Книга: Краткая история науки
Назад: Глава 14 Знание – сила. Бэкон и Декарт
Дальше: Глава 16 Выше и выше… Ньютон

Глава 15
Новая химия

 

Если у вас есть набор для химических опытов, то вы можете знать, что такое лакмусовая бумага. Маленькие полоски бумаги могут сказать вам, является ли жидкость кислотной или щелочной. Если вы добавите немного уксуса в воду (сделав ее кислой) и окунете в нее голубую бумажку, то она станет красной, если сделаете то же с хлоркой (которая является щелочью), то красная бумага станет синей.
В следующий раз, используя лакмусовую бумагу, вспомните о Роберте Бойле, ведь он создал этот тест более трехсот лет назад.
Бойль (1627–1691) родился в большой аристократической семье в Ирландии, он был младшим, и никогда не имел нужды беспокоиться из-за денег. Он провел несколько лет в Итоне, элитном колледже в Англии, а затем путешествовал по Европе, обучаясь у частных наставников. В отличие от большинства обеспеченных людей. Бойль всегда был великодушен, и значительную долю своего состояния он отдал на дело благотворительности, например, он оплатил перевод Библии на языки американских индейцев.
Религия и наука играли равно важную роль в его жизни.
Бойль вернулся в Англию, где свирепствовала гражданская война; часть его семьи держала сторону короля Карла, другая часть – парламента, желавшего свергнуть короля и установить республику.
Его сестра уговаривала Роберта присоединиться к парламентаристам, и именно через нее он познакомился с энергичным реформатором в социальной, политической и научной области по имени Сэмюель Хартлиб. Подобно Бэкону Хартлиб верил, что наука обладает силой улучшить жизнь человечества, и убеждал молодого Бойля, что изучение агрономии и медицины может привести к таким улучшениям.
Бойль начал с медицины, с поиска лекарств от различных болезней, и с тех времен он сохранил непреходящее восхищение перед химией.
Некоторые религиозные люди боятся знакомить себя или своих детей с новыми идеями, поскольку думают – эти идеи могут подорвать их веру. Роберт Бойль не принадлежал к их числу, его вера была столь сильна, что он читал все, связанное с его областью научных интересов. Декарт и Галилей считались противоречивыми фигурами в дни его молодости, но он тщательно изучил труды обоих – «Звездный вестник» Галилео он прочитал в 1642-м во Флоренции, в том же самом месте и в тот год, где и когда умер автор книги, – а позже использовал их находки в собственных работах.
Бойль также интересовался ранними атомистами (глава 3), хотя он не был всецело убежден в том, что Вселенная состоит только из «атомов и пустоты». Он знал несомненно, что существуют некие базовые кирпичики материи, которые он именовал «корпускулами», но он мог заниматься своими исследованиями, избегая ассоциаций с безбожным (атеистическим) атомизмом древних греков.
Бойль был в равной степени не удовлетворен теорией четырех элементов Аристотеля – воздух, земля, огонь и вода, – и он показал своими экспериментами, что она неверна. Он сжигал ветку, только что срезанную ольхи, и демонстрировал, что дым, исходивший в процессе, вовсе не является воздухом; и в равной степени жидкость, сочившаяся из среза сгоревшего куска дерева, не представляла собой обыкновенную воду. Пламя отличается в зависимости от того, что горит, так что не существует чистого универсального огня, и пепел, остающийся после сгорания, не является землей.
Тщательно анализируя результаты этих простых экспериментов. Бойль сделал достаточно, чтобы показать – нечто столь обычное, как дерево, не состоит из воздуха, земли, огня и воды. Он также указал, что некоторые вещества, например золото, не могут быть разложены на частицы.
Если его нагреть, золото плавится и течет, но оно не меняется подобно сжигаемому дереву. Когда оно охлаждается, то просто возвращается к первоначальному состоянию. Бойль распознал, что вещи, которые окружают нас каждый день, такие как деревянные столы и стулья, шерстяные платья и шляпы, состоят из сложного набора компонентов, но вовсе не могут быть сведены ни к четырем элементам древних греков, ни к трем принципам Парацельса.
Некоторые верят, что Бойль подошел к современному определению химического элемента. Вне всяких сомнений, он подобрался к нему близко, когда описывал элементы как вещи «не сделанные из других субстанций, или друг из друга». Но он не сделал из этого положения выводов и не использовал его в собственных химических опытах.
Зато определение «корпускулы» как единицы материи отлично подходило к его экспериментальным целям. Бойль показал себя неутомимым экспериментатором, он проводил часы в собственной лаборатории либо один, либо с друзьями и описывал все опыты детально. Частью именно его внимание к подробностям и обеспечило ученому важное место в истории науки.
Бойль и его коллеги хотели, чтобы наука была открытой, доступной для всех, чтобы другие могли пользоваться знанием, результатом их трудов. Недостаточно уже было просто заявить о том, что ты открыл некий секрет природы, как делал Парацельс. Ученый должен быть в состоянии показать этот секрет другим, лично или с помощью описания-текста.
Настойчивое требование открытости было одним из руководящих правил в научных кругах, в которых вращался Бойль. Первым из них стала неформальная группа в Оксфорде, где он жил в 1650-х; когда большая часть ее членов перебралась в Лондон, они объединились с другими, чтобы образовать то, что стало в 1662 году Лондонским королевским обществом (до сих пор остается одним из ведущих научных сообществ мира).
Они знали, что воплощают в жизнь призыв, провозглашенный за полвека до того Френсисом Бэконом.
С самого начала Бойль стал одним из лидеров этого клуба для людей, посвятивших себя развитию науки. С самого начала его члены сошлись в том, что открытые ими новые знания должны приносить пользу.
Одним из лучших сотрудников Бойля стал другой Роберт, несколькими годами моложе: Роберт Гук (1635–1702). Он был даже умнее, чем Бойль, но в отличие от коллеги происходил из бедной семьи и всегда должен был пробивать дорогу в жизни с помощью ума. Гук был нанят королевским обществом, чтобы проводить эксперименты на каждой встрече, так что он стал очень искусен в изобретении разного рода научного оборудования и обращении с ним.
Он придумал множество экспериментов, например, как измерить скорость звука или оценить, что происходит, если перелить кровь одной собаки другой. В некоторых случаях собака, которой переливали кровь, выглядела даже более оживленной, чем ранее, и ученые решили повторить опыт на человеке, перелив ему кровь ягненка, но в этом случае ничего не получилось.
В Париже похожий эксперимент привел к тому же результату, подопытный умер, и от таких попыток решено было отказаться.
Задача Гука во время еженедельных встреч общества состояла в том, чтобы приготовить два или три не столь смертоносных опыта, способных воодушевить его членов на свершения.
Гук оказался одним из первых ученых мужей, сумевших извлечь пользу из микроскопа. Он использовал прибор, чтобы открыть целый мир вещей, недоступных обычному взгляду, распознать структуры, образующие растения, животных и другие объекты, настолько тонкие, что иначе их не рассмотреть. Члены общества любили смотреть в микроскоп во время своих встреч, и в дополнение к демонстрациям Гука они получали известия от других микроскопистов того времени, например, от голландца Антони ван Левенгука (1632–1723).
Левенгук был торговцем тканями, но в свободное время создавал и полировал очень маленькие линзы, позволяющие увеличивать больше чем в двести раз. Ему приходилось изготавливать новые линзы для каждого нового наблюдения, и произвел он их за долгую жизнь многие сотни.
Каждая линза помещалась в металлический кронштейн, под которым находился объект, предназначенный для изучения. Левенгук таким образом увидел крохотные организмы в капле воды из пруда, бактерии в соскобе с собственного зуба и множество других удивительных вещей.
Гук тоже верил, что микроскоп позволит исследователю подобраться ближе к природе, и иллюстрации в его книге «Микрография», опубликованной в 1665-м (год лондонской чумы), произвели настоящую сенсацию. Многие из этих картинок выглядят странными для нас, поскольку они показывают очень больших, увеличенных насекомых, таких как мухи или вши, и все же они стали знаменитыми.
Также он заполнил книгу обозрениями и рассуждениями по поводу увиденных через микроскоп структур и других вещей, а также их функций. На одной из иллюстраций изображен увеличенный кусок коры пробкового дерева – материала, использующегося для того, чтобы закрывать винные бутылки. Маленькие прямоугольные структуры, хорошо на нем различимые. Гук назвал «клетками».
Это не совсем то, что мы именуем клетками сейчас, но название осталось.
И у Бойля, и у Гука было одно и то же любимое механическое устройство – их собственная версия воздушного насоса. Он работал по тому же принципу, что и тот насос, который мы используем, чтобы накачать футбольный мяч или шины велосипеда: имеется большая центральная полость, плотно заткнутая с одного конца, и еще одно отверстие с другого конца, где находится клапан, через который газ может только выходить.
Выглядит не особенно впечатляюще, но это нехитрое устройство помогло решить одну из главных научных загадок того времени: возможно ли создать вакуум, то есть абсолютно пустое пространство, лишенное даже воздуха. Декарт настаивал, что вакуум невозможен («природа не терпит пустоты» было общей фразой).
Но если, – возражал Бойль, – материя в конечном счете состоит из корпускул разных форм, должно быть некоторое количество пространства между ними. Если нечто вроде воды нагреть, чтобы она начала испаряться и превращаться в газ, те же самые корпускулы никуда не денутся, сказал он, но газ займет больше места, чем занимала ранее жидкость.
После множества экспериментов, когда жидкости нагревали до превращения их в газ, он увидел, что все газы ведут себя одинаково, если попадают в воздушный насос. Бойль и Гук тогда пришли к заключению, до сих пор известному как закон Бойля: при постоянной температуре объем, занимаемый любым газом, находится в прямой математической связи с тем давлением, под которым он находится.
Иначе говоря, объем напрямую зависит от этого самого давления, и если увеличить давление, уменьшая объем, то газ сожмется (а если поднять температуру, то газ расширится и давление увеличится, но это все выводы из одного и того же принципа). Много позже, в будущем, закон Бойля поможет создать паровую турбину, так что запомните его.
Бойль и Гук использовали свой воздушный насос, чтобы изучить характеристики многих газов, включая воздух, которым мы дышим. Воздух, как мы помним, был одним из элементов древности, но для многих людей уже в семнадцатом веке стало ясно, что прозрачный газ, обеспечивающий нашу жизнь, не такое уж и простое вещество.
Он очевидным образом включен в процесс дыхания, поскольку мы втягиваем воздух легкими.
Но каковы другие его особенности?
Бойль и Гук, и вместе, и порознь, сильно интересовались тем, что происходит, когда горит кусок дерева или угля. Они также задавали себе вопрос, почему кровь выглядит темно-красной до того, как она попадает в легкие, и ярко-красной после того, как там побывает.
Бойль объединил эти два вопроса и предположил, что в легких происходит особая разновидность «горения» и воздух приносит с собой некую субстанцию, связывающую дыхание и воспламенение. Гук немало времени потратил на работу над этой проблемой, но трудности, связанные с составом и природой воздуха, а также с тем, что происходит в процессе дыхания, продолжали интриговать ученых более чем век после эпохи этих двух ученых, и их последователи повторяли эксперименты и ставили новые.
Вряд ли можно найти такую область науки, которой не касался Роберт Гук.
Он изобрел часы, приводимые в движение набором пружин (большой вклад в дело сохранения времени), размышлял о происхождении окаменелостей и исследовал природу света. У него нашлось что сказать по поводу проблемы, о которой мы упоминали ранее и на которую более детально взглянем в следующей главе: физика движения и сила.
Гук исследовал эти вопросы в то же самое время, что и Исаак Ньютон.
Как мы увидим. Ньютон сам по себе является той причиной, по которой многие слышали о сэре Исааке, но мало кто помнит о мистере Гуке.
Назад: Глава 14 Знание – сила. Бэкон и Декарт
Дальше: Глава 16 Выше и выше… Ньютон