of Ingalhalikar’s Human Connectome Study’, Proceedings of the National Academy of Sciences 111:6 (2014), p. E637; M. Ingalhalikar, A. Smith, D. Parker, T. D. Satterthwaite, M. A. Elliott, K. Ruparel, H. Hakonarson, R. E. Gur, R. C. Gur and R. Verma, ‘Reply to Joel and Tarrasch: On Misreading and Shooting the Messenger’, Proceedings of the National Academy of Sciences 111:6 (2014), 201323601; ‘Expert reaction to study on gender differences in brains’, Science Media Centre, 3 December 2013, http://www.sciencemediacentre.org/expert-reaction-to-study-on-gender-differences-in-brains (accessed 4 November 2018); Neuroskeptic, ‘Men, women and big PNAS papers’, Discover, 3 December 2013, http://blogs.discovermagazine.com/neuroskeptic/2013/12/03/men-women-big-pnas-papers/#.W69vxltyKpo (accessed 4 November 2018); ‘Men are map readers and women are intuitive, but bloggers are fast’, The Neurocritic blog, 5 December 2013, https://neurocritic.blogspot.com/2013/12/men-are-map-readers-and-women-are.html (accessed 4 November 2018); https://blogs.bio medcentral.com/on-biology/2013/12/12/lets-talk-about-sex/ • 66. G. Ridgway, ‘Illustrative effect sizes for sex differences’, Figshare, 3 December 2013, https://figshare.com/articles/Illustrative_effect_sizes_for_sex_differences/866802 (accessed 4 November 2018). • 67. S. Connor, ‘The hardwired difference between male and female brains could explain why men are “better at map reading”’, Independent, 3 December 2013, https://www.independent.co.uk/life-style/the-hardwired-difference-between-male-and-female-brains-could-explainwhy-men-are-better-at-map-8978248.html (accessed 4 November 2018); J. Naish, ‘Men’s and women’s brains: the truth!’, Mail Online, 5 December 2013, https://www.dailymail.co.uk/femail/article-2518327/Mens-womensbrains-truth-As-research-proves-sexes-brains-ARE-wired-differentlywomens-cleverer-ounce-ounce – men-read-female-feelings.html (accessed 4 November 2018). • 68. C. O’Connor and H. Joffe, ‘Gender on the Brain: A Case Study of Science Communication in the New Media Environment’, PLoS One 9:10 (2014), e110830.
Глава 5
Мозг двадцать первого столетия
1. K. J. Friston, ‘The Fantastic Organ’, Brain 136:4 (2013), pp. 1328–32. • 2. N. K. Logothetis, ‘The Ins and Outs of fMRI Signals’, Nature Neuroscience 10:10 (2007), p. 1230. • 3. K. J. Friston, ‘Functional and Effective Connectivity: A Review’, Brain Connectivity 1:1 (2011), pp. 13–36. • 4. Y. Assaf and O. Pasternak, ‘Diffusion Tensor Imaging (DTI)-Based White Matter Mapping in Brain Research: A Review’, Journal of Molecular Neuroscience 34:1 (2008), pp. 51–61. • 5. A. Holtmaat and K. Svoboda, ‘Experience-Dependent Structural Synaptic Plasticity in the Mammalian Brain’, Nature Reviews Neuroscience 10:9 (2009), p. 647. • 6. A. Razi and K. J. Friston, ‘The Connected Brain: Causality, Models, and Intrinsic Dynamics’, IEEE Signal Processing Magazine 33:3 (2016), pp. 14–35. • 7. A. von Stein and J. Sarnthein, ‘Different Frequencies for Different Scales of Cortical Integration: From Local Gamma to Long Range Alpha/Theta Synchronization’, International Journal of Psychophysiology 38:3 (2000), pp. 301–13. • 8. S. Baillet, ‘Magnetoencephalography for Brain Electrophysiology and Imaging’, Nature Neuroscience 20:3 (2017), p. 327. • 9. W. D. Penny, S. J. Kiebel, J. M. Kilner and M. D. Rugg, ‘Event-Related Brain Dynamics’, Trends in Neurosciences 25:8 (2002), pp. 387–9. • 10. K. Kessler, R. A. Seymour and G. Rippon, ‘Brain Oscillations and Connectivity in Autism Spectrum Disorders (ASD): New Approaches to Methodology, Measurement and Modelling’, Neuroscience and Biobehavioral Reviews 71 (2016), pp. 601–20. • 11. S. E. Fisher, ‘Translating the Genome in Human Neuroscience’, in G. Marcus and J. Freeman (eds), The Future of the Brain: Essays by the World’s Leading Neuroscientists (Princeton, NJ, Princeton University Press, 2015), pp. 149–58. • 12. S. R. Chamberlain, U. Müller, A. D. Blackwell, L. Clark, T. W. Robbins and B. J. Sahakian, ‘Neurochemical Modulation of Response Inhibition and Probabilistic Learning in Humans’, Science 311:5762 (2006), pp. 861–3. • 13. C. Eliasmith, ‘Building a Behaving Brain’, in Marcus and Freeman (eds), The Future of the Brain, pp. 125–36. • 14. A. Zador, ‘The Connectome as a DNA Sequencing Problem’, in Marcus and Freeman (eds), The Future of the Brain, 2015), pp. 40–49, at p. 46. • 15. J. W. Lichtman, J. Livet and J. R. Sanes, ‘A Technicolour Approach to the Connectome’, Nature Reviews Neuroscience 9:6 (2008), p. 417. • 16. G. Bush, P. Luu and M. I. Posner, ‘Cognitive and Emotional Influences in Anterior Cingulate Cortex’, Trends in Cognitive Sciences 4:6 (2000), pp. 215–22. • 17. M. Alper, ‘The “God” Part of the Brain: A Scientific Interpretation of Human Spirituality and God’ (Naperville, IL, Sourcebooks, 2008). • 18. J. H. Barkow, L. Cosmides and J. Tooby (eds), The Adapted Mind: Evolutionary Psychology and the Generation of Culture (New York, Oxford University Press, 1992). • 19. Penny et al., ‘Event-Related Brain Dynamics’. • 20. G. Shen, T. Horikawa, K. Majima and Y. Kamitani, ‘Deep Image Reconstruction from Human Brain Activity’, bioRxiv (2017), 240317. • 21. R. A. Thompson and C. A. Nelson, ‘Developmental Science and the Media: Early Brain Development’, American Psychologist 56:1 (2001), pp. 5–15. • 22. Thompson and Nelson, ‘Developmental Science and the Media’, p. 5. • 23. A. May, ‘Experience-Dependent Structural Plasticity in the Adult Human Brain’, Trends in Cognitive Sciences 15:10 (2011), pp. 475–82. • 24. Y. Chang, ‘Reorganization and Plastic Changes of the Human Brain Associated with Skill Learning and Expertise’, Frontiers in Human Neuroscience 8 (2014), art. 35. • 25. B. Draganski and A. May, ‘Training-Induced Structural Changes in the Adult Human Brain’, Behavioural Brain Research 192:1 (2008), pp. 137–42. • 26. E. A. Maguire, D. G. Gadian, I. S. Johnsrude, C. D. Good, J. Ashburner, R. S. Frackowiak and C. D. Frith, ‘Navigation-Related Structural Change in the Hippocampi of Taxi Drivers’, Proceedings of the National Academy of Sciences 97:8 (2000), pp. 4398–403; K. Woollett, H. J. Spiers and E. A. Maguire, ‘Talent in the Taxi: A Model System for Exploring Expertise’, Philosophical Transactions of the Royal Society B: Biological Sciences 364:1522 (2009), pp. 1407–16. • 27. M. S. Terlecki and N. S. Newcombe, ‘How Important Is the Digital Divide? The Relation of Computer and Videogame Usage to Gender Differences in Mental Rotation Ability’, Sex Roles 53:5–6 (2005), pp. 433–41. • 28. R. J. Haier, S. Karama, L. Leyba and R. E. Jung, ‘MRI Assessment of Cortical Thickness and Functional Activity Changes in Adolescent Girls Following Three Months of Practice on a Visual-Spatial Task’, BMC Research Notes 2:1 (2009), p. 174. • 29. S. Kühn, T. Gleich, R. C. Lorenz, U. Lindenberger and J. Gallinat, ‘Playing Super Mario Induces Structural Brain Plasticity: Gray Matter Changes Resulting from Training with a Commercial Video Game’, Molecular Psychiatry 19:2 (2014), p. 265. • 30. N. Jaušovec and K. Jaušovec, ‘Sex Differences in Mental Rotation and Cortical Activation Patterns: Can Training Change Them?’, Intelligence 40:2 (2012), pp. 151–62. • 31. A. Clark, ‘Whatever Next? Predictive Brains, Situated Agents, and the Future of Cognitive Science’, Behavioral and Brain Sciences 36:3 (2013), pp. 181–204; E. Pellicano and D. Burr, ‘When the World Becomes “Too Real”: A Bayesian Explanation of Autistic Perception’, Trends in Cognitive Sciences 16:10 (2012), pp. 504–10. • 32. D. I. Tamir and M. A. Thornton, ‘Modeling the Predictive Social Mind’, Trends in Cognitive Sciences 22:3 (2018), pp. 201–12. • 33. A. Clark, Surfing Uncertainty: Prediction, Action, and the Embodied Mind (New York, Oxford University Press, 2015); Clark, ‘Whatever Next?’; D. D. Hutto, ‘Getting into Predictive Processing’s Great Guessing Game: Bootstrap Heaven or Hell?’, Synthese 195:6 (2018), pp. 2445–8. • 34. The Invisible Gorilla, http://www.theinvisiblegorilla.com/videos.html (accessed 4 November 2018). • 35. L. F. Barrett and J. Wormwood, ‘When a gun is not a gun’, New York Times, 17 April 2015, https://www.nytimes.com/2015/04/19/opinion/sunday/when-a-gun-is-not-a-gun.html (accessed 4 November 2018). • 36. Kessler et al., ‘Brain Oscillations and Connectivity in Autism Spectrum Disorders (ASD)’. • 37. E. Hunt, ‘Tay, Microsoft’s AI chatbot, gets a crash course in racism from Twitter’, Guardian, 24 March 2016, https://www.theguardian.com/technology/2016/mar/24/tay-microsofts-ai-chatbot-gets-a-crash-course-in-racism-from-twitter (accessed 4 November 2018); I. Johnston, ‘AI robots learning racism, sexism and other prejudices from humans, study finds’, Independent, 13 April 2017, https://www.independent.co.uk/life-style/gadgets-and-tech/news/ai-robots-artificialintelligence-racism-sexism-prejudice-bias-language-learn-from-humans-a7683161.html (accessed 4 November 2018). • 38. Y. LeCun, Y. Bengio and G. Hinton, ‘Deep Learning’, Nature 521:7553 (2015), p. 436; R. D. Hof, ‘Deep learning’, MIT Technology Review, https://www.technologyreview.com/s/513696/deep-learning (accessed 4 November 2018). • 39. T. Simonite, ‘Machines taught by photos learn a sexist view of women’, Wired, 21 August 2017, https://www.wired.com/story/machines-taught-by-photos-learn-a-sexistview-of-women (accessed 4 November 2018). • 40. J. Zhao, T. Wang, M. Yatskar, V. Ordonez and K. W. Chang, ‘Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus-Level Constraints’, arXiv:1707.09457, 29 July 2017. • 41. R. I. Dunbar, ‘The Social Brain Hypothesis’, Evolutionary Anthropology: Issues, News, and Reviews 6:5 (1998), pp. 178–90. • 42. U. Frith and C. Frith, ‘The Social Brain: Allowing Humans to Boldly Go Where No Other Species Has Been’, Philosophical Transactions of the Royal Society B: Biological Sciences 365:1537 (2010), pp. 165–76.
Глава 6
Социальный мозг
1. M. D. Lieberman, Social: Why Our Brains Are Wired to Connect (Oxford, Oxford University Press, 2013). • 2. R. Adolphs, ‘Investigating the Cognitive Neuroscience of Human Social Behavior’, Neuropsychologia 41:2 (2003), pp. 119–26; D. M. Amodio, E. Harman-Jones, P. G. Devine, J. J. Curtin, S. L. Hartley and A. E. Covert, ‘Neural Signals for the Detection of Unintentional Race Bias’, Psychological Science 15:2 (2004), pp. 88–93. • 3. D. I. Tamir and M. A. Thornton, ‘Modeling the Predictive Social Mind’, Trends in Cognitive Sciences 22:3 (2018), pp. 201–12; P. Hinton, ‘Implicit Stereotypes and the Predictive Brain: Cognition and Culture in “Biased” Person Perception’, Palgrave Communications 3 (2017), 17086. • 4. Frith and Frith, ‘The Social Brain: Allowing Humans to Boldly Go Where No Other Species Has Been’, pp. 165–76. • 5. P. Adjamian, A. Hadjipapas, G. R. Barnes, A. Hillebrand and I. E. Holliday, ‘Induced Gamma Activity in Primary Visual Cortex Is Related to Luminance and Not Color Contrast: An MEG Study’, Journal of Vision 8:7 (2008), art. 4. • 6. M. V. Lombardo, J. L. Barnes, S. J. Wheelwright and S. Baron-Cohen, ‘Self-Referential Cognition and Empathy in Autism’, PLoS One 2:9 (2007), e883. • 7. T. Singer, ‘The Neuronal Basis and Ontogeny of Empathy and Mind Reading: Review of Literature and Implications for Future Research’, Neuroscience and Biobehavioral Reviews 30:6 (2006), pp. 855–63. • 8. C. D. Frith, ‘The Social Brain?’, Philosophical Transactions of the Royal Society B: Biological Sciences, 362:1480 (2007), pp. 671–8. • 9. R. Adolphs, D. Tranel and A. R. Damasio, ‘The Human Amygdala in Social Judgment’, Nature 393:6684 (1998), p. 470. • 10. A. J. Hart, P. J. Whalen, L. M. Shin, S. C. McInerney, H. Fischer and S. L. Rauch, ‘Differential Response in the Human Amygdala to Racial Outgroup vs Ingroup Face Stimuli’, Neuroreport 11:11 (2000), pp. 2351–4. • 11. D. M. Amodio and C. D. Frith, ‘Meeting of Minds: The Medial Frontal Cortex and Social Cognition’, Nature Reviews Neuroscience 7:4 (2006), p. 268. • 12. Там же. • 13. Там же. • 14. S. J. Gillihan and M. J. Farah, ‘Is Self Special? A Critical Review of Evidence from Experimental Psychology and Cognitive Neuroscience’, Psychological Bulletin 131:1 (2005), p. 76. • 15. D. A. Gusnard, E. Akbudak, G. L. Shulman and M. E. Raichle, ‘Medial Prefrontal Cortex and Self-Referential Mental Activity: Relation to a Default Mode of Brain Function’, Proceedings of the National Academy of Sciences 98:7 (2001), pp. 4259–64; R. B. Mars, F. X. Neubert, M. P. Noonan, J. Sallet, I. Toni and M. F. Rushworth, ‘On the Relationship between the “Default Mode Network” and the “Social Brain”’, Frontiers in Human Neuroscience 6 (2012), p. 189. • 16. N. I. Eisenberger, M. D. Lieberman and K. D. Williams, ‘Does Rejection Hurt? An fMRI Study of Social Exclusion’, Science 302:5643 (2003), pp. 290–92. • 17. N. I. Eisenberger, T. K. Inagaki, K. A. Muscatell, K. E. Byrne Haltom and M. R. Leary, ‘The Neural Sociometer: Brain Mechanisms Underlying State Self-Esteem’, Journal of Cognitive Neuroscience 23:11 (2011), pp. 3448–55. • 18. L. H. Somerville, T. F. Heatherton and W. M. Kelley, ‘Anterior Cingulate Cortex Responds Differentially to Expectancy Violation and Social Rejection’, Nature Neuroscience 9:8 (2006), p. 1007. • 19. T. Dalgleish, N. D. Walsh, D. Mobbs, S. Schweizer, A-L. van Harmelen, B. Dunn, V. Dunn, I. Goodyer and J. Stretton, ‘Social Pain and Social Gain in the Adolescent Brain: A Common Neural Circuitry Underlying Both Positive and Negative Social Evaluation’, Scientific Reports 7 (2017), 42010. • 20. N. I. Eisenberger and M. D. Lieberman, ‘Why Rejection Hurts: A Common Neural Alarm System for Physical and Social Pain’, Trends in Cognitive Sciences 8:7 (2004), pp. 294–300. • 21. M. R. Leary, E. S. Tambor, S. K. Terdal and D. L. Downs, ‘Self-Esteem as an Interpersonal Monitor: The Sociometer Hypothesis’, Journal of Personality and Social Psychology 68:3 (1995), p. 518. • 22. M. M. Botvinick, J. D. Cohen and C. S. Carter, ‘Conflict Monitoring and Anterior Cingulate Cortex: An Update’, Trends in Cognitive Sciences 8:12 (2004), pp. 539–46. • 23. Botvinick et al., ‘Conflict Monitoring and Anterior Cingulate Cortex’. • 24. A. D. Craig, ‘How Do You Feel – Now? The Anterior Insula and Human Awareness’, Nature Reviews Neuroscience, 10:1 (2009), pp. 59–70. • 25. Там же. • 26. Eisenberger et al., ‘The Neural Sociometer’. • 27. K. Onoda, Y. Okamoto, K. I. Nakashima, H. Nittono, S. Yoshimura, S. Yamawaki, S. Yamaguchi and M. Ura, ‘Does Low Self-Esteem Enhance Social Pain? The Relationship between Trait Self-Esteem and Anterior Cingulate Cortex Activation Induced by Ostracism’, Social Cognitive and Affective Neuroscience 5:4 (2010), pp. 385–91. • 28. J. P. Bhanji and M. R. Delgado, ‘The Social Brain and Reward: Social Information Processing in the Human Striatum’, Wiley Interdisciplinary Reviews: Cognitive Science 5:1 (2014), pp. 61–73. • 29. S. Bray and J. O’Doherty, ‘Neural Coding of Reward-Prediction Error Signals during Classical Conditioning with Attractive Faces’, Journal of Neurophysiology 97:4 (2007), pp. 3036–45. • 30. D. A. Hackman and M. J. Farah, ‘Socioeconomic Status and the Developing Brain’, Trends in Cognitive Sciences 13:2 (2009), pp. 65–73. • 31. P. J. Gianaros, J. A. Horenstein, S. Cohen, K. A. Matthews, S. M. Brown, J. D. Flory, H. D. Critchley, S. B. Manuck and A. R. Hariri, ‘Perigenual Anterior Cingulate Morphology Covaries with Perceived Social Standing’, Social Cognitive and Affective Neuroscience 2:3 (2007), pp. 161–73. • 32. O. Longe, F. A. Maratos, P. Gilbert, G. Evans, F. Volker, H. Rockliff and G. Rippon, ‘Having a Word with Yourself: Neural Correlates of Self-Criticism and Self-Reassurance’, NeuroImage 49:2 (2010), pp. 1849–56. • 33. B. T. Denny, H. Kober, T. D. Wager and K. N. Ochsner, ‘A Meta-analysis of Functional Neuroimaging Studies of Self- and Other Judgments Reveals a Spatial Gradient for Mentalizing in Medial Prefrontal Cortex’, Journal of Cognitive Neuroscience 24:8 (2012), pp. 1742–52. • 34. H. Tajfel, ‘Social Psychology of Intergroup Relations’, Annual Review of Psychology 33 (1982), pp. 1–39. • 35. P. Molenberghs, ‘The Neuroscience of In-Group Bias’, Neuroscience and Biobehavioral Reviews 37:8 (2013), pp. 1530–36. • 36. J. K. Rilling, J. E. Dagenais, D. R. Goldsmith, A. L. Glenn and G. Pagnoni, ‘Social Cognitive Neural Networks during In-Group and Out-Group Interactions’, NeuroImage 41:4 (2008), pp. 1447–61. • 37. C. Frith and U. Frith, ‘Theory of Mind’, Current Biology 15:17 (2005), pp. R644–5; D. Premack and G. Woodruff, ‘Does the Chimpanzee Have a Theory of Mind?’, Behavioral and Brain Sciences 1:4 (1978), pp. 515–26. • 38. Amodio and Frith, ‘Meeting of Minds’. • 39. V. Gallese and A. Goldman, ‘Mirror Neurons and the Simulation Theory of Mind-Reading’, Trends in Cognitive Sciences 2:12 (1998), pp. 493–501. • 40. M. Schulte-Rüther, H. J. Markowitsch, G. R. Fink and M. Pief ke, ‘Mirror Neuron and Theory of Mind Mechanisms Involved in Face-to-Face Interactions: A Functional Magnetic Resonance Imaging Approach to Empathy’, Journal of Cognitive Neuroscience 19:8 (2007), pp. 1354–72. • 41. S. G. Shamay-Tsoory, J. Aharon-Peretz and D. Perry, ‘Two Systems for Empathy: A Double Dissociation between Emotional and Cognitive Empathy in Inferior Frontal Gyrus versus Ventromedial Prefrontal Lesions’, Brain 132:3 (2009), pp. 617–27. • 42. M. Iacoboni and J. C. Mazziotta, ‘Mirror Neuron System: Basic Findings and Clinical Applications’, Annals of Neurology 62:3 (2007), pp. 213–18; M. Iacoboni, ‘Imitation, Empathy, and Mirror Neurons’, Annual Review of Psychology 60 (2009), pp. 653–70. • 43. J. M. Contreras, M. R. Banaji and J. P. Mitchell, ‘Dissociable Neural Correlates of Stereotypes and Other Forms of Semantic Knowledge’, Social Cognitive and Affective Neuroscience 7:7 (2011), pp. 764–70. • 44. S. J. Spencer, C. M. Steele and D. M. Quinn, ‘Stereotype Threat and Women’s Math Performance’, Journal of Experimental Social Psychology 35:1 (1999), pp. 4–28; T. Schmader, ‘Gender Identification Moderates Stereotype Threat Effects on Women’s Math Performance’, Journal of Experimental Social Psychology 38:2 (2002), pp. 194–201. • 45. T. Schmader, M. Johns and C. Forbes, ‘An Integrated Process Model of Stereotype Threat Effects on Performance’, Psychological Review 115:2 (2008), p. 336. • 46. M. Wraga, M. Helt, E. Jacobs and K. Sullivan, ‘Neural Basis of Stereotype-Induced Shifts in Women’s Mental Rotation Performance’, Social Cognitive and Affective Neuroscience 2:1 (2007), pp. 12–19. • 47. M. Wraga, L. Duncan, E. C. Jacobs, M. Helt and J. Church, ‘Stereotype Susceptibility Narrows the Gender Gap in Imagined Self-Rotation Performance’, Psychonomic Bulletin and Review 13:5 (2006), pp. 813–19. • 48. Wraga et al., ‘Neural Basis of Stereotype-Induced Shifts’. • 49. H. J. Spiers, B. C. Love, M. E. Le Pelley, C. E. Gibb and R. A. Murphy, ‘Anterior Temporal Lobe Tracks the Formation of Prejudice’, Journal of Cognitive Neuroscience 29:3 (2017), pp. 530–44; R. I. Dunbar, ‘The Social Brain Hypothesis’, Evolutionary Anthropology: Issues, News, and Reviews 6:5 (1998), pp. 178–90. • 50. Dunbar, ‘The Social Brain Hypothesis’. • 51. J. Stiles, ‘Neural Plasticity and Cognitive Development’, Developmental Neuropsychology 18:2 (2000), pp. 237–72.
Глава 7
Малыш и мозг: начинаем с начала (или даже еще раньше)
1. J. Connellan, S. Baron-Cohen, S. Wheelwright, A. Batki and J. Ahluwalia, ‘Sex Differences in Human Neonatal Social Perception’, Infant Behavior and Development 23:1 (2000), pp. 113–18. • 2. Y. Minagawa-Kawai, K. Mori, J. C. Hebden and E. Dupoux, ‘Optical Imaging of Infants’ Neurocognitive Development: Recent Advances and Perspectives’, Developmental Neurobiology 68:6 (2008), pp. 712–28. • 3. C. Clouchoux, N. Guizard, A. C. Evans, A. J. du Plessis and C. Limperopoulos, ‘Normative Fetal Brain Growth by Quantitative In Vivo Magnetic Resonance Imaging’, American Journal of Obstetrics and Gynecology 206:2 (2012), pp. 173.e1–8. • 4. J. Dubois, G. Dehaene-Lambertz, S. Kulikova, C. Poupon, P. S. Hüppi and L. Hertz-Pannier, ‘The Early Development of Brain White Matter: A Review of Imaging Studies in Fetuses, Newborns and Infants’, Neuroscience 276 (2014), pp. 48–71. • 5. M. I. van den Heuvel and M. E. Thomason, ‘Functional Connectivity of the Human Brain In Utero’, Trends in Cognitive Sciences 20:12 (2016), pp. 931–9. • 6. J. Dubois, M. Benders, C. Borradori-Tolsa, A. Cachia, F. Lazeyras, R. Ha-Vinh Leuchter, S. V. Sizonenko, S. K. Warfield, J. F. Mangin and P. S. Hüppi, ‘Primary Cortical Folding in the Human Newborn: An Early Marker of Later Functional Development’, Brain 131:8 (2008), pp. 2028–41. • 7. D. Holland, L. Chang, T. M. Ernst, M. Curran, S. D. Buchthal, D. Alicata, J. Skranes, H. Johansen, A. Hernandez, R. Yamakawa and J. M. Kuperman, ‘Structural Growth Trajectories and Rates of Change in the First 3 Months of Infant Brain Development’, JAMA Neurology 71:10 (2014), pp. 1266–74. • 8. G. M. Innocenti and D. J. Price, ‘Exuberance in the Development of Cortical Networks’, Nature Reviews Neuroscience 6:12 (2005), p. 955. • 9. Holland et al., ‘Structural Growth Trajectories’. • 10. J. Stiles and T. L. Jernigan, ‘The Basics of Brain Development’, Neuropsychology Review 20:4 (2010), pp. 327–48. • 11. S. Jessberger and F. H. Gage, ‘Adult Neurogenesis: Bridging the Gap between Mice and Humans’, Trends in Cell Biology 24:10 (2014), pp. 558–63. • 12. W. Gao, S. Alcauter, J. K. Smith, J. H. Gilmore and W. Lin, ‘Development of Human Brain Cortical Network Architecture during Infancy’, Brain Structure and Function 220:2 (2015), pp. 1173–86. • 13. Dubois et al., ‘The Early Development of Brain White Matter’. • 14. B. J. Casey, N. Tottenham, C. Liston and S. Durston, ‘Imaging the Developing Brain: What Have We Learned about Cognitive Development?’, Trends in Cognitive Sciences 9:3 (2005), pp. 104–10. • 15. Holland et al., ‘Structural Growth Trajectories’. • 16. J. H. Gilmore, W. Lin, M. W. Prastawa, C. B. Looney, Y. S. K. Vetsa, R. C. Knickmeyer, D. D. Evans, J. K. Smith, R. M. Hamer, J. A. Lieberman and G. Gerig, ‘Regional Gray Matter Growth, Sexual Dimorphism, and Cerebral Asymmetry in the Neonatal Brain’, Journal of Neuroscience 27:6 (2007), pp. 1255–60. • 17. R. C. Knickmeyer, J. Wang, H. Zhu, X. Geng, S. Woolson, R. M. Hamer, T. Konneker, M. Styner and J. H. Gilmore, ‘Impact of Sex and Gonadal Steroids on Neonatal Brain Structure’, Cerebral Cortex 24:10 (2013), pp. 2721–31. • 18. R. K. Lenroot and J. N. Giedd, ‘Brain Development in Children and Adolescents: Insights from Anatomical Magnetic Resonance Imaging’, Neuroscience and Biobehavioral Reviews 30:6 (2006), pp. 718–29. • 19. D. F. Halpern, L. Eliot, R. S. Bigler, R. A. Fabes, L. D. Hanish, J. Hyde, L. S. Liben and C. L. Martin, ‘The Pseudoscience of Single-Sex Schooling’, Science 333:6050 (2011), pp. 1706–7. • 20. G. Dehaene-Lambertz and E. S. Spelke, ‘The Infancy of the Human Brain’, Neuron 88:1 (2015), pp. 93–109. • 21. Gilmore et al., ‘Regional Gray Matter Growth’. • 22. G. Li, J. Nie, L. Wang, F. Shi, A. E. Lyall, W. Lin, J. H. Gilmore and D. Shen, ‘Mapping Longitudinal Hemispheric Structural Asymmetries of the Human Cerebral Cortex from Birth to 2 Years of Age’, Cerebral Cortex 24:5 (2013), pp. 1289–300. • 23. Там же., p. 1298. • 24. N. Geschwind and A. M. Galaburda, ‘Cerebral Lateralization: Biological Mechanisms, Associations, and Pathology – I. A Hypothesis and a Program for Research’, Archives of Neurology 42:5 (1985), pp. 428–59. • 25. Knickmeyer et al., ‘Impact of Sex and Gonadal Steroids’, p. 2721. • 26. Van den Heuvel and Thomason, ‘Functional Connectivity of the Human Brain In Utero’. • 27. Gao et al., ‘Development of Human Brain Cortical Network Architecture’. • 28. H. T. Chugani, M. E. Behen, O. Muzik, C. Juhász, F. Nagy and D. C. Chugani, ‘Local Brain Functional Activity Following Early Deprivation: A Study of Postinstitutionalized Romanian Orphans’, NeuroImage 14:6 (2001), pp. 1290–301. • 29. C. H. Zeanah, C. A. Nelson, N. A. Fox, A. T. Smyke, P. Marshall, S. W. Parker and S. Koga, ‘Designing Research to Study the Effects of Institutionalization on Brain and Behavioral Development: The Bucharest Early Intervention Project’, Development and Psychopathology 15:4 (2003), pp. 885–907. • 30. K. Chisholm, M. C. Carter, E. W. Ames and S. J. Morison, ‘Attachment Security and Indiscriminately Friendly Behavior in Children Adopted from Romanian Orphanages’, Development and Psychopathology 7:2 (1995), pp. 283–94. • 31. Chugani et al., ‘Local Brain Functional Activity’; T. J. Eluvathingal, H. T Chugani, M. E. Behen, C. Juhász, O. Muzik, M. Maqbool, D. C. Chugani and M. Makki, ‘Abnormal Brain Connectivity in Children after Early Severe Socioemotional Deprivation: A Diffusion Tensor Imaging Study’, Pediatrics 117:6 (2006), pp. 2093–100. • 32. M. A. Sheridan, N. A. Fox, C. H. Zeanah, K. A. McLaughlin and C. A. Nelson, ‘Variation in Neural Development as a Result of Exposure to Institutionalization Early in Childhood’, Proceedings of the National Academy of Sciences 109:32 (2012), pp. 12927–32. • 33. N. Tottenham, T. A. Hare, B. T. Quinn, T. W. McCarry, M. Nurse, T. Gilhooly, A. Millner, A. Galvan, M. C. Davidson, I. M. Eigsti, K. M. Thomas, P. J. Freed, E. S. Booma, M. R. Gunnar, M. Altemus, J. Aronson and B. J. Casey, ‘Prolonged Institutional Rearing Is Associated with Atypically Large Amygdala Volume and Difficulties in Emotion Regulation’, Developmental Science 13:1 (2010), pp. 46–61. • 34. N. D. Walsh, T. Dalgleish, M. V. Lombardo, V. J. Dunn, A. L. Van Harmelen, M. Ban and I. M. Goodyer, ‘General and Specific Effects of Early-Life Psychosocial Adversities on Adolescent Grey Matter Volume’, NeuroImage: Clinical 4 (2014), pp. 308–18; P. Tomalski and M. H. Johnson, ‘The Effects of Early Adversity on the Adult and Developing Brain’, Current Opinion in Psychiatry 23:3 (2010), pp. 233–8. • 35. M. H. Johnson and M. de Haan, Developmental Cognitive Neuroscience: An Introduction, 4th edn (Chichester, Wiley-Blackwell, 2015). • 36. G. A. Ferrari, Y. Nicolini, E. Demuru, C. Tosato, M. Hussain, E. Scesa, L. Romei, M. Boerci, E. Iappini, G. Dalla Rosa Prati and E. Palagi, ‘Ultrasonographic Investigation of Human Fetus Responses to Maternal Communicative and Non-communicative Stimuli’, Frontiers in Psychology 7 (2016), p. 354. • 37. M. Huotilainen, A. Kujala, M. Hotakainen, A. Shestakova, E. Kushnerenko, L. Parkkonen, V. Fellman and R. Näätänen, ‘Auditory Magnetic Responses of Healthy Newborns’, Neuroreport 14:14 (2003), pp. 1871–5. • 38. A. R. Webb, H. T. Heller, C. B. Benson and A. Lahav, ‘Mother’s Voice and Heartbeat Sounds Elicit Auditory Plasticity in the Human Brain before Full Gestation’, Proceedings of the National Academy of Sciences 112:10 (2015), 201414924. • 39. A. J. DeCasper and W. P. Fifer, ‘Of Human Bonding: Newborns Prefer Their Mothers’ Voices’, Science 208:4448 (1980), pp. 1174–6. • 40. M. Mahmoudzadeh, F. Wallois, G. Kongolo, S. Goudjil and G. Dehaene-Lambertz, ‘Functional Maps at the Onset of Auditory Inputs in Very Early Preterm Human Neonates’, Cerebral Cortex 27:4 (2017), pp. 2500–12. • 41. P. Vannasing, O. Florea, B. González-Frankenberger, J. Tremblay, N. Paquette, D. Safi, F. Wallois, F. Lepore, R. Béland, M. Lassonde and A. Gallagher, ‘Distinct Hemispheric Specializations for Native and Non-native Languages in One-Day-Old Newborns Identified by fNIRS’, Neuropsychologia 84 (2016), pp. 63–9. • 42. Y. Cheng, S. Y. Lee, H. Y. Chen, P. Y. Wang and J. Decety, ‘Voice and Emotion Processing in the Human Neonatal Brain’, Journal of Cognitive Neuroscience 24:6 (2012), pp. 1411–19. • 43. A. Schirmer and S. A. Kotz, ‘Beyond the Right Hemisphere: Brain Mechanisms Mediating Vocal Emotional Processing’, Trends in Cognitive Sciences 10:1 (2006), pp. 24–30. • 44. E. V. Kushnerenko, B. R. Van den Bergh and I. Winkler, ‘Separating Acoustic Deviance from Novelty during the First Year of Life: A Review of Event-Related Potential Evidence’, Frontiers in Psychology 4 (2013), p. 595. • 45. M. Rivera-Gaxiola, G. Csibra, M. H. Johnson and A. Karmiloff-Smith, ‘Electrophysiological Correlates of Cross-linguistic Speech Perception in Native English Speakers’, Behavioural Brain Research 111:1–2 (2000), pp. 13–23. • 46. M. Rivera-Gaxiola, J. Silva-Pereyra and P. K. Kuhl, ‘Brain Potentials to Native and Non-native Speech Contrasts in 7- and 11-Month-Old American Infants’, Developmental Science 8:2 (2005), pp. 162–72. • 47. K. R. Dobkins, R. G. Bosworth and J. P. McCleery, ‘Effects of Gestational Length, Gender, Postnatal Age, and Birth Order on Visual Contrast Sensitivity in Infants’, Journal of Vision 9:10 (2009), art. 19. • 48. F. Thorn, J. Gwiazda, A. A. Cruz, J. A. Bauer and R. Held, ‘The Development of Eye Alignment, Convergence, and Sensory Binocularity in Young Infants’, Investigative Ophthalmology and Visual Science 35:2 (1994), pp. 544–53. • 49. Dobkins et al., ‘Effects of Gestational Length’. • 50. T. Farroni, E. Valenza, F. Simion and C. Umiltà, ‘Configural Processing at Birth: Evidence for Perceptual Organisation’, Perception 29:3 (2000), pp. 355–72; Thorn et al., ‘The Development of Eye Alignment’. • 51. Thorn et al., ‘The Development of Eye Alignment’. • 52. R. Held, F. Thorn, J. Gwiazda and J. Bauer, ‘Development of Binocularity and Its Sexual Differentiation’, in F. Vital-Durand, J. Atkinson and O. J. Braddick (eds), Infant Vision (Oxford, Oxford University Press, 1996), pp. 265–74. • 53. M. C. Morrone, C. D. Burr and A. Fiorentini, ‘Development of Contrast Sensitivity and Acuity of the Infant Colour System’, Proceedings of the Royal Society B: Biological Sciences 242:1304 (1990), pp. 134–9. • 54. T. Farroni, G. Csibra, F. Simion and M. H. Johnson, ‘Eye Contact Detection in Humans from Birth’, Proceedings of the National Academy of Sciences 99:14 (2002), pp. 9602–5. • 55. A. Frischen, A. P. Bayliss and S. P. Tipper, ‘Gaze Cueing of Attention: Visual Attention, Social Cognition, and Individual Differences’, Psychological Bulletin 133:4 (2007), p. 694. • 56. S. Hoehl and T. Striano, ‘Neural Processing of Eye Gaze and Threat-Related Emotional Facial Expressions in Infancy’, Child Development 79:6 (2008), pp. 1752–60. • 57. T. Grossmann and M. H. Johnson, ‘Selective Prefrontal Cortex Responses to Joint Attention in Early Infancy’, Biology Letters 6:4 (2010), pp. 540–43. • 58. T. Grossmann, ‘The Role of Medial Prefrontal Cortex in Early Social Cognition’, Frontiers in Human Neuroscience 7 (2013), p. 340. • 59. E. Nagy, ‘The Newborn Infant: A Missing Stage in Developmental Psychology’, Infant and Child Development, 20:1 (2011) pp. 3–19. • 60. J. N. Constantino, S. Kennon-McGill, C. Weichselbaum, N. Marrus, A. Haider, A. L. Glowinski, S. Gillespie, C. Klaiman, A. Klin and W. Jones, ‘Infant Viewing of Social Scenes Is under Genetic Control and Is Atypical in Autism’, Nature 547:7663 (2017), p. 340. • 61. J. H. Hittelman and R. Dickes, ‘Sex Differences in Neonatal Eye Contact Time’, Merrill-Palmer Quarterly of Behavior and Development 25:3 (1979), pp. 171–84. • 62. R. T. Leeb and F. G. Rejskind, ‘Here’s Looking at You, Kid! A Longitudinal Study of Perceived Gender Differences in Mutual Gaze Behavior in Young Infants’, Sex Roles 50:1–2 (2004), pp. 1–14. • 63. S. Lutchmaya, S. Baron-Cohen and P. Raggatt, ‘Foetal Testosterone and Eye Contact in 12-Month-Old Human Infants’, Infant Behavior and Development 25:3 (2002), pp. 327–35. • 64. A. Fausto-Sterling, D. Crews, J. Sung, C. García-Coll and R. Seifer, ‘Multimodal Sex-Related Differences in Infant and in Infant-Directed Maternal Behaviors during Months Three through Twelve of Development’, Developmental Psychology 51:10 (2015), p. 1351.
Глава 8
Поаплодируем малышам!
1. D. Joel, ‘Genetic-Gonadal-Genitals Sex (3G-Sex) and the Misconception of Brain and Gender, or, Why 3G-Males and 3G-Females Have Intersex Brain and Intersex Gender’, Biology of Sex Differences 3:1 (2012), p. 27. • 2. C. Cummings and K. Trang, ‘Sex/Gender, Part I: Why Now?’, Somatosphere, 10 March 2016, http://somatosphere.net/2016/03/sexgender-part-1-whynow.html (accessed 7 November 2018). • 3. A. Fausto-Sterling, C. G. Coll and M. Lamarre, ‘Sexing the Baby, Part 2: Applying Dynamic Systems Theory to the Emergences of Sex-Related Differences in Infants and Toddlers’, Social Science and Medicine 74:11 (2012), pp. 1693–702. • 4. C. Smith and B. Lloyd, ‘Maternal Behavior and Perceived Sex of Infant: Revisited’, Child Development 49:4 (1978), pp. 1263–5; E. R. Mondschein, K. E. Adolph and C. S. Tamis-LeMonda, ‘Gender Bias in Mothers’ Expectations about Infant Crawling’, Journal of Experimental Child Psychology 77:4 (2000), pp. 304–16. • 5. Holland et al., ‘Structural Growth Trajectories’. • 6. M. Pena, A. Maki, D. Kovac˘i ´ c, G. Dehaene-Lambertz, H. Koizumi, F. Bouquet and J. Mehler, ‘Sounds and Silence: An Optical Topography Study of Language Recognition at Birth’, Proceedings of the National Academy of Sciences 100:20 (2003), pp. 11702–5. • 7. P. Vannasing, O. Florea, B. González-Frankenberger, J. Tremblay, N. Paquette, D. Safi, F. Wallois, F. Lepore, R. Béland, M. Lassonde and A. Gallagher, ‘Distinct Hemispheric Specializations for Native and Non-native Languages in One-Day-Old Newborns Identified by fNIRS’, Neuropsychologia 84 (2016), pp. 63–9. • 8. T. Nazzi, J. Bertoncini and J. Mehler, ‘Language Discrimination by Newborns: Toward an Understanding of the Role of Rhythm’, Journal of Experimental Psychology: Human Perception and Performance 24:3 (1998), p. 756. • 9. M. H. Bornstein, C-S. Hahn and O. M. Haynes, ‘Specific and General Language Performance across Early Childhood: Stability and Gender Considerations’, First Language 24:3 (2004), pp. 267–304. • 10. K. Johnson, M. Caskey, K. Rand, R. Tucker and B. Vohr, ‘Gender Differences in Adult – Infant Communication in the First Months of Life’, Pediatrics 134:6 (2014), pp. e1603–10. • 11. A. D. Friederici, M. Friedrich and A. Christophe, Brain Responses in 4-Month-Old Infants Are Already Language Specific’, Current Biology 17:14 (2007), pp. 1208–11. • 12. Fausto-Sterling et al., ‘Sexing the Baby, Part 2’. • 13. V. Izard, C. Sann, E. S. Spelke and A. Streri, ‘Newborn Infants Perceive Abstract Numbers’, Proceedings of the National Academy of Sciences 106:25 (2009), pp. 10382–5. • 14. R. Baillargeon, ‘Infants’ Reasoning about Hidden Objects: Evidence for Event-General and Event-Specific Expectations’, Developmental Science 7:4 (2004), pp. 391–414. • 15. S. J. Hespos and K. vanMarle, ‘Physics for Infants: Characterizing the Origins of Knowledge about Objects, Substances, and Number’, Wiley Interdisciplinary Reviews: Cognitive Science 3:1 (2012), pp. 19–27. • 16. J. Connellan, S. Baron-Cohen, S. Wheelwright, A. Batki and J. Ahluwalia, ‘Sex Differences in Human Neonatal Social Perception’, Infant Behavior and Development 23:1 (2000), pp. 113–18. • 17. A. Nash and G. Grossi, ‘Picking Barbie™’s Brain: Inherent Sex Differences in Scientific Ability?’, Journal of Interdisciplinary Feminist Thought 2:1 (2007), p. 5. • 18. P. Escudero, R. A. Robbins and S. P. Johnson, ‘Sex-Related Preferences for Real and Doll Faces versus Real and Toy Objects in Young Infants and Adults’, Journal of Experimental Child Psychology 116:2 (2013), pp. 367–79. • 19. D. H. Uttal, D. I. Miller and N. S. Newcombe, ‘Exploring and Enhancing Spatial Thinking: Links to Achievement in Science, Technology, Engineering, and Mathematics?’, Current Directions in Psychological Science 22:5 (2013), pp. 367–73. • 20. D. Voyer, S. Voyer and M. P. Bryden, ‘Magnitude of Sex Differences in Spatial Abilities: A Meta-analysis and Consideration of Critical Variables’, Psychological Bulletin 117:2 (1995), p. 250. • 21. P. C. Quinn and L. S. Liben, ‘A Sex Difference in Mental Rotation in Young Infants’, Psychological Science 19:11 (2008), pp. 1067–70. • 22. E. S. Spelke, ‘Sex Differences in Intrinsic Aptitude for Mathematics and Science? A Critical Review’, American Psychologist 60:9 (2005), p. 950. • 23. I. Gauthier and N. K. Logothetis, ‘Is Face Recognition Not So Unique After All?’, Cognitive Neuropsychology 17:1–3 (2000), pp. 125–42. • 24. M. H. Johnson, ‘Subcortical Face Processing’, Nature Reviews Neuroscience 6:10 (2005), pp. 766–74. • 25. M. H. Johnson, A. Senju and P. Tomalski, ‘The Two-Process Theory of Face Processing: Modifications Based on Two Decades of Data from Infants and Adults’, Neuroscience and Biobehavioral Reviews 50 (2015), pp. 169–79. • 26. F. Simion and E. Di Giorgio, ‘Face Perception and Processing in Early Infancy: Inborn Predispositions and Developmental Changes’, Frontiers in Psychology 6 (2015), p. 969. • 27. V. M. Reid, K. Dunn, R. J. Young, J. Amu, T. Donovan and N. Reissland, ‘The Human Fetus Preferentially Engages with Face-like Visual Stimuli’, Current Biology 27:12 (2017), pp. 1825–8. • 28. S. J. McKelvie, ‘Sex Differences in Memory for Faces’, Journal of Psychology 107:1 (1981), pp. 109–25. • 29. C. Lewin and A. Herlitz, ‘Sex Differences in Face Recognition – Women’s Faces Make the Difference’, Brain and Cognition 50:1 (2002), pp. 121–8. • 30. A. Herlitz and J. Lovén, ‘Sex Differences and the Own-Gender Bias in Face Recognition: A Meta-analytic Review’, Visual Cognition 21:9–10 (2013), pp. 1306–36. • 31. J. Lovén, J. Svärd, N. C. Ebner, A. Herlitz and H. Fischer, ‘Face Gender Modulates Women’s Brain Activity during Face Encoding’, Social Cognitive and Affective Neuroscience 9:7 (2013), pp. 1000–1005. • 32. Leeb and Rejskind, ‘Here’s Looking at You, Kid!’. • 33.H. Hoffmann, H. Kessler, T. Eppel, S. Rukavina and H. C. Traue, ‘Expression Intensity, Gender and Facial Emotion Recognition: Women Recognize Only Subtle Facial Emotions Better than Men’, Acta Psychologica 135:3 (2010), pp. 278–83; A. E. Thompson and D. Voyer, ‘Sex Differences in the Ability to Recognise Non-verbal Displays of Emotion: A Meta-analysis’, Cognition and Emotion 28:7 (2014), pp. 1164–95. • 34. S. Baron-Cohen, S. Wheelwright, J. Hill, Y. Raste and I. Plumb, ‘The “Reading the Mind in the Eyes” Test Revised Version: A Study with Normal Adults, and Adults with Asperger Syndrome or High-Functioning Autism’, Journal of Child Psychology and Psychiatry 42:2 (2001), pp. 241–51. • 35. E. B. McClure, ‘A Meta-analytic Review of Sex Differences in Facial Expression Processing and Their Development in Infants, Children, and Adolescents’, Psychological Bulletin 126:3 (2000), p. 424. • 36. Там же. • 37. Там же. • 38. Там же. • 39. W. D. Rosen, L. B. Adamson and R. Bakeman, ‘An Experimental Investigation of Infant Social Referencing: Mothers’ Messages and Gender Differences’, Developmental Psychology 28:6 (1992), p. 1172. • 40. A. N. Meltzoff and M. K. Moore, ‘Imitation of Facial and Manual Gestures by Human Neonates’, Science 198:4312 (1977), pp. 75–8. • 41. A. N. Meltzoff and M. K. Moore, ‘Imitation in Newborn Infants: Exploring the Range of Gestures Imitated and the Underlying Mechanisms’, Developmental Psychology 25:6 (1989), p. 954. • 42. P. J. Marshall and A. N. Meltzoff, ‘Neural Mirroring Mechanisms and Imitation in Human Infants’, Philosophical Transactions of the Royal Society B: Biological Sciences 369:1644 (2014), 20130620; E. A. Simpson, L. Murray, A. Paukner and P. F. Ferrari, ‘The Mirror Neuron System as Revealed through Neonatal Imitation: Presence from Birth, Predictive Power and Evidence of Plasticity’, Philosophical Transactions of the Royal Society B: Biological Sciences 369:1644 (2014), 20130289. • 43. E. Nagy and P. Molner, ‘Homo imitans or Homo provocans? Human Imprinting Model of Neonatal Imitation’, Infant Behavior and Development 27:1 (2004), pp. 54–63. • 44. S. S. Jones, ‘Exploration or Imitation? The Effect of Music on 4-Week-Old Infants’ Tongue Protrusions’, Infant Behavior and Development 29:1 (2006), pp. 126–30. • 45. J. Oostenbroek, T. Suddendorf, M. Nielsen, J. Redshaw, S. Kennedy-Costantini, J. Davis, S. Clark and V. Slaughter, ‘Comprehensive Longitudinal Study Challenges the Existence of Neonatal Imitation in Humans’, Current Biology 26:10 (2016), pp. 1334–8; A. N. Meltzoff, L. Murray, E. Simpson, M. Heimann, E. Nagy, J. Nadel, E. J. Pedersen, R. Brooks, D. S. Messinger, L. D. Pascalis and F. Subiaul, ‘Re-examination of Oostenbroek et al. (2016): Evidence for Neonatal Imitation of Tongue Protrusion’, Developmental Science 21:4 (2018), e12609. • 46. Oostenbroek et al., ‘Comprehensive Longitudinal Study Challenges the Existence of Neonatal Imitation in Humans’; Meltzoff et al., ‘Re-examination of Oostenbroek et al. (2016)’. • 47. Nagy and Molner, ‘Homo imitans or Homo provocans?’. • 48. E. Nagy, H. Compagne, H. Orvos, A. Pal, P. Molnar, I. Janszky, K. Loveland and G. Bardos, ‘Index Finger Movement Imitation by Human Neonates: Motivation, Learning, and Left-Hand Preference’, Pediatric Research 58:4 (2005), pp. 749–53. • 49. C. Trevarthen and K. J. Aitken, ‘Infant Intersubjectivity: Research, Theory, and Clinical Applications’, Journal of Child Psychology and Psychiatry and Allied Disciplines 42:1 (2001), pp. 3–48. • 50. T. Farroni, G. Csibra, F. Simion and M. H. Johnson, ‘Eye Contact Detection in Humans from Birth’, Proceedings of the National Academy of Sciences 99:14 (2002), pp. 9602–5. • 51. M. Tomasello, M. Carpenter and U. Liszkowski, ‘A New Look at Infant Pointing’, Child Development 78:3 (2007), pp. 705–22. • 52. T. Charman, ‘Why Is Joint Attention a Pivotal Skill in Autism?’, Philosophical Transactions of the Royal Society B: Biological Sciences 358:1430 (2003), pp. 315–24. • 53. H. L. Gallagher and C. D. Frith. ‘Functional Imaging of “Theory of Mind”’, Trends in Cognitive Sciences 7:2 (2003), pp. 77–83. • 54. H. M. Wellman, D. Cross and J. Watson, ‘Meta-analysis of Theory-of-Mind Development: The Truth about False Belief ’, Child Development 72:3 (2001), pp. 655–84. • 55. Там же. • 56. ‘Born good? Babies help unlock the origins of morality’, CBS News/YouTube, 18 November 2012, https://youtu.be/FRvVFW85IcU (accessed 7 November 2018). • 57. J. K. Hamlin, K. Wynn and P. Bloom, ‘Social Evaluation by Preverbal Infants’, Nature 450:7169 (2007), p. 557. • 58. J. K. Hamlin and K. Wynn, ‘Young Infants Prefer Prosocial to Antisocial Others’, Cognitive Development 26:1 (2011), pp. 30–39. • 59. J. Decety and P. L. Jackson, ‘The Functional Architecture of Human Empathy’, Behavioural and Cognitive Neuroscience Reviews 3:2 (2004), pp. 71–100. • 60. E. Geangu, O. Benga, D. Stahl and T. Striano, ‘Contagious Crying beyond the First Days of Life’, Infant Behavior and Development 33:3 (2010), pp. 279–88. • 61. R. Roth-Hanania, M. Davidov and C. Zahn-Waxler, ‘Empathy Development from 8 to 16 Months: Early Signs of Concern for Others’, Infant Behavior and Development 34:3 (2011), pp. 447–58. • 62. Leeb and Rejskind, ‘Here’s Looking at You, Kid!’, p. 12. • 63. Farroni et al., ‘Eye Contact Detection in Humans from Birth’. • 64. Там же. • 65. B. Auyeung, S. Wheelwright, C. Allison, M. Atkinson, N. Samarawickrema and S. Baron-Cohen, ‘The Children’s Empathy Quotient and Systemizing Quotient: Sex Differences in Typical Development and in Autism Spectrum Conditions’, Journal of Autism and Developmental Disorders 39:11 (2009), p. 1509. • 66. K. J. Michalska, K. D. Kinzler and J. Decety, ‘Age-Related Sex Differences in Explicit Measures of Empathy Do Not Predict Brain Responses across Childhood and Adolescence’, Developmental Cognitive Neuroscience 3 (2013), pp. 22–32. • 67. Roth-Hanania et al., ‘Empathy Development from 8 to 16 Months’, p. 456. • 68. Johnson, ‘Subcortical Face Processing’, p. 766. • 69. D. J. Kelly, P. C. Quinn, A. M. Slater, K. Lee, L. Ge and O. Pascalis, ‘The Other-Race Effect Develops during Infancy: Evidence of Perceptual Narrowing’, Psychological Science 18:12 (2007), pp. 1084–9. • 70. Y. Bar-Haim, T. Ziv, D. Lamy and R. M. Hodes, ‘Nature and Nurture in Own-Race Face Processing’, Psychological Science 17:2 (2006), pp. 159–63. • 71. M. H. Johnson, ‘Face Processing as a Brain Adaptation at Multiple Timescales’, Quarterly Journal of Experimental Psychology 64:10 (2011), pp. 1873–88. • 72. Farroni et al., ‘Eye Contact Detection in Humans from Birth’; T. Farroni, M. H. Johnson and G. Csibra, ‘Mechanisms of Eye Gaze Perception during Infancy’, Journal of Cognitive Neuroscience 16:8 (2004), pp. 1320–26. • 73. E. A. Hoffman and J. V. Haxby, ‘Distinct Representations of Eye Gaze and Identity in the Distributed Human Neural System for Face Perception’, Nature Neuroscience 3:1 (2000), p. 80. • 74. Johnson, ‘Face Processing as a Brain Adaptation’. • 75. C. A. Nelson and M. De Haan, ‘Neural Correlates of Infants’ Visual Responsiveness to Facial Expressions of Emotion’, Developmental Psychobiology29:7 (1996), pp. 577–95; G. D. Reynolds and J. E. Richards, ‘Familiarization, Attention, and Recognition Memory in Infancy: An Event-Related Potential and Cortical Source Localization Study’, Developmental Psychology 41:4 (2005), p. 598. • 76. T. Grossmann, T. Striano and A. D. Friederici, ‘Developmental Changes in Infants’ Processing of Happy and Angry Facial Expressions: A Neurobehavioral Study’, Brain and Cognition 64:1 (2007), pp. 30–41. • 77. T. Striano, V. M. Reid and S. Hoehl, ‘Neural Mechanisms of Joint Attention in Infancy’, European Journal of Neuroscience 23:10 (2006), pp. 2819–23. • 78. F. Happé and U. Frith, ‘Annual Research Review: Towards a Developmental Neuroscience of Atypical Social Cognition’, Journal of Child Psychology and Psychiatry 55:6 (2014), pp. 553–77.
Глава 9
Гендерные волны розового и голубого цвета: как не утонуть в них
1. C. L. Martin and D. Ruble, ‘Children’s Search for Gender Cues: Cognitive Perspectives on Gender Development’, Current Directions in Psychological Science 13:2 (2004), pp. 67–70. • 2. P. Rosenkrantz, S. Vogel, H. Bee, I. Broverman and D. M. Broverman, ‘Sex-Role Stereotypes and Self-Concepts in College Students’, Journal of Consulting and Clinical Psychology 32:3 (1968), p. 287. • 3. M. N. Nesbitt and N. E. Penn, ‘Gender Stereotypes after Thirty Years: A Replication of Rosenkrantz, et al. (1968)’, Psychological Reports 87:2 (2000), pp. 493–511. • 4. E. L. Haines, K. Deaux and N. Lofaro, ‘The Times They Are a-Changing… Or Are They Not? A Comparison of Gender Stereotypes, 1983–2014’, Psychology of Women Quarterly 40:3 (2016), pp. 353–63. • 5. L. A. Rudman and P. Glick, ‘Prescriptive Gender Stereotypes and Backlash toward Agentic Women’, Journal of Social Issues 57:4 (2001), pp. 743–62. • 6. C. M. Steele, Whistling Vivaldi: And Other Clues to How Stereotypes Affect Us (New York, W. W. Norton, 2011). • 7. C. K. Shenouda and J. H. Danovitch, ‘Effects of Gender Stereotypes and Stereotype Threat on Children’s Performance on a Spatial Task’, Revue internationale de psychologie sociale 27:3 (2014), pp. 53–77. • 8. J. M. Contreras, M. R. Banaji and J. P. Mitchell, ‘Dissociable Neural Correlates of Stereotypes and Other Forms of Semantic Knowledge’, Social Cognitive and Affective Neuroscience 7:7 (2011), pp. 764–70. • 9. M. Wraga, L. Duncan, E. C. Jacobs, M. Helt and J. Church, ‘Stereotype Susceptibility Narrows the Gender Gap in Imagined Self-Rotation Performance’, Psychonomic Bulletin and Review 13:5 (2006), pp. 813–19. • 10. Shenouda and Danovitch, ‘Effects of Gender Stereotypes and Stereotype Threat’. • 11. R. K. Koeske and G. F. Koeske, ‘An Attributional Approach to Moods and the Menstrual Cycle’, Journal of Personality and Social Psychology 31:3 (1975), p. 473. • 12. A. Saini, Inferior: How Science Got Women Wrong and the New Research That’s Rewriting the Story (Boston, Beacon Press, 2017). • 13. I. K. Broverman, D. M. Broverman, F. E. Clarkson, P. S. Rosenkrantz and S. R. Vogel, ‘Sex-Role Stereotypes and Clinical Judgments of Mental Health’, Journal of Consulting and Clinical Psychology 34:1 (1970), p. 1. • 14. ‘Gender stereotypes impacting behaviour of girls as young as seven’, Girlguiding website, https://www.girlguiding.org.uk/whatwe-do/our-stories-and-news/news/gender-stereotypes-impacting-behaviourof-girls-as-young-as-seven (accessed 8 November 2018). • 15. S. Marsh, ‘Girls as young as seven boxed in by gender stereotyping’, Guardian, 21 September 2017, https://www.theguardian.com/world/2017/sep/21/girls-seven-ukboxed-in-by-gender-stereotyping-equality (accessed 8 November 2018). • 16. S. Dredge, ‘Apps for children in 2014: looking for the mobile generation’, Guardian, 10 March 2014, https://www.theguardian.com/technology/2014/mar/10/apps-children-2014-mobile-generation (accessed 8 November 2018). • 17. ‘The Common Sense Census: Media Use by Kids Age Zero to Eight 2017’, Common Sense Media, https://www.commonsensemedia.org/research/the-common-sense-census-media-use-by-kids-age-zero-to-eight-2017 (accessed 8 November 2018). • 18. Martin and Ruble, ‘Children’s Search for Gender Cues’. • 19. D. Poulin-Dubois, L. A. Serbin, B. Kenyon and A. Derbyshire, ‘Infants’ Intermodal Knowledge about Gender’, Developmental Psychology 30 (1994), pp. 436–42. • 20. K. M. Zosuls, D. N. Ruble, C. S. Tamis-LeMonda, P. E. Shrout, M. H. Bornstein and F. K. Greulich, ‘The Acquisition of Gender Labels in Infancy: Implications for Gender-Typed Play’, Developmental Psychology 45:3 (2009), p. 688. • 21. M. L. Halim, D. N. Ruble, C. S. Tamis-LeMonda, K. M. Zosuls, L. E. Lurye and F. K. Greulich, ‘Pink Frilly Dresses and the Avoidance of All Things “Girly”: Children’s Appearance Rigidity and Cognitive Theories of Gender Development’, Developmental Psychology 50:4 (2014), p. 1091. • 22. L. A. Serbin, D. Poulin-Dubois and J. A. Eichstedt, ‘Infants’ Responses to Gender-Inconsistent Events’, Infancy 3:4 (2002), pp. 531–42; D. Poulin-Dubois, L. A. Serbin, J. A. Eichstedt, M. G. Sen and C. F. Beissel, ‘Men Don’t Put On Make-Up: Toddlers’ Knowledge of the Gender Stereotyping of Household Activities’, Social Development 11:2 (2002), pp. 166–81. • 23. ‘#RedrawTheBalance’, EducationEmployers/YouTube, 14 March 2016, https://youtu.be/kJP1zPOfq_0 (accessed 8 November 2018). • 24. S. B. Most, A. V. Sorber and J. G. Cunningham, ‘Auditory Stroop Reveals Implicit Gender Associations in Adults and Children’, Journal of Experimental Social Psychology 43:2 (2007), pp. 287–94. • 25. K. Arney, ‘Are pink toys turning girls into passive princesses?’, Guardian, 9 May 2011, https://www.theguardian.com/science/blog/2011/may/09/pink-toys-girls-passive-princesses (accessed 8 November 2018). • 26. P. Orenstein, Cinderella Ate My Daughter: Dispatches from the Front Lines of the New Girlie-Girl Culture (New York, HarperCollins, 2011). • 27. ‘Gender reveal party ideas’, Pampers website (USA), https://www.pampers.com/en-us/pregnancy/pregnancyannouncement/article/ultimate-guide-for-planning-a-gender-reveal-party (accessed 8 November 2018). • 28. C. DeLoach, ‘How to host a gender reveal party’, Parents, https://www.parents.com/pregnancy/my-baby/gender-prediction/how-to-host-a-gender-reveal-party (accessed 8 November 2018). • 29. K. Johnson, ‘Can you spot what’s wrong with this new STEM Barbie?’ Babble, https://www.babble.com/parenting/engineering-barbiestem-kit-disappoints (accessed 8 November 2018); D. Lenton, ‘Women in Engineering – Toys: Dolls Get Techie’, Engineering and Technology 12:6 (2017), pp. 60–63. • 30. J. Henley, ‘The power of pink’, Guardian, 12 December 2009, https://www.theguardian.com/theguardian/2009/dec/12/pinkstinks-the-power-of-pink (accessed 8 November 2018). • 31. A. C. Hurlbert and Y. Ling, ‘Biological Components of Sex Differences in Color Preference’, Current Biology 17:16 (2007), pp. R623–5. • 32. R. Khamsi, ‘Women may be hardwired to prefer pink’, New Scientist, 20 August 2007, https://www.newscientist.com/article/dn12512-women-may-be-hardwired-to-preferpink (accessed 8 November 2018); F. Macrae, ‘Modern girls are born to plump for pink “thanks to berry-gathering female ancestors”’, Mail Online, 27 April 2011, https://www.dailymail.co.uk/sciencetech/article-1380893/Modern-girls-born-plump-pink-thanks-berry-gathering-female-ancestors.html (accessed 8 November 2018). • 33. A. Franklin, L. Bevis, Y. Ling and A. Hurlbert, ‘Biological Components of Colour Preference in Infancy’, Developmental Science 13:2 (2010), pp. 346–54. • 34. I. D. Cherney and J. Dempsey, ‘Young Children’s Classification, Stereotyping and Play Behaviour for Gender Neutral and Ambiguous Toys’, Educational Psychology 30:6 (2010), pp. 651–69. • 35. V. LoBue and J. S. DeLoache, ‘Pretty in Pink: The Early Development of Gender-Stereotyped Colour Preferences’, British Journal of Developmental Psychology 29:3 (2011), pp. 656–67. • 36. Zosuls et al., ‘The Acquisition of Gender Labels in Infancy’. • 37. J. B. Paoletti, Pink and Blue: Telling the Boys from the Girls in America (Bloomington, Indiana University Press, 2012). • 38. M. Del Giudice, ‘The Twentieth Century Reversal of Pink – Blue Gender Coding: A Scientific Urban Legend?’, Archives of Sexual Behavior 41:6 (2012), pp. 1321–3; M. Del Giudice, ‘Pink, Blue, and Gender: An Update’, Archives of Sexual Behavior 46:6 (2017), pp. 1555–63. • 39. Henley, ‘The power of pink’. • 40. ‘What’s wrong with pink and blue?’, Let Toys Be Toys, 4 September 2015, http://lettoysbetoys.org.uk/whats-wrong-withpink-and-blue (accessed 8 November 2018). • 41. A. M. Sherman and E. L. Zurbriggen, ‘“Boys Can Be Anything”: Effect of Barbie Play on Girls’ Career Cognitions’, Sex Roles 70:5–6 (2014), pp. 195–208. • 42. V. Jarrett, ‘How we can help all our children explore, learn, and dream without limits’, White House website, 6 April 2016, https://obamawhitehouse.archives.gov/blog/2016/04/06/how-we-can-help-all-our-children-explore-learn-anddream-without-limits (accessed 8 November 2018). • 43. V. Jadva, M. Hines and S. Golombok, ‘Infants’ Preferences for Toys, Colors, and Shapes: Sex Differences and Similarities’, Archives of Sexual Behavior 39:6 (2010), pp. 1261–73. • 44. C. L. Martin, D. N. Ruble and J. Szkrybalo, ‘Cognitive Theories of Early Gender Development’, Psychological Bulletin 128:6 (2002), p. 903. • 45. L. Waterlow, ‘Too much in the pink! How toys have become alarmingly gender stereotyped since the Seventies… at the cost of little girls’ self-esteem’, («Слишком много розового! Как игрушки стали угрожающими гендерными стереотипами с семидесятых годов… и чем это грозит самоуважению маленьких девочек»). Mail Online, 10 June 2013, https://www.dailymail.co.uk/femail/article-2338976/Too-pink-How-toys-alarmingly-gender-stereotyped-Seventies – cost-little-girls-self-esteem.html (accessed 8 November 2018). • 46. J. E. O. Blakemore and R. E. Centers, ‘Characteristics of Boys’ and Girls’ Toys’, Sex Roles 53:9–10 (2005), pp. 619–33. • 47. B. K. Todd, J. A. Barry and S. A. Thommessen, ‘Preferences for “Gender-Typed” Toys in Boys and Girls Aged 9 to 32 Months’, Infant and Child Development 26:3 (2017), e1986. • 48. Там же. • 49. Там же. • 50. C. Fine and E. Rush, ‘“Why Does All the Girls Have to Buy Pink Stuff?” The Ethics and Science of the Gendered Toy Marketing Debate’, Journal of Business Ethics 149:4 (2018), pp. 769–84. • 51. B. K. Todd, R. A. Fischer, S. Di Costa, A. Roestorf, K. Harbour, P. Hardiman and J. A. Barry, ‘Sex Differences in Children’s Toy Preferences: A Systematic Review, Meta-regression, and Meta-analysis’, Infant and Child Development 27:2 (2018), pp. 1–29. • 52. Там же., pp. 1–2. • 53. N. K. Freeman, ‘Preschoolers’ Perceptions of Gender Appropriate Toys and Their Parents’ Beliefs about Genderized Behaviors: Miscommunication, Mixed Messages, or Hidden Truths?’, Early Childhood Education Journal 34:5 (2007), pp. 357–66. • 54. E. S. Weisgram, M. Fulcher and L. M. Dinella, ‘Pink Gives Girls Permission: Exploring the Roles of Explicit Gender Labels and Gender-Typed Colors on Preschool Children’s Toy Preferences’, Journal of Applied Developmental Psychology 35:5 (2014), pp. 401–9. • 55. E. Sweet, ‘Toys are more divided by gender now than they were 50 years ago’ («Игрушки стали более гендерными, чем 50 лет назад»), Atlantic, 9 December 2014, https://www.theatlantic.com/business/archive/2014/12/toys-are-more-divided-by-gender-now-than-they-were-50-years-ago/383556 (accessed 8 November 2018). • 56. J. Stoeber and H. Yang, ‘Physical Appearance Perfectionism Explains Variance in Eating Disorder Symptoms above General Perfectionism’, Personality and Individual Differences 86 (2015), pp. 303–7. • 57. J. F. Benenson, R. Tennyson and R. W. Wrangham, ‘Male More than Female Infants Imitate Propulsive Motion’, Cognition 121:2 (2011), pp. 262–7. • 58. G. M. Alexander, T. Wilcox and R. Woods, ‘Sex Differences in Infants’ Visual Interest in Toys’, Archives of Sexual Behavior 38:3 (2009), pp. 427–33. • 59. ‘Jo Swinson: Encourage boys to play with dolls’, BBC News, 13 January 2015, https://www.bbc.co.uk/news/uk-politics-30794476 (accessed 8 November 2018). • 60. G. M. Alexander and M. Hines, ‘Sex Differences in Response to Children’s Toys in Nonhuman Primates (Cercopithecus aethiops sabaeus)’, Evolution and Human Behavior 23:6 (2002), pp. 467–79. • 61. Both Cordelia Fine in Delusions of Gender and Rebecca Jordan-Young in Brain Storm have commented humorously and at length on the monkey studies and their exaggerated role in offering insights into toy preference issues (И Корделия Файн в «Заблуждениях о гендере», и Ребекка Джордан-Янг в «Мозговом штурме» подробно и с юмором прокомментировали исследования с использованием обезьян, а также их преувеличенную роль в изучении проблемы предпочтения игрушек.) • 62. J. M. Hassett, E. R. Siebert and K. Wallen, ‘Sex Differences in Rhesus Monkey Toy Preferences Parallel Those of Children’, Hormones and Behavior 54:3 (2008), pp. 359–64. • 63. Там же., p. 363. • 64. Hines Brain Gender. • 65. S. A. Berenbaum and M. Hines, ‘Early Androgens Are Related to Childhood Sex-Typed Toy Preferences’, Psychological Science 3:3 (1992), pp. 203–6. • 66. M. Hines, V. Pasterski, D. Spencer, S. Neufeld, P. Patalay, P. C. Hindmarsh, I. A. Hughes and C. L. Acerini, ‘Prenatal Androgen Exposure Alters Girls’ Responses to Information Indicating Gender-Appropriate Behaviour’, Philosophical Transactions of the Royal Society B: Biological Sciences 371:1688 (2016), 20150125. • 67. M. C. Linn and A. C. Petersen, ‘Emergence and Characterization of Sex Differences in Spatial Ability: A Meta-analysis’, Child Development 56:6 (1985), pp. 1479–98. • 68. D. I. Miller and D. F. Halpern, ‘The New Science of Cognitive Sex Differences’, Trends in Cognitive Sciences 18:1 (2014), pp. 37–45. • 69. Hines et al., ‘Prenatal Androgen Exposure Alters Girls’ Responses’. • 70. M. S. Terlecki and N. S. Newcombe, ‘How Important Is the Digital Divide? The Relation of Computer and Videogame Usage to Gender Differences in Mental Rotation Ability’, Sex Roles 53:5–6 (2005), pp. 433–41. • 71. Shenouda and Danovitch, ‘Effects of Gender Stereotypes and Stereotype Threat’.
Глава 10
Пол и наука
1. Women in Science website, http://uis.unesco.org/en/topic/womenscience; ‘Women in the STEM workforce 2016’, WISE website, https://www.wisecampaign.org.uk/statistics/women-in-the-stem-workforce-2016 (accessed 8 November 2018). • 2. A. Tintori and R. Palomba, Turn On the Light on Science: A Research-Based Guide to Break Down Popular Stereotypes about Science and Scientists (London, Ubiquity Press, 2017). • 3. ‘Useful statistics: women in STEM’, STEM Women website, 5 March 2018, https://www.stemwomen.co.uk/blog/2018/03/useful-statistics-women-in-stem; ‘UK physics A-level entries 2010–2016’, Institute of Physics website, http://www.iop.org/policy/statistics/overview/page_67109.html • 4. ‘Primary Schools are Critical to Ensuring Success, by Creating Space for Quality Science Teaching’, in Tomorrow’s World: Inspiring Primary Scientists (CBI, 2015), http://www.cbi.org.uk/tomorrows-world/Primary_schools_are_critical_t.html (accessed 8 November 2018). • 5. ‘Our definition of science’, Science Council website, https://sciencecouncil.org/about-science/our-definitionof-science (accessed 8 November 2018). • 6. ‘Science does not purvey absolute truth, science is a mechanism. It’s a way of trying to improve your knowledge of nature, it’s a system for testing your thoughts against the universe and seeing whether they match’ («Наука не несет абсолютной истины, наука – это прибор. Это способ улучшить знания о природе, это система для проверки ваших мыслей на соответствие вселенной»), Explore, http://explore.brainpickings.org/post/49908311909/science-does-not-purvey-absolute-truth-scienceis (accessed 8 November 2018). • 7. ‘Essays’, Science: Not Just for Scientists, http://notjustforscientists.org/essays (accessed 8 November 2018). • 8. R. L. Bergland, ‘Urania’s Inversion: Emily Dickinson, Herman Melville, and the Strange History of Women Scientists in Nineteenth-Century America’, Signs: Journal of Women in Culture and Society 34:1 (2008), pp. 75–99. • 9. J. Mason, ‘The Admission of the First Women to the Royal Society of London’, Notes and Records: The Royal Society Journal of the History of Science 46:2 (1992), pp. 279–300. • 10. L. Schiebinger, The Mind Has No Sex? Women in the Origins of Modern Science (Cambridge, MA, Harvard University Press, 1991). • 11. Там же. • 12. R. Su, J. Rounds and P. I. Armstrong, ‘Men and Things, Women and People: A Meta-analysis of Sex Differences in Interests’, Psychological Bulletin 135:6 (2009), p. 859. • 13. J. Billington, S. Baron-Cohen and S. Wheelwright, ‘Cognitive Style Predicts Entry into Physical Sciences and Humanities: Questionnaire and Performance Tests of Empathy and Systemizing’, Learning and Individual Differences 17:3 (2007), pp. 260–68. • 14. Там же. • 15. Baron-Cohen, The Essential Difference. • 16. Там же. • 17. S. J. Leslie, A. Cimpian, M. Meyer and E. Freeland, ‘Expectations of Brilliance Underlie Gender Distributions across Academic Disciplines’, Science 347:6219 (2015), pp. 262–5. • 18. S. J. Leslie, ‘Cultures of Brilliance and Academic Gender Gaps’, paper delivered at ‘Confidence and Competence: Fifth Annual Diversity Conference’, Royal Society, 16 November 2017; see ‘Annual Diversity Conference 2017 – Confidence and Competence’, Royal Society/YouTube, 16 November 2017, https://www.youtu.be/e0ZHpZ31O1M, at 25:50 (accessed 8 November 2018). • 19. K. C. Elmore and M. Luna-Lucero, ‘Light Bulbs or Seeds? How Metaphors for Ideas Influence Judgments about Genius’, Social Psychological and Personality Science 8:2 (2017), pp. 200–208. • 20. Там же. • 21. L. Bian, S. J. Leslie, M. C. Murphy and A. Cimpian, ‘Messages about Brilliance Undermine Women’s Interest in Educational and Professional Opportunities’, Journal of Experimental Social Psychology 76 (2018), pp. 404–20. • 22. Quinn and Liben, ‘A Sex Difference in Mental Rotation in Young Infants’. • 23. M. Hines, M. Constantinescu and D. Spencer, ‘Early Androgen Exposure and Human Gender Development’, Biology of Sex Differences 6:1 (2015), p. 3; J. Wai, D. Lubinski and C. P. Benbow, ‘Spatial Ability for STEM Domains: Aligning Over 50 Years of Cumulative Psychological Knowledge Solidifies Its Importance’, Journal of Educational Psychology 101:4 (2009), p. 817. • 24. S. C. Levine, A. Foley, S. Lourenco, S. Ehrlich and K. Ratliff, ‘Sex Differences in Spatial Cognition: Advancing the Conversation’, Wiley Interdisciplinary Reviews: Cognitive Science 7:2(2016), pp. 127–55. • 25. L. Bian, S. J. Leslie and A. Cimpian, ‘Gender Stereotypes about Intellectual Ability Emerge Early and Influence Children’s Interests’, Science 355:6323 (2017), pp. 389–91. • 26. M. C. Steffens, P. Jelenec and P. Noack, ‘On the Leaky Math Pipeline: Comparing Implicit Math – Gender Stereotypes and Math Withdrawal in Female and Male Children and Adolescents’, Journal of Educational Psychology 102:4 (2010), p. 947. • 27. Там же. • 28. E. A. Gunderson, G. Ramirez, S. C. Levine and S. L. Beilock, ‘The Role of Parents and Teachers in the Development of Gender-Related Math Attitudes’, Sex Roles 66:3–4 (2012), pp. 153–66. • 29. Freeman, ‘Preschoolers’ Perceptions of Gender Appropriate Toys’. • 30. V. Lavy and E. Sand, ‘On the Origins of Gender Human Capital Gaps: Short and Long Term Consequences of Teachers’ Stereotypical Biases’, Working Paper 20909, National Bureau of Economic Research (2015). • 31. S. Cheryan, V. C. Plaut, P. G. Davies and C. M. Steele, ‘Ambient Belonging: How Stereotypical Cues Impact Gender Participation in Computer Science’, Journal of Personality and Social Psychology 97:6 (2009), p. 1045. • 32. Там же. • 33. G. Stoet and D. C. Geary, ‘The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education’, Psychological Science 29:4 (2018), pp. 581–93. • 34. S. Ross, ‘Scientist: The Story of a Word’, Annals of Science 18:2 (1962), pp. 65–85. • 35. M. Mead and R. Metraux, ‘Image of the Scientist among High-School Students’, Science 126:3270 (1957), pp. 384–90. • 36. Там же. • 37. D. W. Chambers, ‘Stereotypic Images of the Scientist: The Draw-a-Scientist Test’, Science Education 67:2 (1983), pp. 255–65. • 38. K. D. Finson, ‘Drawing a Scientist: What We Do and Do Not Know after Fifty Years of Drawings’, School Science and Mathematics 102:7 (2002), pp. 335–45. • 39. Там же. • 40. P. Bernard and K. Dudek, ‘Revisiting Students’ Perceptions of Research Scientists: Outcomes of an Indirect Draw-a-Scientist Test (InDAST)’, Journal of Baltic Science Education 16:4 (2017). • 41. M. Knight and C. Cunningham, ‘Draw an Engineer Test (DAET): Development of a Tool to Investigate Students’ Ideas about Engineers and Engineering’, paper given at American Society for Engineering Education Annual Conference and Exposition, Salt Lake City, June 2004, https://peer.asee.org/12831 (accessed 8 November 2018). • 42. C. Moseley, B. Desjean-Perrotta and J. Utley, ‘The Draw-an-Environment Test Rubric (DAET-R): Exploring Pre-service Teachers’ Mental Models of the Environment’, Environmental Education Research 16:2 (2010), pp. 189–208. • 43. C. D. Martin, ‘Draw a Computer Scientist’, ACM SIGCSE Bulletin 36:4 (2004), pp. 11–12. • 44. L. R. Ramsey, ‘Agentic Traits Are Associated with Success in Science More than Communal Traits’, Personality and Individual Differences 106 (2017), pp. 6–9. • 45. L. L. Carli, L. Alawa, Y. Lee, B. Zhao and E. Kim, ‘Stereotypes about Gender and Science: Women ≠ Scientists’, Psychology of Women Quarterly, 40:2 (2016), pp. 244–60. • 46. A. H. Eagly, ‘Few Women at the Top: How Role Incongruity Produces Prejudice and the Glass Ceiling’, in D. van Knippenberg and M. A. Hogg (eds), Leadership and Power: Identity Processes in Groups and Organizations (London, Sage, 2003), pp. 79–93. • 47. A. H. Eagly and S. J. Karau, ‘Role Congruity Theory of Prejudice toward Female Leaders’, Psychological Review 109:3 (2002), p. 573. • 48. Carli et al., ‘Stereotypes about Gender and Science’. • 49. C. Wenneras and A. Wold, ‘Nepotism and Sexism in Peer Review’, in M. Wyer (ed.), Women, Science, and Technology: A Reader in Feminist Science Studies (New York, Routledge, 2001), pp. 46–52. • 50. F. Triх and C. Psenka, ‘Exploring the Color of Glass: Letters of Recommendation for Female and Male Medical Faculty’, Discourse and Society 14:2 (2003), pp. 191–220. • 51. S. Modgil, R. Gill, V. L. Sharma, S. Velassery and A. Anand, ‘Nobel Nominations in Science: Constraints of the Fairer Sex’, Annals of Neurosciences 25:2 (2018), pp. 63–78. • 52. C. A. Moss-Racusin, J. F. Dovidio, V. L. Brescoll, M. J. Graham and J. Handelsman, ‘Science Faculty’s Subtle Gender Biases Favor Male Students’, Proceedings of the National Academy of Sciences 109:41 (2012), pp. 16474–9. • 53. E. Reuben, P. Sapienza and L. Zingales, ‘How Stereotypes Impair Women’s Careers in Science’, Proceedings of the National Academy of Sciences 111:12 (2014), pp. 4403–8.
Глава 11
Наука и мозг
1. H. Ellis, Man and Woman: A Study of Human Secondary Sexual Characters (London, Walter Scott; New York, Scribner’s, 1894). • 2. N. M. Else-Quest, J. S. Hyde and M. C. Linn, ‘Cross-national Patterns of Gender Differences in Mathematics: A Meta-analysis’, Psychological Bulletin 136:1 (2010), p. 103. • 3. ‘Has an uncomfortable truth been suppressed?’, Gowers’s Weblog, 9 September 2018, https://gowers.wordpress.com/2018/09/09/has-anuncomfortable-truth-been-suppressed (accessed 8 November 2018). • 4. Там же. • 5. L. H. Summers, ‘Remarks at NBER Conference on Diversifying the Science & Engineering Workforce’, Office of the President, Harvard University, 14 January 2005, https://www.harvard.edu/president/speeches/summers_2005/nber.php (accessed 8 November 2018). • 6. ‘The Science of Gender and Science: Pinker vs. Spelke: A Debate’, Edge, https://www.edge.org/event/the-science-of-gender-and-science-pinker-vs-spelke-adebate (accessed 8 November 2018). • 7. Y. Xie and K. Shaumann, Women in Science: Career Processes and Outcomes (Cambridge, MA, Harvard University Press, 2003). • 8. Там же. • 9. D. F. Halpern, C. P. Benbow, D. C. Geary, R. C. Gur, J. S. Hyde and M. A. Gernsbacher, ‘The Science of Sex Differences in Science and Mathematics’, Psychological Science in the Public Interest 8:1 (2007), pp. 1–51. • 10. J. Damore, ‘Google’s Ideological Echo Chamber’, July 2017, available at https://www.documentcloud.org/documents/3914586-Googles-Ideological-Echo-Chamber.html (accessed 8 November 2018). • 11. D. P. Schmitt, A. Realo, M. Voracek and J. Allik, ‘Why Can’t a Man Be More Like a Woman? Sex Differences in Big Five Personality Traits across 55 Cultures’, Journal of Personality and Social Psychology 94:1 (2008), p. 168. • 12. M. Molteni and A. Rogers, ‘The actual science of James Damore’s Google memo’, Wired, 15 August 2017, https://www.wired.com/story/the-pernicious-science-of-james-damores-google-memo (accessed 8 November 2018); H. Devlin and A. Hern, ‘Why are there so few women in tech? The truth behind the Google memo’, Guardian, 8 August 2017, https://www.theguardian.com/lifeandstyle/2017/aug/08/why-are-there-so-fewwomen-in-tech-the-truth-behind-the-google-memo (accessed 8 November 2018); S. Stevens, ‘The Google memo: what does the research say about gender differences?’, Heterodox Academy, 10 August 2017, https://heterodoxacademy.org/the-google-memo-what-does-the-research-say-about-genderdifferences (accessed 8 November 2018). • 13. ‘The Google memo: four scientists respond’, Quillette, 7 August 2017, http://quillette.com/2017/08/07/google-memo-four-scientists-respond (accessed 8 November 2018). • 14. Там же. • 15. Там же. • 16. G. Rippon, ‘What neuroscience can tell us about the Google diversity memo’, Conversation, 14 August 2017, https://theconversation.com/what-neuroscience-can-tell-us-about-the-google-diversitymemo-82455 (accessed 8 November 2018). • 17. Devlin and Hern, ‘Why are there so few women in tech?’ • 18. R. C. Barnett and C. Rivers, ‘We’ve studied gender and STEM for 25 years. The science doesn’t support the Google memo’, Recode, 11 August 2017, https://www.recode.net/2017/8/11/16127992/google-engineer-memo-research-science-womenbiology-tech-james-damore (accessed 8 November 2018). • 19. M.-C. Lai, M. V. Lombardo, B. Chakrabarti, C. Ecker, S. A. Sadek, S. J. Wheelwright, D. G. Murphy, J. Suckling, E. T. Bullmore, S. Baron-Cohen and MRC AIMS Consortium, ‘Individual Differences in Brain Structure Underpin Empathizing – Systemizing Cognitive Styles in Male Adults’, NeuroImage 61:4 (2012), pp. 1347–54. • 20. S. Baron-Cohen, ‘Empathizing, Systemizing, and the Extreme Male Brain Theory of Autism’, Progress in Brain Research 186 (2010), pp. 167–75. • 21. J. Wai, D. Lubinski and C. P. Benbow, ‘Spatial Ability for STEM Domains: Aligning Over 50 Years of Cumulative Psychological Knowledge Solidifies Its Importance’, Journal of Educational Psychology 101:4 (2009), p. 817. • 22. Там же. • 23. M. Hines, B. A. Fane, V. L. Pasterski, G. A. Mathews, G. S. Conway and C. Brook, ‘Spatial Abilities Following Prenatal Androgen Abnormality: Targeting and Mental Rotations Performance in Individuals with Congenital Adrenal Hyperplasia’, Psychoneuroendocrinology 28:8 (2003), pp. 1010–26. • 24. I. Silverman, J. Choi and M. Peters, ‘The Hunter-Gatherer Theory of Sex Differences in Spatial Abilities: Data from 4 °Countries’, Archives of Sexual Behavior 36:2 (2007), pp. 261–8. • 25. S. G. Vandenberg and A. R. Kuse, ‘Mental Rotations, a Group Test of Three-Dimensional Spatial Visualization’, Perceptual and Motor Skills 47:2 (1978), pp. 599–604. • 26. Quinn and Liben, ‘A Sex Difference in Mental Rotation in Young Infants’. • 27. Hines et al., ‘Spatial Abilities Following Prenatal Androgen Abnormality’. • 28. M. Constantinescu, D. S. Moore, S. P. Johnson and M. Hines, ‘Early Contributions to Infants’ Mental Rotation Abilities’, Developmental Science 21:4 (2018), e12613. • 29. T. Koscik, D. O’Leary, D. J. Moser, N. C. Andreasen and P. Nopoulos, ‘Sex Differences in Parietal Lobe Morphology: Relationship to Mental Rotation Performance’, Brain and Cognition 69:3 (2009), pp. 451–9. • 30. Halpern, et al. ‘The Pseudoscience of Single-Sex Schooling’. • 31. Koscik et al., ‘Sex Differences in Parietal Lobe Morphology’. • 32. K. Kucian, M. Von Aster, T. Loenneker, T. Dietrich, F. W. Mast and E. Martin, ‘Brain Activation during Mental Rotation in School Children and Adults’, Journal of Neural Transmission 114:5 (2007), pp. 675–86. • 33. K. Jordan, T. Wüstenberg, H. J. Heinze, M. Peters and L. Jäncke, ‘Women and Men Exhibit Different Cortical Activation Patterns during Mental Rotation Tasks’, Neuropsychologia 40:13 (2002), pp. 2397–408. • 34. N. S. Newcombe, ‘Picture This: Increasing Math and Science Learning by Improving Spatial Thinking’, American Educator 34:2 (2010), p. 29. • 35. M. Wraga, M. Helt, E. Jacobs and K. Sullivan, ‘Neural Basis of Stereotype-Induced Shifts in Women’s Mental Rotation Performance’, Social Cognitive and Affective Neuroscience 2:1 (2007), pp. 12–19. • 36. I. D. Cherney, ‘Mom, Let Me Play More Computer Games: They Improve My Mental Rotation Skills’, Sex Roles 59:11–12 (2008), pp. 776–86. • 37. Там же. • 38. J. Feng, I. Spence and J. Pratt, ‘Playing an Action Video Game Reduces Gender Differences in Spatial Cognition’, Psychological Science 18:10 (2007), pp. 850–55; M. S. Terlecki and N. S. Newcombe, ‘How Important Is the Digital Divide? The Relation of Computer and Videogame Usage to Gender Differences in Mental Rotation Ability’, Sex Roles 53:5–6 (2005), pp. 433–41. • 39. R. J. Haier, S. Karama, L. Leyba and R. E. Jung, ‘MRI Assessment of Cortical Thickness and Functional Activity Changes in Adolescent Girls Following Three Months of Practice on a Visual-Spatial Task’, BMC Research Notes 2:1 (2009), p. 174. • 40. A. Moè and F. Pazzaglia, ‘Beyond Genetics in Mental Rotation Test Performance: The Power of Effort Attribution’, Learning and Individual Differences 20:5 (2010), pp. 464–8. • 41. E. A. Maloney, S. Waechter, E. F. Risko and J. A. Fugelsang, ‘Reducing the Sex Difference in Math Anxiety: The Role of Spatial Processing Ability’, Learning and Individual Differences 22:3 (2012), pp. 380–84. • 42. O. Blajenkova, M. Kozhevnikov and M. A. Motes, ‘Object-Spatial Imagery: A New Self-Report Imagery Questionnaire’, Applied Cognitive Psychology 20:2 (2006), pp. 239–63. • 43. J. A. Mangels, C. Good, R. C. Whiteman, B. Maniscalco and C. S. Dweck, ‘Emotion Blocks the Path to Learning under Stereotype Threat’, Social Cognitive and Affective Neuroscience 7:2 (2011), pp. 230–41. • 44. A. C. Krendl, J. A. Richeson, W. M. Kelley and T. F. Heatherton, ‘The Negative Consequences of Threat: A Functional Magnetic Resonance Imaging Investigation of the Neural Mechanisms Underlying Women’s Underperformance in Math’, Psychological Science 19:2 (2008), pp. 168–75. • 45. B. Carrillo, E. Gómez-Gil, G. Rametti, C. Junque, Á. Gomez, K. Karadi, S. Segovia and A. Guillamon, ‘Cortical Activation during Mental Rotation in Male-to-Female and Female-to-Male Transsexuals under Hormonal Treatment’, Psychoneuroendo crinology 35:8 (2010), pp. 1213–22. • 46. S. A. Berenbaum and M. Hines, ‘Early Androgens Are Related to Childhood Sex-Typed Toy Preferences’, Psychological Science 3:3 (1992), pp. 203–6. • 47. J. R. Shapiro and A. M. Williams, ‘The Role of Stereotype Threats in Undermining Girls’ and Women’s Performance and Interest in STEM Fields’, Sex Roles 66:3–4 (2012), pp. 175–83. • 48. M. Hines, V. Pasterski, D. Spencer, S. Neufeld, P. Patalay, P. C. Hindmarsh, I. A. Hughes and C. L. Acerini, ‘Prenatal Androgen Exposure Alters Girls’ Responses to Information Indicating Gender-Appropriate Behaviour’, Philosophical Transactions of the Royal Society B: Biological Sciences 371:1688 (2016), 20150125. • 49. ‘Women in Science, Technology, Engineering, and Mathematics (STEM)’, Catalyst website, 3 January 2018, https://www.catalyst.org/knowledge/women-science-technology-engineering-and-mathematics-stem (accessed 10 November 2018).
Глава 12
Хорошие девочки так не делают
1. S. Peters, The Chimp Paradox: The Mind Management Program to Help You Achieve Success, Confidence, and Happiness (New York, Tarcher/Penguin, 2013). • 2. B. P. Doré, N. Zerubavel and K. N. Ochsner, ‘Social Cognitive Neuroscience: A Review of Core Systems’, in M. Mikulincer and P. R. Shaver (eds-in-chief), APA Handbook of Personality and Social Psychology (Washington, American Psychological Association, 2014), vol. l, pp. 693–720. • 3. J. M. Allman, A. Hakeem, J. M. Erwin, E. Nimchinsky and P. Hof, ‘The Anterior Cingulate Cortex: The Evolution of an Interface between Emotion and Cognition’, Annals of the New York Academy of Sciences 935:1 (2001), pp. 107–17. • 4. J. M. Allman, N. A. Tetreault, A. Y. Hakeem, K. F. Manaye, K. Semendeferi, J. M. Erwin, S. Park, V. Goubert and P. R. Hof, ‘The Von Economo Neurons in Frontoinsular and Anterior Cingulate Cortex in Great Apes and Humans’, Brain Structure and Function 214:5–6 (2010), pp. 495–517. • 5. J. D. Cohen, M. Botvinick and C. S. Carter, ‘Anterior Cingulate and Prefrontal Cortex: Who’s in Control?’, Nature Neuroscience 3:5 (2000), p. 421. • 6. G. Bush, P. Luu and M. I. Posner, ‘Cognitive and Emotional Influences in Anterior Cingulate Cortex’, Trends in Cognitive Sciences 4:6 (2000), pp. 215–22. • 7. Eisenberger et al., ‘The Neural Sociometer’. • 8. Eisenberger and Lieberman, ‘Why Rejection Hurts’. • 9. N. I. Eisenberger, ‘Social Pain and the Brain: Controversies, Questions, and Where to Go from Here’, Annual Review of Psychology 66 (2015), pp. 601–29. • 10. Lieberman, Social: Why Our Brains Are Wired to Connect. • 11. N. Kolling, M. K. Wittmann, T. E. Behrens, E. D. Boorman, R. B. Mars and M. F. Rushworth, ‘Value, Search, Persistence and Model Updating in Anterior Cingulate Cortex’, Nature Neuroscience 19:10 (2016), p. 1280. • 12. T. Straube, S. Schmidt, T. Weiss, H. J. Mentzel and W. H. Miltner, ‘Dynamic Activation of the Anterior Cingulate Cortex during Anticipatory Anxiety’, NeuroImage 44:3 (2009), pp. 975–81; A. Etkin, K. E. Prater, F. Hoeft, V. Menon and A. F. Schatzberg, ‘Failure of Anterior Cingulate Activation and Connectivity with the Amygdala during Implicit Regulation of Emotional Processing in Generalized Anxiety Disorder’, American Journal of Psychiatry 167:5 (2010), pp. 545–54; A. Etkin, T. Egner and R. Kalisch, ‘Emotional Processing in Anterior Cingulate and Medial Prefrontal Cortex’, Trends in Cognitive Sciences 15:2 (2011), pp. 85–93. • 13. M. R. Leary, ‘Responses to Social Exclusion: Social Anxiety, Jealousy, Loneliness, Depression, and Low Self-Esteem’, Journal of Social and Clinical Psychology 9:2 (1990), pp. 221–9; J. F. Sowislo and U. Orth, ‘Does Low Self-Esteem Predict Depression and Anxiety? A Meta-analysis of Longitudinal Studies’, Psychological Bulletin 139:1 (2013), p. 213; E. A. Courtney, J. Gamboz and J. G. Johnson, ‘Problematic Eating Behaviors in Adolescents with Low Self-Esteem and Elevated Depressive Symptoms’, Eating Behaviors 9:4 (2008), pp. 408–14. • 14. W. Bleidorn, R. C. Arslan, J. J. Denissen, P. J. Rentfrow, J. E. Gebauer, J. Potter and S. D. Gosling, ‘Age and Gender Differences in Self-Esteem – A Cross-cultural Window’, Journal of Personality and Social Psychology 111:3 (2016), p. 396; S. Guimond, A. Chatard, D. Martinot, R. J. Crisp and S. Redersdorff, ‘Social Comparison, Self-Stereotyping, and Gender Differences in Self-Construals’, Journal of Personality and Social Psychology 90:2 (2006), p. 221. • 15. ‘World Self Esteem Plot’, https://selfesteem.shinyapps.io/maps (accessed 10 November 2018). • 16. Schmitt et al., ‘Why Can’t a Man Be More Like a Woman?’ • 17. J. S. Hyde, ‘Gender Similarities and Differences’, Annual Review of Psychology 65 (2014), pp. 373–98; E. Zell, Z. Krizan and S. R. Teeter, ‘Evaluating Gender Similarities and Differences Using Metasynthesis’, American Psychologist 70:1 (2015), p. 10. • 18. Eisenberger and Lieberman, ‘Why Rejection Hurts’. • 19. A. J. Shackman, T. V. Salomons, H. A. Slagter, A. S. Fox, J. J. Winter and R. J. Davidson, ‘The Integration of Negative Affect, Pain and Cognitive Control in the Cingulate Cortex’, Nature Reviews Neuroscience 12:3 (2011), p. 154. • 20. A. T. Beck, Depression: Clinical, Experimental, and Theoretical Aspects (New York, Harper & Row, 1967); A. T. Beck, ‘The Evolution of the Cognitive Model of Depression and Its Neurobiological Correlates’, American Journal of Psychiatry 165 (2008), pp. 969–77; S. G. Disner, C. G. Beevers, E. A. Haigh and A. T. Beck, ‘Neural Mechanisms of the Cognitive Model of Depression’, Nature Reviews Neuroscience 12:8 (2011), p. 467. • 21. P. Gilbert, The Compassionate Mind: A New Approach to Life’s Challenges (Oakland, CA, New Harbinger, 2010). • 22. P. Gilbert and C. Irons, ‘Focused Therapies and Compassionate Mind Training for Shame and Self-Attacking’, in P. Gilbert (ed.), Compassion: Conceptualisations, Research and Use in Psychotherapy (Hove, Routledge, 2005), pp. 263–325; D. C. Zuroff, D. Santor and M. Mongrain, ‘Dependency, Self-Criticism, and Maladjustment’, in S. J. Blatt, J. S. Auerbach, K. N. Levy and C. E. Schaffer (eds), Relatedness, Self-Definition and Mental Representation: Essays in Honor of Sidney J. Blatt (Hove, Routledge, 2005), pp. 75–90. • 23. P. Gilbert, M. Clarke, S. Hempel, J. N. V. Miles and C. Irons, ‘Criticizing and Reassuring Oneself: An Exploration of Forms, Styles and Reasons in Female Students’, British Journal of Clinical Psychology 43:1 (2004), pp. 31–50. • 24. W. J. Gehring, B. Goss, M. G. H. Coles, D. E. Meyer and E. Donchin, ‘A Neural System for Error Detection and Compensation’, Psychological Science 4 (1993), pp. 385–90; S. Dehaene, ‘The Error-Related Negativity, Self-Monitoring, and Consciousness’, Perspectives on Psychological Science 13:2 (2018), pp. 161–5. • 25. O. Longe, F. A. Maratos, P. Gilbert, G. Evans, F. Volker, H. Rockliff and G. Rippon, ‘Having a Word with Yourself: Neural Correlates of Self-Criticism and Self-Reassurance’, NeuroImage 49:2 (2010), pp. 1849–56. • 26. G. Downey and S. I. Feldman, ‘Implications of Rejection Sensitivity for Intimate Relationships’, Journal of Personality and Social Psychology 70:6 (1996), p. 1327. • 27. Там же. • 28. Ö. Ayduk, A. Gyurak and A. Luerssen, ‘Individual Differences in the Rejection – Aggression Link in the Hot Sauce Paradigm: The Case of Rejection Sensitivity’, Journal of Experimental Social Psychology 44:3 (2008), pp. 775–82. • 29. D. C. Jack and A. Ali (eds), Silencing the Self across Cultures: Depression and Gender in the Social World (Oxford, Oxford University Press, 2010). • 30. B. London, G. Downey, R. Romero-Canyas, A. Rattan and D. Tyson, ‘Gender-Based Rejection Sensitivity and Academic Self-Silencing in Women’, Journal of Personality and Social Psychology 102:5 (2012), p. 961. • 31. S. Zhang, T. Schmader and W. M. Hall, ‘L’eggo my Ego: Reducing the Gender Gap in Math by Unlinking the Self from Performance’, Self and Identity 12:4 (2013), pp. 400–412. • 32. Eisenberger and Lieberman, ‘Why Rejection Hurts’. • 33. E. Kross, T. Egner, K. Ochsner, J. Hirsch and G. Downey, ‘Neural Dynamics of Rejection Sensitivity’, Journal of Cognitive Neuroscience 19:6 (2007), pp. 945–56. • 34. L. J. Burklund, N. I. Eisenberger and M. D. Lieberman, ‘The Face of Rejection: Rejection Sensitivity Moderates Dorsal Anterior Cingulate Activity to Disapproving Facial Expressions’, Social Neuroscience 2:3–4 (2007), pp. 238–53. • 35. Kross et al., ‘Neural Dynamics of Rejection Sensitivity’. • 36. K. Dedovic, G. M. Slavich, K. A. Muscatell, M. R. Irwin and N. I. Eisenberger, ‘Dorsal Anterior Cingulate Cortex Responses to Repeated Social Evaluative Feedback in Young Women with and without a History of Depression’, Frontiers in Behavioral Neuroscience 10 (2016), p. 64. • 37. A. Kupferberg, L. Bicks and G. Hasler, ‘Social Functioning in Major Depressive Disorder’, Neuroscience and Biobehavioral Reviews 69 (2016), pp. 313–32. • 38. Steele, Whistling Vivaldi; S. J. Spencer, C. Logel and P. G. Davies, ‘Stereotype Threat’, Annual Review of Psychology 67 (2016), pp. 415–37. • 39. J. Aronson, M. J. Lustina, C. Good, K. Keough, C. M. Steele and J. Brown, ‘When White Men Can’t Do Math: Necessary and Sufficient Factors in Stereotype Threat’, Journal of Experimental Social Psychology 35:1 (1999), pp. 29–46. • 40. M. A. Pavlova, S. Weber, E. Simoes and A. N. Sokolov, ‘Gender Stereotype Susceptibility’, PLoS One 9:12 (2014), e114802. • 41. M. Wraga, M. Helt, E. Jacobs and K. Sullivan, ‘Neural Basis of Stereotype-Induced Shifts in Women’s Mental Rotation Performance’, Social Cognitive and Affective Neuroscience 2:1 (2007), pp. 12–19. • 42. M. M. McClelland, C. E. Cameron, S. B. Wanless and A. Murray, ‘Executive Function, Behavioral Self-Regulation, and Social-Emotional Competence: Links to School Readiness’, in O. N. Saracho and B. Spodek (eds), Contemporary Perspectives on Social Learning in Early Childhood Education (Charlotte, NC, Information Age, 2007), pp. 83–107. • 43. C. E. C. Ponitz, M. M. McClelland, A. M. Jewkes, C. M. Connor, C. L. Farris and F. J. Morrison, ‘Touch Your Toes! Developing a Direct Measure of Behavioral Regulation in Early Childhood’, Early Childhood Research Quarterly 23:2 (2008), pp. 141–58. • 44. J. S. Matthews, C. C. Ponitz and F. J. Morrison, ‘Early Gender Differences in Self-Regulation and Academic Achievement’, Journal of Educational Psychology 101:3 (2009), p. 689. • 45. S. B. Wanless, M. M. McClelland, X. Lan, S. H. Son, C. E. Cameron, F. J. Morrison, F. M. Chen, J. L. Chen, S. Li, K. Lee and M. Sung, ‘Gender Differences in Behavioral Regulation in Four Societies: The United States, Taiwan, South Korea, and China’, Early Childhood Research Quarterly 28:3 (2013), pp. 621–33. • 46. J. A. Gray, ‘Précis of The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-hippocampal System’, Behavioral and Brain Sciences 5:3 (1982), pp. 469–84; Y. Li, L. Qiao, J, Sun, D. Wei, W. Li, J. Qiu, Q. Zhang and H. Shi, ‘Gender-Specific Neuroanatomical Basis of Behavioral Inhibition/Approach Systems (BIS/BAS) in a Large Sample of Young Adults: a Voxel-Based Morphometric Investigation’, Behavioural Brain Research 274 (2014), pp. 400–408. • 47. D. M. Amodio, S. L. Master, C. M. Yee and S. E. Taylor, ‘Neurocognitive Components of the Behavioral Inhibition and Activation Systems: Implications for Theories of Self-Regulation’, Psychophysiology 45:1 (2008), pp. 11–19. • 48. C. S. Dweck, W. Davidson, S. Nelson and B. Enna, ‘Sex Differences in Learned Helplessness: II. The Contingencies of Evaluative Feedback in the Classroom and III. An Experimental Analysis’, Developmental Psychology 14:3 (1978), p. 268. • 49. C. S. Dweck, Mindset: The New Psychology of Success (New York, Random House, 2006); D. S. Yeager and C. S. Dweck, ‘Mindsets That Promote Resilience: When Students Believe that Personal Characteristics Can Be Developed’, Educational Psychologist 47:4 (2012), pp. 302–14. • 50. M. L. Kamins and C. S. Dweck, ‘Person versus Process Praise and Criticism: Implications for Contingent Self-Worth and Coping’, Developmental Psychology 35:3 (1999), p. 835. • 51. J. Henderlong Corpus and M. R. Lepper, ‘The Effects of Person versus Performance Praise on Children’s Motivation: Gender and Age as Moderating Factors’, Educational Psychology 27:4 (2007), pp. 487–508. • 52. Там же.
Глава 13
Что скрывается в ее хорошенькой головке, или Обновление в двадцать первом столетии
1. E. Racine, O. Bar-Ilan and J. Illes, ‘fMRI in the Public Eye’, Nature Reviews Neuroscience 6:2 (2005), p. 159. • 2. T. D. Satterthwaite, D. H. Wolf, D. R. Roalf, K. Ruparel, G. Erus, S. Vandekar, E. D. Gennatas, M. A. Elliott, A. Smith, H. Hakonarson and R. Verma, ‘Linked Sex Differences in Cognition and Functional Connectivity in Youth’, Cerebral Cortex 25:9 (2014), pp. 2383–94. • 3. D. Weber, V. Skirbekk, I. Freund and A. Herlitz, ‘The Changing Face of Cognitive Gender Differences in Europe’, Proceedings of the National Academy of Sciences 111:32 (2014), pp. 11673–8. • 4. F. Macrae, ‘Female brains really ARE different to male minds with women possessing better recall and men excelling at maths’, Mail Online, 28 July 2014, https://www.dailymail.co.uk/news/article-2709031/Female-brains-really-ARE-different-male-mindswomen-possessing-better-recall-men-excelling-maths.html (accessed 10 November 2018). • 5. ‘Brain regulates social behavior differences in males and females’ («Мозг управляет различиями в социальном поведении мужчин и женщин»), Neuroscience News, 31 October 2016, https://neurosciencenews.com/sex-difference-social-behavior-5392 (accessed 10 November 2018). • 6. K. Hashikawa, Y. Hashikawa, R. Tremblay, J. Zhang, J. E. Feng, A. Sabol, W. T. Piper, H. Lee, B. Rudy and D. Lin, ‘Esr1+ Cells in the Ventromedial Hypothalamus Control Female Aggression’, Nature Neuroscience 20:11 (2017), p. 1580. • 7. D. Joel, personal communication, 2017. • 8. ‘Science explains why some people are into BDSM and some aren’t’, India Times, 7 October 2017. • 9. K. Hignett, ‘Everything “the female brain” gets wrong about the female brain’, Newsweek, 10 February 2018, https://www.newsweek.com/science-behind-female-brain-802319 (accessed 10 November 2018). • 10. Fine, Delusions of Gender; Fine, ‘Is There Neurosexism’. • 11. C. M. Leonard, S. Towler, S. Welcome, L. K. Halderman, R. Otto, M. A. Eckert and C. Chiarello, ‘Size Matters: Cerebral Volume Influences Sex Differences in Neuroanatomy’, Cerebral Cortex 18:12 (2008), pp. 2920–31; E. Luders, A. W. Toga and P. M. Thompson, ‘Why Size Matters: Differences in Brain Volume Account for Apparent Sex Differences in Callosal Anatomy – The Sexual Dimorphism of the Corpus Callosum’, NeuroImage 84 (2014), pp. 820–24. • 12. J. Hänggi, L. Fövenyi, F. Liem, M. Meyer and L. Jäncke, ‘The Hypothesis of Neuronal Interconnectivity as a Function of Brain Size – A General Organization Principle of the Human Connectome’, Frontiers in Human Neuroscience 8 (2014), p. 915. • 13. D. Marwha, M. Halari and L. Eliot, ‘Meta-analysis Reveals a Lack of Sexual Dimorphism in Human Amygdala Volume’, NeuroImage 147 (2017), pp. 282–94; A. Tan, W. Ma, A. Vira, D. Marwha and L. Eliot, ‘The Human Hippocampus is not Sexually-Dimorphic: Meta-analysis of Structural MRI Volumes’, NeuroImage 124 (2016), pp. 350–66. • 14. S. J. Ritchie, S. R. Cox, X. Shen, M. V. Lombardo, L. M. Reus, C. Alloza, M. A. Harris, H. L. Alderson, S. Hunter, E. Neilson and D. C. Liewald, ‘Sex Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants’, Cerebral Cortex 28:8 (2018), pp. 2959–75. • 15. T. Young, ‘Why can’t a woman be more like a man?’, Quillette, 24 May 2018, https://quillette.com/2018/05/24/cant-woman-like-man (accessed 10 November 2018). • 16. J. Pietschnig, L. Penke, J. M. Wicherts, M. Zeiler and M. Voracek, ‘Meta-analysis of Associations between Human Brain Volume and Intelligence Differences: How Strong Are They and What Do They Mean?’, Neuroscience and Biobehavioral Reviews 57 (2015), pp. 411–32. • 17. D. C. Dean, E. M. Planalp, W. Wooten, C. K. Schmidt, S. R. Kecskemeti, C. Frye, N. L. Schmidt, H. H. Goldsmith, A. L. Alexander and R. J. Davidson, ‘Investigation of Brain Structure in the 1-Month Infant’, Brain Structure and Function 223:4 (2018), pp. 1953–70. • 18. ‘Finding withdrawn after major author correction: “Sex differences in human brain structure are already apparent at one month of age”’(«Результаты удалены после исправления автором: “Половые различия в структуре человеческого мозга заметны уже в возрасте одного месяца”), British Psychological Society Research Digest, 15 March 2018, https://digest.bps.org.uk/2018/01/31/sexdifferences-in-brain-structure-are-already-apparent-at-one-month-of-age (accessed 10 November 2018). • 19. D. C. Dean, E. M. Planalp, W. Wooten, C. K. Schmidt, S. R. Kecskemeti, C. Frye, N. L. Schmidt, H. H. Goldsmith, A. L. Alexander and R. J. Davidson, ‘Correction to: Investigation of Brain Structure in the 1-Month Infant’, Brain Structure and Function 223:6 (2018), pp. 3007–9. • 20. As seen on Pinterest. • 21. R. Rosenthal, ‘The File Drawer Problem and Tolerance for Null Results’, Psychological Bulletin 86:3 (1979), p. 638. • 22. S. P. David, F. Naudet, J. Laude, J. Radua, P. Fusar-Poli, I. Chu, M. L. Stefanick and J. P. Ioannidis, ‘Potential Reporting Bias in Neuroimaging Studies of Sex Differences’, Scientific Reports 8:1 (2018), p. 6082. • 23. V. Brescoll and M. LaFrance, ‘The Correlates and Consequences of Newspaper Reports of Research on Sex Differences’, Psychological Science 15:8 (2004), pp. 515–20. • 24. C. Fine, R. Jordan-Young, A. Kaiser and G. Rippon, ‘Plasticity, Plasticity, Plasticity… and the Rigid Problem of Sex’, Trends in Cognitive Sciences 17:11 (2013), pp. 550–51. • 25. B. B. Biswal, M. Mennes, X.-N. Zuo, S. Gohel, C. Kelly, S. M. Smith, C. F. Beckmann, J. S. Adelstein, R. L. Buckner, S. Colcombe and A. M. Dogonowski, ‘Toward Discovery Science of Human Brain Function’, Proceedings of the National Academy of Sciences 107:10 (2010), pp. 4734–9. • 26. Van Anders et al., ‘The Steroid/Peptide Theory of Social Bonds’. • 27. M. N. Muller, F. W. Marlowe, R. Bugumba and P. T. Ellison, ‘Testosterone and Paternal Care in East African Foragers and Pastoralists’, Proceedings of the Royal Society B: Biological Sciences 276:1655 (2009), pp. 347–54. • 28. S. M. van Anders, R. M. Tolman and B. L. Volling, ‘Baby Cries and Nurturance Affect Testosterone in Men’, Hormones and Behavior 61:1 (2012), pp. 31–6. • 29. W. James, The Principles of Psychology, 2 vols (New York, Henry Holt, 1890). • 30. E. K. Graham, D. Gerstorf, T. Yoneda, A. Piccinin, T. Booth, C. Beam, A. J. Petkus, J. P. Rutsohn, R. Estabrook, M. Katz and N. Turiano, ‘A Coordinated Analysis of Big-Five Trait Change across 16 Longitudinal Samples’ (2018), доступно на сайте https://osf.io/ryjpc/download/?format=pdf (accessed 10 November 2018) • 31. D. Halpern, Sex Differences in Cognitive Abilities, 4th edn (Hove, Psychology Press, 2012). • 32. Halpern et al. ‘The Science of Sex Differences in Science and Mathematics’. • 33. J. S. Hyde, ‘The Gender Similarities Hypothesis’, American Psychologist 60:6 (2005), p. 581. • 34. E. Zell, Z. Krizan and S. R. Teeter, ‘Evaluating Gender Similarities and Differences Using Metasynthesis’, American Psychologist 70:1 (2015), pp. 10–20.
Глава 14
Марс, Венера или Земля? Неужели мы все время ошибались в отношении пола?
1. A. Montañez, ‘Beyond XX and XY’, Scientific American 317:3 (2017), pp. 50–51. • 2. D. Joel, ‘Genetic-Gonadal-Genitals Sex (3G-Sex) and the Misconception of Brain and Gender, or, Why 3G-Males and 3G-Females Have Intersex Brain and Intersex Gender’, Biology of Sex Differences 3:1 (2012), p. 27. • 3. C. P. Houk, I. A. Hughes, S. F. Ahmed and P. A. Lee, ‘Summary of Consensus Statement on Intersex Disorders and Their Management’, Pediatrics 118:2 (2006), pp. 753–7. • 4. C. Ainsworth, ‘Sex Redefined’, Nature 518:7539 (2015), p. 288. • 5. Там же. • 6. V. Heggie, ‘Nature and sex redefined – we have never been binary’, Guardian, 19 February 2015, https://www.theguardian.com/science/the-h-word/2015/feb/19/nature-sex-redefined-wehave-never-been-binary • 7. A. Fausto-Sterling, ‘The Five Sexes’, Sciences 33:2 (1993), pp. 20–24. • 8. A. Fausto-Sterling, ‘The Five Sexes, Revisited’, Sciences 40:4 (2000), pp. 18–23. • 9. A. P. Arnold and X. Chen, ‘What Does the “Four Core Genotypes” Mouse Model Tell Us about Sex Differences in the Brain and Other Tissues?’, Frontiers in Neuroendocrinology 30:1 (2009), pp. 1–9. • 10. Montañez, ‘Beyond XX and XY’. • 11. L. Cahill, ‘Why Sex Matters for Neuroscience’, Nature Reviews Neuroscience 7:6 (2006), p. 477. • 12. A. N. Ruigrok, G. Salimi-Khorshidi, M. C. Lai, S. Baron-Cohen, M. V. Lombardo, R. J. Tait and J. Suckling, ‘A Meta-analysis of Sex Differences in Human Brain Structure’, Neuroscience & Biobehavioral Reviews 39 (2014), pp. 34–50. • 13. Tan et al., ‘The Human Hippocampus is not Sexually-Dimorphic’; D. Marwha, M. Halari and L. Eliot, ‘Meta-analysis Reveals a Lack of Sexual Dimorphism in Human Amygdala Volume’, NeuroImage 147 (2017), pp. 282–94. • 14. Ingalhalikar et al., ‘Sex Differences in the Structural Connectome of the Human Brain’. • 15. Hänggi et al., ‘The Hypothesis of Neuronal Interconnectivity’. • 16. D. Joel and M. M. McCarthy, ‘Incorporating Sex as a Biological Variable in Neuropsychiatric Research: Where Are We Now and Where Should We Be?’, Neuropsychopharmacology 42:2 (2017), p. 379. • 17. D. Joel, Z. Berman, I. Tavor, N. Wexler, O. Gaber, Y. Stein, N. Shefi, J. Pool, S. Urchs, D. S. Margulies and F. Liem, ‘Sex beyond the Genitalia: The Human Brain Mosaic’, Proceedings of the National Academy of Sciences 112:50 (2015), pp. 15468–73. • 18. M. Del Giudice, R. A. Lippa, D. A. Puts, D. H. Bailey, J. M. Bailey and D. P. Schmitt, ‘Joel et al.’s Method Systematically Fails to Detect Large, Consistent Sex Differences’, Proceedings of the National Academy of Sciences 113:14 (2016), p. E1965. • 19. D. Joel, A. Persico, J. Hänggi, J. Pool and Z. Berman, ‘Reply to Del Giudice et al., Chekroud et al., and Rosenblatt: Do Brains of Females and Males Belong to Two Distinct Populations?’, Proceedings of the National Academy of Sciences 113:14 (2016), pp. E1969–70. • 20. L. MacLellan, ‘The biggest myth about our brains is that they are “male” or “female”’, Quartz, 27 August 2017, https://qz.com/1057494/the-biggest-myth-about-our-brains-is-that-theyremale-or-female (accessed 10 November 2018). • 21. S. M. van Anders, ‘The Challenge from Behavioural Endocrinology’, pp. 4–6 in J. S. Hyde, R. S. Bigler, D. Joel, C. C. Tate and S. M. van Anders, ‘The Future of Sex and Gender in Psychology: Five Challenges to the Gender Binary’, American Psychologist (2018), http://dx.doi.org/10103.7/amp0000307. • 22. S. M. Van Anders, ‘Beyond Masculinity: Testosterone, Gender/Sex, and Human Social Behavior in a Comparative Context’, Frontiers in Neuroendocrinology 34:3 (2013), pp. 198–210. • 23. Anders, ‘The Challenge from Behavioural Endocrinology’. • 24. J. S. Hyde, ‘The Gender Similarities Hypothesis’, American Psychologist 60:6 (2005), p. 581; E. Zell, Z. Krizan and S. R. Teeter, ‘Evaluating Gender Similarities and Differences Using Metasynthesis’, American Psychologist 70:1 (2015), p. 10. • 25. B. J. Carothers and H. T. Reis, ‘Men and Women are from Earth: Examining the Latent Structure of Gender’, Journal of Personality and Social Psychology 104:2 (2013), p. 385. • 26. H. T. Reis and B. J. Carothers, ‘Black and White or Shades of Gray: Are Gender Differences Categorical or Dimensional?’, Current Directions in Psychological Science 23:1 (2014), pp. 19–26. • 27. Joel et al., ‘Sex beyond the Genitalia’. • 28. Martin and Ruble, ‘Children’s Search for Gender Cues’. • 29. I. Savic, A. Garcia-Falgueras and D. F. Swaab, ‘Sexual Differentiation of the Human Brain in Relation to Gender Identity and Sexual Orientation’, Progress in Brain Research 186 (2010), pp. 41–62; Joel, ‘Genetic-Gonadal-Genitals Sex (3G-Sex) and the Misconception of Brain and Gender’. • 30. J. J. Endendijk, A. M. Beltz, S. M. McHale, K. Bryk and S. A. Berenbaum, ‘Linking Prenatal Androgens to Gender-Related Attitudes, Identity, and Activities: Evidence from Girls with Congenital Adrenal Hyperplasia’, Archives of Sexual Behavior 45:7 (2016), pp. 1807–15. • 31. Colapinto, As Nature Made Him: The Boy Who Was Raised as a Girl. • 32. ‘Transgender Equality: House of Commons Backbench Business Debate – Advice for Parliamentarians’, Equality and Human Rights Commission, 1 December 2016, available at https://www.equalityhumanrights.com/en/file/21151/download?token=Z7I8opi2 (accessed 10 November 2018) • 33. ‘Gender confirmation surgeries rise 20 % in first ever report’, American Society of Plastic Surgeons website, 22 May 2017, https://www.plasticsurgery.org/news/press-releases/genderconfirmation-surgeries-rise-20-percent-in-first-ever-report (accessed 10 November 2018). • 34. House of Commons Women and Equalities Committee, Transgender Equality: First Report of Session 2015–16, HC 390, 8 December 2015, available at https://publications.parliament.uk/pa/cm201516/cmselect/cmwomeq/390/390.pdf (accessed 10 November 2018). • 35. C. Turner, ‘Number of children being referred to gender identity clinics has quadrupled in five years’, Telegraph, 8 July 2017, https://www.telegraph.co.uk/news/2017/07/08/number-children-referred-genderidentity-clinics-has-quadrupled (accessed 10 November 2018). • 36. J. Ensor, ‘Bruce Jenner: I was born with body of a man and soul of a woman’, Telegraph, 25 April 2015, https://www.telegraph.co.uk/news/worldnews/northamerica/usa/11562749/Bruce-Jenner-I-was-born-with-body-of-a-manand-soul-of-a-woman.html (accessed 10 November 2018). • 37. C. Odone, ‘Do men and women really think alike?’, Telegraph, 14 September 2010, https://www.telegraph.co.uk/news/science/8001370/Do-men-and-womenreally-think-alike.html (accessed 10 November 2018). • 38. T. Whipple, ‘Sexism fears hamper brain research’, The Times, 29 November 2016, https://www.thetimes.co.uk/edition/news/sexism-fears-hamper-brain-researchrx6w39gbw (accessed 10 November 2018); L. Willgress, ‘Researchers’ sexism fears are putting women’s health at risk, scientist claims’, Telegraph, 29 November 2016, https://www.telegraph.co.uk/news/2016/11/29/researchers-sexism-fears-putting-womens-health-risk-scientist (accessed 10 November 2018).
Заключение
Растим бесстрашных дочерей (и сострадательных сыновей)
1. S.-J. Blakemore, Inventing Ourselves: The Secret Life of the Teenage Brain (London, Doubleday, 2018). • 2. L. H. Somerville, ‘The Teenage Brain: Sensitivity to Social Evaluation’, Current Directions in Psychological Science 22:2 (2013), pp. 121–7. • 3. S.-J. Blakemore, ‘The Social Brain in Adolescence’, Nature Reviews Neuroscience 9:4 (2008), p. 267. • 4. B. London, G. Downey, R. Romero-Canyas, A. Rattan and D. Tyson, ‘Gender-Based Rejection Sensitivity and Academic Self-Silencing in Women’, Journal of Personality and Social Psychology 102:5 (2012), p. 961; E. Kross, T. Egner, K. Ochsner, J. Hirsch and G. Downey, ‘Neural Dynamics of Rejection Sensitivity’, Journal of Cognitive Neuroscience 19:6 (2007), pp. 945–56. • 5. Damore, ‘Google’s Ideological Echo Chamber’. • 6. Stoet and Geary, ‘The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education’. • 7. J. Clark Blickenstaff, ‘Women and Science Careers: Leaky Pipeline or Gender Filter?’, Gender and Education 17:4 (2005), pp. 369–86. • 8. A. Tintori and R. Palomba, Turn on the Light on Science: A Research-Based Guide to Break Down Popular Stereotypes about Science and Scientists (London, Ubiquity Press, 2017). • 9. London et al., ‘Gender-Based Rejection Sensitivity’. • 10. J. A. Mangels, C. Good, R. C. Whiteman, B. Maniscalco and C. S. Dweck, ‘Emotion Blocks the Path to Learning under Stereotype Threat’, Social Cognitive and Affective Neuroscience 7:2 (2011), pp. 230–41. • 11. E. A. Maloney and S. L. Beilock, ‘Math Anxiety: Who Has It, Why It Develops, and How to Guard against It’, Trends in Cognitive Sciences 16:8 (2012), pp. 404–6. • 12. K. J. Van Loo and R. J. Rydell, ‘On the Experience of Feeling Powerful: Perceived Power Moderates the Effect of Stereotype Threat on Women’s Math Performance’, Personality and Social Psychology Bulletin 39:3 (2013), pp. 387–400. • 13. T. Harada, D. Bridge and J. Y. Chiao, ‘Dynamic Social Power Modulates Neural Basis of Math Calculation’, Frontiers in Human Neuroscience 6 (2013), p. 350. • 14. I. M. Latu, M. S. Mast, J. Lammers and D. Bombari, ‘Successful Female Leaders Empower Women’s Behavior in Leadership Tasks’, Journal of Experimental Social Psychology 49:3 (2013), pp. 444–8. • 15. J. G. Stout, N. Dasgupta, M. Hunsinger and M. A. McManus, ‘STEMing the Tide: Using Ingroup Experts to Inoculate Women’s Self-Concept in Science, Technology, Engineering, and Mathematics (STEM)’, Journal of Personality and Social Psychology 100:2 (2011), p. 255. • 16. ‘Inspiring girls with People Like Me’, WISE website, https://www.wisecampaign.org.uk/what-we-do/expertise/inspiring-girls-with-people-likeme (accessed 10 November 2018). • 17. C. Ainsworth, ‘Sex Redefined’, Nature 518:7539 (2015), p. 288. • 18. E. S. Finn, X. Shen, D. Scheinost, M. D. Rosenberg, J. Huang, M. M. Chun, X. Papademetris and R. T. Constable, ‘Functional Connectome Fingerprinting: Identifying Individuals Using Patterns of Brain Connectivity’, Nature Neuroscience 18:11 (2015), p. 1664; E. S. Finn, ‘Brain activity is as unique – and identifying – as a fingerprint’, Conversation, 12 October 2015, https://theconversation.com/brainactivity-is-as-unique-and-identifying-as-a-fingerprint-48723 (accessed 10 November 2018). • 19. D. Joel and A. Fausto-Sterling, ‘Beyond Sex Differences: New Approaches for Thinking about Variation in Brain Structure and Function’, Philosophical Transactions of the Royal Society B: Biological Sciences 371:1688 (2016), 20150451; Joel et al., ‘Sex beyond the Genitalia’. • 20. L. Foulkes and S. J. Blakemore, ‘Studying Individual Differences in Human Adolescent Brain Development’, Nature Neuroscience 21:3 (2018), pp. 315–23. • 21. Q. J. Huys, T. V. Maia and M. J. Frank, ‘Computational Psychiatry as a Bridge from Neuroscience to Clinical Applications’, Nature Neuroscience 19:3 (2016), p. 404; O. Moody, ‘Artificial intelligence can see what’s in your mind’s eye’, The Times, 3 January 2018, https://www.thetimes.co.uk/article/artificial-intelligence-can-see-whatsin-your-minds-eye-w6k9pjsh6 (accessed 10 November 2018). • 22. M. M. Mielke, P. Vemuri and W. A. Rocca, ‘Clinical Epidemiology of Alzheimer’s Disease: Assessing Sex and Gender Differences’, Clinical Epidemiology 6 (2014), p. 37; S. L. Klein and K. L. Flanagan, ‘Sex Differences in Immune Responses’, Nature Reviews Immunology 16:10 (2016), p. 626. • 23. L. D. McCullough, G. J. De Vries, V. M. Miller, J. B. Becker, K. Sandberg and M. M. McCarthy, ‘NIH Initiative to Balance Sex of Animals in Preclinical Studies: Generative Questions to Guide Policy, Implementation, and Metrics’, Biology of Sex Differences 5:1 (2014), p. 15. • 24. D. L. Maney, ‘Perils and Pitfalls of Reporting Sex Differences’, Philosophical Transactions of the Royal Society B: Biological Sciences 371:1688 (2016), 20150119. • 25. http://lettoysbetoys.org.uk • 26. R. Nicholson, ‘No More Boys and Girls: Can Kids Go Gender Free review – reasons to start treating children equally’, Guardian, 17 August 2017, https://www.theguardian.com/tv-and-radio/tvandradioblog/2017/aug/17/no-more-boys-and-girls-can-kids-go-genderfree-review-reasons-to-start-treating-children-equally (accessed 10 November 2018); J. Rees, ‘No More Boys and Girls: Can Our Kids Go Gender Free? should be compulsory viewing in schools – review’, Telegraph, 23 August 2017, https://www.telegraph.co.uk/tv/2017/08/23/no-boysgirls-can-kids-go-gender-free-should-compulsory-viewing (accessed 10 November 2018). • 27. S. Quadflieg and C. N. Macrae, ‘Stereotypes and Stereotyping: What’s the Brain Got to Do with It?’, European Review of Social Psychology 22:1 (2011), pp. 215–73. • 28. C. Fine, J. Dupré and D. Joel, ‘Sex-Linked Behavior: Evolution, Stability, and Variability’, Trends in Cognitive Sciences 21:9 (2017), pp. 666–73. • 29. D. Victor, ‘Microsoft created a Twitter bot to learn from users. It quickly became a racist jerk’, New York Times, 24 March 2016, https://www.nytimes.com/2016/03/25/technology/microsoft-created-a-twitter-bot-to-learn-from-users-it-quicklybecame-a-racist-jerk.html (accessed 10 November 2018). • 30. Hunt, ‘Tay, Microsoft’s AI chatbot, gets a crash course in racism from Twitter’.

 


notes

Назад: Благодарности
Дальше: Примечания