Книга: Краткая история науки
Назад: Глава 15 Новая химия
Дальше: Глава 17 Яркие искры

Глава 16
Выше и выше… Ньютон

 

Я сомневаюсь, что вы когда-либо встречали человека столь же умного, как Исаак Ньютон, мне, по крайней мере, этого не удалось. Куда легче встретить людей столь же неприятных, как он – он не любил почти всех, с кем имел дело, страдал от вспышек гнева и думал, что все всегда строят против него козни. Он был скрытным, тщеславным и часто забывал о том, чтобы вовремя поесть, обладал множеством других неприемлемых в обществе характеристик, но он был умен, и его ум мы помним сегодня, даже если достаточно трудно разобрать, что он думал и писал.
Исаак Ньютон (1642–1727) мог быть несносным человеком по натуре, без влияния обстоятельств, но детство его прошло ужасно. Отец Исаака умер еще до его рождения, и мать, не ожидавшая, что ребенок выживет, оставила его собственным родителям после того, как вышла замуж повторно и завела другую семью.
Он ненавидел отчима, не любил деда и не был особенно добр к матери или бабушке. Фактически с самого раннего возраста Ньютон стал относиться к людям с неприязнью, он предпочитал быть в одиночестве, и ребенком, и очень старым человеком. Но в то же время было очевидно, что он очень умен, и его отправили в грамматическую школу в Грэнтеме (графство Линкольншир), неподалеку от которого они жили.
Там Исаака хорошо выучили латыни, так что он мог писать и по-английски, и по латыни с одинаковой легкостью, но большую часть времени в школе он тратил, создавая модели механических часов и других устройств, а также сооружая солнечные часы.
Ньютон занимался тем, что интересно только ему, и когда перебрался в Тринити-колледж, часть университета Кембриджа, в 1661 году. Предполагалось, что он будет читать древних, таких как Платон и Аристотель, и он с ними ознакомился (Ньютон вел дотошные записи, так что мы знаем, что он читал), но его любимыми текстами стали работы нового времени: Декарта. Бойля и других представителей современной науки.
С чтением все было в порядке, но Ньютон во многих вещах хотел разобраться сам. Чтобы добиться этого, он придумал множество новых экспериментов, но его величайший талант лежал в области математики, в том, как можно использовать ее, раскрывая тайны Вселенной.
Ньютон выработал большую часть своих идей за пару удивительно продуктивных лет. Ни один ученый за исключением Эйнштейна никогда не сделал так много за столь краткий период времени. Наиболее плодотворное время для Ньютона пришлось на 1665-й и 1666-й, и этот период он почти целиком провел в доме матери в Вулстхорпе (Линкольншир), поскольку чума, опустошавшая тогда Англию, заставила университет Кембриджа прекратить занятия и закрыться.
Именно в это время Ньютон увидел, как спелые яблоки падают с дерева в саду. Вероятно, все обстояло не так драматично, как говорит нам анекдот (спелый плод падает на голову ученому), но зрелище напомнило Исааку о все еще не объясненной проблеме: почему предметы падают на землю.
Он был занят разными научными материями в этот период.
Возьмем для примера математику; Галилей. Декарт и многие другие натурфилософы (ученые, иначе говоря) сделали многое, развивая эту науку саму по себе и, что даже более важно, используя ее для того, чтобы объяснить результаты наблюдений и экспериментов. Ньютон оказался еще лучшим математиком, он великолепно умел применять уравнения к разным научным проблемам.
Чтобы математически описать такие явления, как движение и гравитация, алгебры и геометрии недостаточно. Вы должны быть в состоянии рассматривать очень маленькие отрезки времени и движения, бесконечно малые, на самом деле. Когда изучению подвергается пуля, вылетевшая из ствола, или яблоко, упавшее с дерева, или планета, обращающаяся вокруг светила, вы должны сосредоточиться на дистанции, которую проходит любой из этих объектов за мельчайший из постижимых кусочков времени.
Многие натурфилософы до Ньютона осознавали эту проблему и предлагали различные варианты решения. Но Исаак, которому не было и тридцати, разработал собственный математический инструмент для решения задачи, он назвал его «методом флюксий» от слова flux, означающего нечто меняющееся.
Флюксии Ньютона приспособлены для вычислений, которые мы выполняем в той области математики, которую обычно именуют дифференциальным и интегральным исчислением. В октябре 1666-го, когда он закончил статью, написанную просто для собственного удовольствия, он оказался лучшим математиком Европы, но об этом не знал никто, кроме самого автора. Он не стал публиковать свои математические открытия прямо сразу, вместо этого он использовал их, и только постепенно раскрыл метод и результаты знакомым и коллегам.
Ньютон занимался не только математикой, его интересовал, например, свет.
С античных времен предполагалось, что солнечный свет белый, чистый и гомогенный (означает, что он состоит из однородных лучей). Цвета, как все считали, возникают в результате модификаций этого первичного безупречного сияния.
Ньютон прочитал работы Декарта, посвященные свету, и повторил некоторые из его экспериментов. Он использовал линзы, а потом и стеклянный объект, именуемый призмой, чтобы разложить свет. Его всем хорошо известный опыт состоял в том, чтобы впустить луч света в темную комнату так, чтобы он падал на призму, а затем на стену, расположенную в двадцати двух футах (около семи метров) от призмы.
Если свет гомогенен, как считал Декарт и многие другие до него, то проекция на стену должна представлять собой белый круг той же формы, как и дыра, через которую он прошел. Вместо такого круга на стене оказалась полоса, окрашенная во все цвета радуги. Ньютон на самом деле не создал радугу, но подошел близко к тому, чтобы объяснить, как она появляется.
На протяжении чумных лет Ньютон также активно работал и в области механики: законов, по которым движутся тела. Мы уже видели, как Галилей. Кеплер. Декарт и другие предлагали разные идеи, чтобы объяснить (и описать математически), что происходит, когда ядро вылетает из пушки, или как Земля движется вокруг Солнца.
Роберт Гук тоже интересовался механикой. Ньютон прочитал работы коллеги, но он отважился двинуться дальше, как он сам однажды написал Гуку: «Если я видел дальше других, то лишь потому, что стоял на плечах гигантов». Помните, как родители катали вас на плечах, когда вы были малы? Неожиданно вы становитесь в два или три раза выше и открываете множество вещей, которые не можете видеть сами. Именно о чем-то подобном Ньютон и пытался сказать. Его прекрасное изречение показывает, что каждый ученый, даже каждое поколение ученых, может извлечь выгоду из озарений тех, кто жил раньше.
В этом и заключается сущность науки. Но Ньютон и сам по себе был гигантом, и он прекрасно отдавал себе в этом отчет. Проблемы возникали, когда он не чувствовал, что другие люди признают это.
Трудности Ньютона с тем же Гуком начались, когда Исаак предложил самую первую статью Лондонскому королевскому обществу. Тогда общество поступило так, как сейчас ведут себя хорошие научные журналы: они послали текст другому специалисту, чтобы получить комментарий. Мы называем это «экспертной оценкой», и процесс ее получения – часть той открытости, которую требует гордость настоящего ученого.
Общество выбрало Гука, поскольку он, как всем хорошо было известно, тоже занимался светом. Ньютону совершенно не понравились комментарии Гука, и он даже хотел выйти из общества, но оно проигнорировало его заявление об отставке.
Используя удивительный взрыв творческой энергии 1660-х. Ньютон обратил внимание на другие области знания, и среди них оказались алхимия и теология. Как обычно, он делал подробные записи по поводу того, что сам читал, и по поводу экспериментов, которые проводил, и эти записи и в наши дни читают люди, желающие узнать больше о деятельности английского ученого.
В то же время он проводил свои исследования без лишнего шума, особенно касавшиеся религиозных вопросов, поскольку его взгляды отличались от тех, которые проповедовала англиканская церковь. Университет Кембриджа требовал от студентов, чтобы они принимали официальную веру.
К счастью для Ньютона и для науки в целом, у него были могущественные покровители в университете, так что он сначала стал членом Тринити-колледжа, а потом лукасовским профессором математики, не принося официальной клятвы верности христианским доктринам. Профессором он оставался на протяжении двадцати с гаком лет. Увы, к несчастью, он был отвратительным преподавателем, студенты не могли понять, о чем он говорит, и иногда на его лекции просто никто не являлся.
Ньютон наставлял студентов по поводу таких безопасных вещей, как свет и движение, не затрагивая алхимию и теологию, которыми занимался втайне, хотя эти предметы наверняка заинтересовали бы молодых людей.
К середине 1680-х работы Ньютона в математике, физике и астрономии понемногу становятся известными. Он написал множество статей и некоторые даже опубликовал, но всегда замечал, что его научная работа предназначена для него самого или для тех, кто придет после его смерти.
В 1684 году астроном Эдмунд Галлей посетил Ньютона в Кембридже (посмотрите на комету Галлея, названную в его честь, она в 2061 году вновь подойдет к Земле и станет различима невооруженным глазом). Галлей и Гук тогда дискутировали по поводу того, по какой траектории один объект будет вращаться вокруг другого (Земля вокруг Солнца или Луна вокруг Земли). Они размышляли, влияет ли гравитация на движение таких объектов, причем в рамках того, что мы сейчас называем «законом обратных квадратов».
Гравитация – только одно из нескольких проявлений этого самого закона.
Он гласит, что сила гравитации уменьшается пропорционально квадрату расстояния между двумя объектами и, само собой, увеличивается в той же пропорции, если они сближаются. Притяжение будет обоюдным, но масса каждого из объектов тоже имеет значение. В главе 12 рассказано, как Галилей использовал функцию «квадрата» в своей работе с падающими телами, и мы увидим этот принцип дальше, в других разделах, поскольку природа почему-то любит, когда некую величину возводят в квадрат, идет ли речь о времени, ускорении или притяжении.
Когда вы работаете со степенями (3 на 3 равно 9 или 32, например), вспомните, что природа наверняка улыбается в этот момент.
Визит Галлея заставил Ньютона отложить в сторону штудии по теологии и алхимии. Он сел за стол и написал свою величайшую работу, одну из важнейших книг за всю историю науки, пусть даже и не ставшую легким чтением.
Сейчас ее называют «Principia» («Начала»), хотя полное латинское наименование (автор писал на латыни) «Philosophiae naturalis principia mathematica» (по-русски – «Математические начала натуральной философии»): сочетанием «натуральная философия» тогда именовали науку вообще. Этот трактат давал исчерпывающее представление о том, как новая математика Ньютона может быть приложена к объяснению многих явлений природы с помощью уравнений, а не слов.
Очень немногие люди при жизни Ньютона поняли этот текст, и все его значение было осознано позже. В нем оказался сокрыт принципиально новый взгляд на то, как воспринимать и описывать мир.
Многие аспекты ньютонианского подхода к Вселенной содержались в трех знаменитых законах движения, которые он описал в «Началах».
Первый закон утверждает, что любое тело либо остается в покое, либо движется по прямой линии с постоянной скоростью до тех пор, пока на него не окажет воздействие какая-либо внешняя сила. Скала на склоне горы будет пребывать на одном месте вечно, пока нечто – ветер, дождь, человеческое существо – не заставит ее двигаться; и без каких-либо помех (например, трения) она будет двигаться по прямой.
Второй закон утверждает, что если некое тело находится в движении, то приложенная к нему сила может изменить направление движения. Насколько велико будет изменение, зависит от приложенной силы, от ее величины, и перемена направления происходит по прямой линии, по которой действует новая сила. Так, например, если хлопнуть по боку опускающийся воздушный шарик, то он полетит в сторону, если шлепнуть его сверху, то он двинется вниз быстрее.
Третий закон Ньютона гласит, что на любое действие существует противодействие той же силы. Это значит, что два тела всегда влияют друг на друга с одинаковой силой, но в противоположном направлении. Вы можете хлопнуть по воздушному шарику, и он полетит в сторону, но этот удар также окажет воздействие на вашу ладонь, и вы его почувствуете. Если нанести удар такой же силы по валуну, то он не сдвинется, а ваша рука отскочит от него и, скорее всего, будет болеть. Всего лишь по той причине, что легковесным объектам сложнее влиять на тяжелые, и наоборот (мы видели, что то же самое происходит и с гравитацией).
Эти три закона помогли собрать паззл, оставленный натурфилософами более раннего времени. В руках Ньютона они объяснили многие наблюдения, начиная от движения планет и заканчивая траекторией стрелы, выпущенной из лука. Законы движения дают возможность взглянуть на Вселенную целиком как на громадную, правильным образом действующую машину вроде часов, идущих в ногу со временем благодаря наличию системы пружин, рычагов и передач.
«Начала» Ньютона получили признание как гениальная работа, основа для новой науки. Она превратила этого склонного к уединению, раздражительного человека в некую разновидность знаменитости. Своеобразной наградой стал хорошо оплачиваемый пост смотрителя Монетного двора, мастерских, где правительство Англии занималось изготовлением монет и регулированием денежного обращения в стране.
Ньютон взялся за новую работу с большим удовольствием, углубился в борьбу с фальшивомонетчиками и экономическими проблемами. Ему пришлось перебраться в Лондон, ради чего он отказался от должности в Кембридже, и последние тридцать лет он провел в столице, где стал президентом Королевского общества.
За это время он значительно переработал «Начала», включил в них ряд своих новых работ, ответил на критические замечания, появившиеся после того, как вышло первое издание. Это обычная научная практика, и сейчас многие ученые поступают точно так же.
Вскоре после смерти Роберта Гука Ньютон опубликовал вторую значительную работу, «Оптика» (1704), посвященную исследованиям света. Ньютон и Гук много спорили по поводу того, кто из них что открыл первым и как понимать результаты их экспериментов, что такое свет и как он распространяется.
Большую часть экспериментов и расчетов для «Оптики» Ньютон сделал более сорока лет назад, но он не хотел предавать их огласке, пока Гук был жив. Этот трактат оказал на последующее развитие науки ничуть не меньшее влияние, чем «Начала», и мы встретимся со многими содержащимися в нем теориями в следующих главах, где будет показано, как другие ученые «стояли на плечах» Ньютона.
Он стал первым представителем науки, получившим рыцарское звание, сэром Исааком. Ему нравилось обладать влиянием, иметь власть, но счастья все это Ньютону не принесло.
Никто не назвал бы Исаака Ньютона приятным человеком, но он был, без сомнений, великим человеком, одним из самых выдающихся ученых, когда-либо живших на нашей планете, внесшим удивительный вклад в понимание того, как устроена Вселенная, «Начала» оказались высшей точкой астрономии и физики, активно развивавшейся в трудах Кеплера. Галилея. Декарта и многих других. В этой книге Ньютон соединил небеса и землю в единую систему, к которой приложил одни и те же законы. Он предложил математические и физические объяснения таким феноменам, как движение планет или падение разнообразных объектов на Землю, он обеспечил основания физики, которыми ученые пользовались до двадцатого века, до того момента, пока Эйнштейн и другие не показали, что во Вселенной есть много такого, что даже Ньютон не мог вообразить.
Назад: Глава 15 Новая химия
Дальше: Глава 17 Яркие искры