Книга: Краткая история науки
Назад: Глава 17 Яркие искры
Дальше: Глава 19 Упорядочение мира

Глава 18
Механическая вселенная

 

Французская революция в 1789-м, американская революция (также известная как Война за независимость) в 1776-м и революция в России в 1917-м – каждая из них приводила к сдвигам в формах управления и меняла социальный порядок. Но Ньютонианская революция, о которой мало кто слышал, оказала на мир столь же мощное воздействие, и хотя она заняла не годы, а десятилетия, ее последствия оказались невероятно глубокими.
Ньютонианская революция изменила картину мира, в котором мы живем.
После смерти в 1727 году Ньютон не перестал быть значимой фигурой, не прекратил оказывать влияние на мир. В каждой из областей деятельности люди хотели стать «ньютоном», тем, кто перевернет основы и создаст новое: Адам Смит в экономике, шотландский врач Уильям Каллен – в медицине.
Джереми Бентам стремился занять место «ньютона» социальных и политических реформ.
Все они искали некий общий закон или принцип, который позволил бы связать экспериментальные наблюдения в их сфере знания; нечто подобное гравитации сэра Исаака, которая, по всей видимости двигала Вселенную ровным и предсказуемым образом через сезоны и годы. Как пошутил поэт Александр Поуп: «Природы строй, ее закон в извечной тьме таился. И Бог сказал: „Явись. Ньютон!“ И всюду свет разлился».
Англичанин Поуп был наверняка рад возвеличить собственного земляка.
Во Франции. Германии и Италии Ньютон считался значительной фигурой в то время, пока был жив, но рядом с ним ставили других ученых и иные научные традиции. Во Франции механический взгляд на Вселенную, предложенный Декартом, имел множество сторонников. В Германии шли жаркие дискуссии по поводу того, кто изобрел интегральное и дифференциальное исчисление, и многие говорили, что его открыл философ Г. В. Лейбниц (1646–1716), а исследования Ньютона имели второстепенное значение.
В Англии у Ньютона было множество поклонников, они охотно называли себя ньютонианцами и использовали его революционные озарения в математике, физике, астрономии и оптике.
Несмотря на все противодействие, достижения Ньютона в области экспериментальной оптики и законов движения проникали в умы континентальной Европы. Улучшить его репутацию помог человек, имевший мало отношения к точным наукам: поэт, романист и политический деятель Вольтер (1694–1778).
Наиболее известным его творением стал привлекательный литературный персонаж Кандид, выведенный в приключенческом романе. Кандид живет жизнью сплошь из одних катастроф – все, что может пойти неправильно, таким образом и идет, – но он никогда не отступает от своей философии: мир, созданный Богом, должен быть, без сомнений, лучшим из возможных. Так что он сохраняет веселое расположение духа, не лишается уверенности, что все с ним происходящее, сколь бы ужасным оно ни выглядело, ведет к лучшему «в этом лучшем из возможных миров».
Чудовищные приключения заканчиваются тем, что Кандид решает – он должен остаться дома и заняться собственным садом. Неплохой совет для всех беспокойных душ.
Роман «Кандид» был мягким выпадом в сторону философии, которой придерживался конкурент Ньютона по изобретению исчисления. Лейбниц. Вольтер всю жизнь являлся поклонником Ньютона, ну а на самом деле всего английского.
Он провел пару лет в Британии и оказался впечатлен свободой слова и мысли в этой стране. Дома, во Франции. Вольтеру довелось посидеть в тюрьме за критику в адрес католической церкви и короля, так что ему было с чем сравнивать. Он вернулся из Англии полный восхищения перед гением Ньютона и в популярной форме изложил его идеи на французском языке. У этой книги оказалось множество читателей по всей Европе, и едва не целый континент погрузился в дискуссии о том, каким образом математика и физика сэра Исаака позволяют объяснять движение планет и звезд, ежедневные приливы и отливы, траекторию пуль и падающих яблок.
Ньютон постепенно обрел выдающуюся и безупречную репутацию, поскольку инструменты – и математические, и физические, – которые он предложил в знаменитых «Началах», на самом деле работали. Они помогли математикам, физикам и астрономам решить ряд проблем, которых сам английский гений едва коснулся.
Ни одна научная работа не может стать навечно последней истиной, и это же касается «Начал». Но многие люди были счастливы, что такой гигант, как Ньютон, позволил им встать на свои плечи и заглянуть туда, куда они сами ни за что не добрались бы.
Давайте рассмотрим три примера: причина приливов, форма Земли, количество и орбиты планет в Солнечной системе.
Отлив – когда море отступает от берега, и вам приходится идти немного дольше, прежде чем искупаться, а прилив – когда море надвигается на сушу и смывает выстроенный вами замок из песка. Приливы и отливы происходят не хаотично, а по четкому расписанию, и знать его очень важно для моряков – чтобы быть в курсе, когда можно на высокой воде зайти в гавань.
Аристотель описал связь между приливами-отливами и Луной, ну а после того как все согласились, что Земля в самом деле движется, некоторые люди сравнили приливы с волнами, возникающими в ведре, если наклонять его туда-сюда.
Но для Ньютона ключевым оказалось понятие гравитации.
Он утверждал, что тяготение Луны действует сильнее, когда она ближе всего к Земле (подобно тому, как Земля вертится вокруг Солнца, точно так же и Луна вращается вокруг Земли по эллипсу, так что расстояние между двумя телами постоянно меняется). Гравитация нашего спутника притягивает воду в океанах, буквально приподнимает ее. Земля вращается, и под воздействие Луны попадает сначала одна область океана, затем другая и так далее, так что вздутие на его поверхности будет перемещаться вокруг планеты с постоянной скоростью.
Именно это и объясняет феномен приливов, и Ньютон был прав, это пример гравитации в действии.
Более поздние ньютонианцы внесли поправки в расчеты наставника.
Швейцарский врач Даниил Бернулли (1700–1782) предложил более детальный анализ приливов в 1740-м. Он куда больше интересовался математикой, физикой и навигацией, чем медициной, и помог объяснить, почему вибрируют струны (когда вы бренчите на гитаре) и как раскачивается маятник (в старинных напольных часах). Исследования Бернулли помогли внести улучшения в конструкцию морских судов, и в медицинской школе Базеля он использовал механику Ньютона, изучая то, как сокращаются наши мускулы, чтобы двигать конечностями.
Его работа о приливах стала ответом на запрос Академии наук в Париже, объявившей награду для того, кто лучше всех разберется с проблемой: научные общества часто так поступали. Бернулли разделил приз с еще несколькими ученым, каждый внес свой вклад в объяснение механизма приливов, включая в расчеты такой фактор, как сила притяжения Солнца.
Когда два объекта, таких как Земля и Луна, притягивают друг друга, математика описания этого процесса сравнительно проста. В реальности Солнце, планеты и другие массивные небесные тела вмешиваются в картину, и уравнения становятся намного более сложными.
Парижская академия наук оказалась также вовлечена в решение второго вопроса, волновавшего ньютонианцев: является ли Земля правильным шаром? Легко видеть, что она не столь гладкая, как, например, шарик для настольного тенниса, картину портят горы и ущелья. Но имеет ли она правильную шаровидную форму или отклоняется от нее?
Ньютон утверждал, что нет, поскольку он показал, что сила гравитации на экваторе и в северной Европе слегка отличается. Он узнал это из экспериментов с маятником. Взмах маятника происходит под влиянием силы притяжения, чем она сильнее, тем чаще он будет раскачиваться и тем меньше времени будет требоваться, чтобы совершить движение из стороны в сторону.
Моряки измерили, насколько далеко маятник уходит за одну секунду, и расстояние оказалось несколько меньше на экваторе. Эта разница подсказала Ньютону, что расстояние до центра нашей планеты немного больше на экваторе, хотя в том случае, если бы Земля представляла собой идеальный шар, то всюду была бы одна и та же дистанция от центра до поверхности.
Отсюда Ньютон сделал вывод, что Земля немного сплющена у полюсов, как будто ее немного придавили снизу и сверху, и выпячивается вокруг экватора. Он решил, что такая форма обусловлена тем, что планета вращалась вокруг оси север-юг, когда она была молодой, расплавленной и медленно остывала. Сэр Исаак намекнул, что она несколько старше, чем 6 тысяч лет (по расчетам церкви), но никогда не высказывался, насколько она стара на самом деле.
Когда работы Ньютона активно обсуждались во Франции в тридцатых годах восемнадцатого века, многие ученые отказывались верить, что Земля имеет столь несовершенную форму. И Людовик XV, король Франции, отправил две экспедиции, одну в Лапландию, к Полярному кругу, и другую в Перу, в окрестности экватора – дорогостоящий способ проверить несложную гипотезу.
Обе экспедиции сделали одно и то же – измерили точную длину одного градуса широты, но сделали это в разных точках земной поверхности. Географическая широта – показатель того, насколько далеко вы находитесь от линии экватора, где она равна нулю, на Северном полюсе будет +90 градусов, на Южном полюсе —90 градусов (чтобы обойти вокруг земного шара, необходимо 360 градусов). Вы можете видеть отметки широты, нанесенные в виде линий на карте мира или большого региона.
Если бы Земля была идеально круглой, то градус широты имел бы одинаковую длину в любом месте.
Первой вернулась экспедиция из Лапландии, поскольку им не пришлось отправляться так далеко. Вторая, из Перу, возвратилась только через девять лет, и тут стало ясно, что градус широты у Полярного круга оказался длиннее, чем у экватора, в точности так, как и предсказывала модель Ньютона.
Результат этого эксперимента сильно поднял авторитет англичанина на континенте.
Астрономы всей Европы смотрели на звезды и планеты, пытаясь предсказать, как те движутся и, следовательно, где их можно будет наблюдать в каждый момент времени (через день или через год). Эти прогнозы становились все более точными по мере того, как в ход шли результаты все большего и большего количества наблюдений, и по мере того, как усложнялись и совершенствовались применяемые для анализа уравнения.
Строились все более крупные телескопы, и это позволяло ученым заглядывать дальше и дальше в пространство, открывать новые звезды и даже галактики. Одним из наиболее известных наблюдателей за небом стал немец, обосновавшийся в Англии. Уильям Гершель (1738–1822). Он был музыкантом, но больше интересовался небом.
Одной ночью в 1781 году он заметил новый объект, который вовсе не был звездой. Сначала Гершель решил, что наткнулся на комету, и он описал ее для любителей астрономии города Бат, где он жил. Но известие привлекло внимание, и быстро стало ясно, что это не комета, а новая планета.
В конечном счете ее назвали Ураном, взяв имя бога из греческой мифологии.
Это открытие изменило жизнь Гершеля и позволило ему всецело посвятить себя астрономии. Король Георг III, принадлежавший к Ганноверской династии – тоже родом из Германии, – заинтересовался работами земляка, он помог ему построить крупнейший телескоп в мире и в конечном счете пригласил поселиться в окрестностях Виндзора, где располагался один из королевских замков.
Гершель настолько был увлечен наблюдениями за небом, что после переезда он устроил свою жизнь так, чтобы не пропустить ни единой ночи. В исследованиях ему помогала сестра Каролина (1750–1848), также бывшая опытным астрономом, ну а сын Уильяма Джон (1792–1871) продолжил работу отца, превратив науку в семейное дело.
Уильям Гершель не только разглядывал звезды, планеты и прочие небесные тела, он также размышлял над тем, что видел. Поскольку у него был лучший телескоп в мире, он мог видеть дальше коллег и создавать звездные каталоги более подробные и точные, чем публиковались до него.
Он догадался, что наша галактика. Млечный путь, не единственная во Вселенной, и долго и напряженно размышлял по поводу туманностей, тех областей неба, которые выглядят размытыми белыми пятнышками. Немногие из них можно при удаче различить и невооруженным взглядом, но телескоп Гершеля показал, что таких объектов много. В то же время некоторые участки Млечного пути тоже выглядят размытыми, и астрономы предположили, что туманности – это просто скопления звезд.
Гершель показал, что в некоторых случаях это действительно так, но другие представляют собой громадные облака газа, вращающиеся далеко-далеко в космосе. Помимо того, наблюдая за двойными звездами – парами звезд, расположенных близко друг к другу («близко» по космическим масштабам), он показал, что их поведение можно объяснить, используя концепцию гравитационного притяжения.
Идеи Ньютона преодолели гравитацию нашей планеты и дотянулись до самых дальних уголков пространства.
Законы гравитации и движения, а также математический анализ силы, ускорения (увеличения скорости) и инерции (тенденция продолжать движение по прямой линии) – все это изучено сэром Исааком – стали руководящими принципами для натурфилософов восемнадцатого века.
Никто не сделал больше, показывая, как много содержится в этих принципах, чем француз Пьер-Симон де Лаплас (1749–1827). Лаплас работал с Лавуазье, которого мы встретим в главе 20, но в отличие от своего невезучего друга. Лаплас пережил Французскую революцию без проблем. Наполеон восхищался им, и он стал ведущей фигурой в науке своей страны почти на полвека.
Лаплас использовал законы Ньютона и его уравнения, чтобы продемонстрировать, как можно анализировать движение объектов в небе и как можно с высокой степенью точности предсказать траектории планет, звезд, комет и астероидов. Он разработал теорию происхождения Солнечной системы, описал, как миллионы лет назад она появилась из первичного взрыва; Солнце отбросило громадные облака раскаленного газа, и те, постепенно остывая, стали планетами (и спутниками планет).
Он назвал это «небулярной гипотезой» (nebula – туманность на латыни) и предложил сложные уравнения в доказательство того, что все так и обстояло на самом деле. Лаплас описал версию того, что мы сейчас именуем Большим взрывом, хотя современные физики знают на порядок больше того, чем мог знать французский ученый.
Лаплас был настолько впечатлен мощью ньютоновских законов механики, что он верил – если бы мы только могли знать, где находится каждая частица Вселенной в конкретный момент, то мы смогли бы предсказать процесс развития мироздания до самого его конца. Он отдавал себе отчет, что на практике сделать подобное невозможно, и имел в виду, что законы движения и материи таковы, что Вселенная функционирует подобно хорошо сделанным часам, что она показывает точное время.
И этот взгляд на мироздание был основным почти сто лет после того, как Лаплас умер.
Назад: Глава 17 Яркие искры
Дальше: Глава 19 Упорядочение мира