Книга: Что знает рыба
Назад: Навигация и осязание
Дальше: От стресса к радости

Часть III
Какие эмоции испытывает рыба

Твоя жизнь – как шлюз обтекающих струй…
Д. Г. Лоуренс. Рыба

Боль, осознание и понимание

Вода, утоляющая огонь жабр…
Д. Г. Лоуренс. Рыба
Чувствуют ли рыбы боль? Хотя некоторым из нас это может показаться вполне очевидным, но, судя по тому, что люди делают с рыбами, исходя из их внешности, поведения и положения в группе позвоночных животных, многие придерживаются иного мнения. Мне известно очень немного исследований взглядов людей на эту проблему, вроде опросов североамериканских рыболовов и других заинтересованных лиц, имеющих отношение к спортивному рыболовству. Из них видно, что людей, верящих, что рыбы чувствуют боль, лишь немногим больше, чем не верящих в это. Известно исследование новозеландцев с похожим результатом.
Вопрос о том, испытывают ли рыбы боль, имеет огромное значение: вспомните о том астрономическом количестве убитых людьми рыб, о котором я рассказывал в прологе. Живые организмы, которые способны чувствовать боль, могут страдать, и потому заинтересованы в том, чтобы избегать боли и страдания. Возможность ощущать боль – вовсе не пустяк. Она требует осознанного опыта. Организм может избегать отрицательного стимула, не получая никакого болезненного опыта. Это может быть рефлекторный ответ, при котором нервы и мускулы заставляют тело двигаться, совершенно не задействуя в этом процессе мышление. Например, в больничной обстановке пациент-человек, находящийся под сильным воздействием седативных препаратов и неспособный испытывать боль, может, однако, отшатнуться в ответ на потенциально вредное раздражение вроде нагрева или сильного давления. Это происходит благодаря работе периферической нервной системы. Ученые используют термин «ноцицепция» для описания первой стадии в ощущении боли: она необходима, но не достаточна для формирования опыта боли. Лишь в том случае, когда информация от ноцицепторов передается в более высокие мозговые центры, ощущается боль.
Существуют серьезные основания полагать, что рыбы наделены эмоциями. Будучи позвоночными, они имеют такой же общий план строения тела, как и млекопитающие, который включает позвоночник, набор органов чувств и периферическую нервную систему, управляемую мозгом. Способность обнаруживать опасные события и учиться избегать их также полезна для рыб. Боль предупреждает животных о потенциальном ущербе, который может привести к повреждениям или смерти. То и другое снижает или полностью ликвидирует репродуктивный потенциал особи – именно поэтому естественный отбор благоприятствует избеганию этих ужасных последствий. Боль учит и мотивирует животных избегать повторения опасного события.
Я хочу предложить вам выполнить одно задание, которое могло бы дать некоторое представление о том, что рыбы обладают сознательным пониманием и потому способны ощущать боль. Сходите в публичный аквариум. Выберите один из резервуаров. Потратьте пять минут, наблюдая за находящимися в нем рыбами. Смотрите долго и упорно. Взгляните внимательнее в их глаза. Понаблюдайте за движениями их плавников и тел, держа в памяти то, что вы теперь знаете об их зрении, слухе, обонянии и осязании. Выберите отдельную особь. Обращает ли она внимание на других рыб? Видите ли вы некую упорядоченность в ее движениях или же она выглядит всего лишь беспорядочно плавающей в разные стороны, словно на автопилоте?
Если вы это сделаете, то, скорее всего, вы увидите вовсе не случайный характер поведения. Вы заметите склонность рыб придерживаться общества других особей собственного вида. Вы увидите – особенно у больших рыб с легче заметными частями тела, – что их глаза не таращатся в одну точку, а поворачиваются в глазницах. Если вы особенно терпеливы и наблюдательны, то обратите внимание на особенности, демонстрируемые разными индивидами. Например, одна рыба может оказаться доминирующей над другой, будет бросаться в погоню за ней, когда подчиненная особь нарушает некую социальную или физическую границу. Одни индивидуумы могут быть более рискованными, другие – более скромными.
Когда я был маленьким, я не проявлял особого внимания, разглядывая рыб в аквариуме. Я смотрел не на других существ, а лишь на плавающих созданий разных форм и цветов. Постепенно я начал наблюдать за рыбами все внимательнее, и они становились все интереснее. И сейчас, когда я задерживаюсь перед стеклянной стеной, которая разделяет две вселенных жизни, я замечаю, что в их плавании есть упорядоченность и закономерность, а социальная жизнь определенным образом организована. Даже в маленькой емкости, которая представляет собой жалкую замену сложной естественной среде обитания, у рыб обычно есть любимые места для плавания или отдыха.
Рыбы, несомненно, активно воспринимают происходящее, но осознают ли? Осознание включает обладание опытом, умение обращать внимание, запоминать. Осознающее существо не просто живое; оно способно влиять на свою жизнь. В этой книге содержится много научных данных, подтверждающих идею о том, что рыбы обладают способностью осознавать. Но иногда история из жизни доносит это до нас лучше, чем любая наука. Ана Негрон, моя подруга-медик из Пенсильвании, поделилась со мной таким сообщением:
Это было в 1989 году. Я медленно плыла под водой, возвращаясь к парусной лодке, стоящей на якоре в кристально чистых водах близ северо-восточного побережья Пуэрто-Рико, когда мы заметили друг друга – я и групер длиной четыре фута. Он был так близко, что я почти могла протянуть руку и дотронуться до него. Весь его левый бок блестел в солнечном свете. Я прекратила работать ластами и замерла на месте. Мы неподвижно парили в воде всего лишь в футе под поверхностью, глядя друг на друга. По мере того как я дрейфовала по течению, его большой глаз двигался в глазнице, прикованный к моему взгляду; это продолжалось, наверное, полминуты, но показалось вечностью. Я не помню, кто из нас уплыл первым, но, когда я залезала обратно в лодку, я могла сказать, что рыба и женщина осознавали присутствие друг друга. Хотя с тех пор мне удалось заглянуть в глаза китам, присутствие этой рыбы по-прежнему ощущается мною сильнее всего.
Когда я наблюдаю за тем, что делают рыбы – плавают в воде, гоняются друг за другом, собираются в одном конце аквариума для кормления, – мой здравый смысл решительно говорит мне о том, что они сознающие, чувствующие существа. Это идет вразрез с моим глубоко укоренившимся, интуитивным стремлением думать иначе. Но здравый смысл и интуиция – не то, чем занимается наука. Давайте же посмотрим, что говорит последняя о способности рыб чувствовать.
Спор о способности рыб испытывать эмоции
Два ключевых игрока в лагере сторонников ощущения рыбами боли – биологи Виктория Брайтвейт из Университета штата Пенсильвания и Линн Снеддон из Ливерпульского университета. Джеймс Роуз, почетный профессор Вайомингского университета, отрицает способность рыб чувствовать боль. В 2012 году Роуз и шестеро его коллег, все – обладатели солидных дипломов, опубликовали статью под названием «Действительно ли рыба может ощущать боль?» (Can Fish Really Feel Pain?) в журнале Fish and Fisheries. Решающим моментом в их аргументации была вера в то, что рыбы не наделены сознанием (то есть не имеют представления ни о чем, не способны чувствовать, думать и даже видеть); а поскольку боль – исключительно сознательный опыт, из этого следует, что рыбы не могут ее испытывать. Основа их утверждений – то, что я называю «кортикоцентризмом», мнение, что для «обладания такой же, как у человека, способностью ощущать боль» нужно иметь неокортекс – отдел мозга, похожий на цветную капусту, на котором заметны извилины и борозды. Слово «неокортекс», если переводить его латинские корни, означает «новая кора» и обозначает новый слой серого вещества, который считается частью мозга позвоночных, появившейся в ходе эволюции самой последней. Он есть только в мозге млекопитающих.
Если неокортекс – вместилище сознания и им обладают только млекопитающие, из этого следует, что только они обладают и сознанием. Но здесь есть одна большая загвоздка. Птицы лишены неокортекса, однако свидетельства существования сознания у птиц общепризнаны. Познавательные достижения птиц включают изготовление инструментов, удержание в памяти месяцами местоположения многочисленных спрятанных предметов, категоризацию объектов в соответствии с их общими характеристиками (вроде цвета и формы), узнавание голоса по прошествии нескольких лет, использование имен для призыва молодняка обратно в гнездо на закате, оригинальные игры вроде катания с сугробов или автомобильных стекол, а также хитроумные проказы – такие, как кража бутербродов и стаканчиков с мороженым у ничего не подозревающих туристов. Сознательные действия птиц оказались настолько впечатляющими, что классификация вошедших в поговорку «птичьих мозгов» была пересмотрена в 2005 году, чтобы отразить параллельный путь эволюции, который избрал птичий палеокортекс (древняя кора), позволяющий птицам проявлять познавательную активность на уровне, сопоставимом с млекопитающими. Птицы сокрушили идею о том, что живому существу нужен неокортекс, чтобы осознавать что-либо, обладать опытом, делать нечто умное, – или чувствовать боль.
Если какое-то животное без неокортекса все же оказывается способным сознавать, это опровергает представление о том, что наличие сознания требует присутствия неокортекса. По сути, для заявления о том, что рыбы лишены сознания, нет никаких оснований. «Существует много способов приобрести сложное сознание, – говорит невролог Лори Марино из Университета Эмори. – Предположение о том, что рыбы не могут чувствовать боль, потому что у них нет необходимых анатомических особенностей нервной системы, напоминает аргумент о том, что воздушные шары не могут летать, потому что у них нет крыльев». Люди не могут плавать, потому что у них нет плавников?
Ответ рыб на наличие коры головного мозга у млекопитающих – паллиум, который примечателен своим удивительным разнообразием и сложностью. Хотя паллиум среднестатистической рыбы обладает меньшей вычислительной мощностью, чем неокортекс среднестатистического примата, все более и более очевидно, что у рыб паллиум выполняет сходные функции, что неокортекс у млекопитающих и палеокортекс у птиц. В дальнейшем мы рассмотрим эти способности, но пока позвольте мне просто упомянуть обучение, память, распознавание индивидов, игру, использование орудий и совместную деятельность.
Возвращаясь на крючок
Давайте рассмотрим ситуацию, когда рыба раз за разом попадается на крючок, причем делает это быстро. «Истории о большеротых окунях, которые были пойманы и отпущены, но лишь затем, чтобы развернуться и вновь оказаться пойманными в этот же или на следующий день, иной раз даже не по одному разу», – пишет биолог Кейт А. Джонс в книге, посвященной ужению большеротого окуня. Понятно, что некоторые рыбаки утверждают, будто это – подтверждение тому, что опыт попадания на крючок не наносит рыбе травму. Иначе почему же они так быстро вновь схватывают наживку? (В этот момент мы могли бы спросить: почему рыба раз за разом возвращалась к руке человека, ища ласки, если она ничего не может чувствовать?)
Но есть и понятие «боязнь крючка», знакомое многим рыболовам. Существуют исследования, в ходе которых проходило достаточно долгое время, прежде чем рыбы возвращались к нормальной жизни после поимки на удочку. Карпы и щуки избегали наживки до трех лет после того, как всего лишь один раз попались на крючок. Серия тестов на большеротых окунях показала, что они тоже быстро учились избегать крючков и продолжали бояться крючка в течение шести месяцев. Существуют также исследования, в ходе которых рыбы возвращались к тому, что выглядело как нормальное поведение, через несколько минут после того, как подвергались инвазивным процедурам вроде хирургического вмешательства для вживления радиомаячка, чтобы отслеживать их перемещения в дикой природе. Я просто не в состоянии понять, как это должно бросать тень сомнения на наличие боли у рыб. Очень голодная рыба, которая ощущает боль, не прекращает хотеть есть, поэтому побуждение кормиться может перевесить тормозящее действие травматической боли.
В интервью 2014 года Кулум Браун, который исследует познавательные способности и поведение рыб в Департаменте биологических наук Университета Маккуори в Сиднее, сказал по поводу явления повторного попадания на крючок следующее:
Им надо есть. В мире существует слишком много неопределенности, чтобы позволять пище уйти. Многие клюнут, даже когда будут совершенно сытыми. ‹…› Люди часто говорят мне: «Но я же продолжаю вылавливать одну и ту же рыбу». Ладно, согласен. Но если вы голодали, и кто-то продолжал подкладывать рыболовный крючок вам в гамбургер (скажем, крючок будет в одном из каждых десяти), что вы стали бы делать? Вы продолжите есть гамбургеры, потому что если вы этого не сделаете, то умрете голодной смертью, .
Исследования боли у форели
Вопрос боязни крючка мало что доказывает, поэтому ученые и философы, вероятно, будут еще долго продолжать споры о сознании у животных. Чтобы изучить рыбьи способности к ощущению, стоило бы рассмотреть научные исследования боли у рыб. По этой теме существует значительное количество материала, из которого в рамках этой книги я могу привести в пример лишь малую часть. К числу самых тщательных относятся эксперименты с одной из костных рыб – радужной форелью, выполненные Брайтвейт и Снеддон. Их итоги подведены в книге Виктории Брайтвейт «Чувствует ли рыба боль?» (Do Fish Feel Pain?).
Первый шаг в исследовании способности рыб чувствовать боль – узнать, есть ли у них для этого соответствующие приспособления. Какие типы нервной ткани имеются у рыб и работает ли она так, как ожидалось бы от животного, наделенного ощущениями?
Чтобы это выяснить, форелей подвергли глубокой и необратимой анестезии (они находились без сознания на протяжении всего эксперимента, а затем были убиты путем передозировки анестезирующего вещества по его окончании), и их нервы были выведены наружу хирургическим путем. Был исследован тройничный нерв – самый крупный из черепных нервов, который имеется у всех позвоночных и отвечает за чувствительность тканей головы и моторные функции вроде кусания и жевания; оказалось, что он содержит одновременно A-дельта и C-волокна. У людей и других млекопитающих эти волокна связаны с двумя типами болевого ощущения: A-дельта-волокна сигнализируют об острой начальной боли во время ранения, тогда как C-волокна сигнализируют о более тупой, пульсирующей боли, которая следует за ней. Интересно, что исследователи обнаружили, что у форели доля C-волокон была значительно ниже (около 4 %), чем обнаруженная у других исследованных позвоночных (от 50 до 60 %). Это позволяет предположить, что, по крайней мере, у форелей постоянная боль после исходного ранения могла быть менее серьезной. Но отличие в их соотношении может мало что означать, поскольку, как отметила Линн Снеддон, A-дельта-волокна форели работают таким же образом, как C-волокна у млекопитающих, реагируя на самые разнообразные вредные раздражители.
Затем исследовательская команда захотела выяснить, активизируют ли тройничный нерв болевые раздражители, нанесенные на кожу форели. Это было сделано путем стимуляции тройничного узла – области, где сходятся три чувствительные ветви тройничного нерва. Микроэлектроды вводились в тела отдельных нервных клеток нервного узла, а затем к рецепторным областям на голове и морде применялись три вида раздражителей: механический (прикосновение), тепловой и химический (слабая уксусная кислота). Все они вызывали быстрые вспышки активности в тройничном нерве, что регистрировалось как электрические сигналы в электродах. Одни нейроны отвечали на все три типа раздражителей, другие – на один или два. Это позволило ученым сделать важный вывод: у форели имеются соответствующие приспособления, чтобы реагировать на различные типы потенциально болезненных происшествий: механическое повреждение (вроде пореза или укола), ожог или химическое повреждение (от кислоты).
Обладание приспособлениями для ощущения боли – надежное основание для вывода о том, что организм наделен способностью чувствовать, но это не последнее слово. Даже в свете накопленных на данный момент свидетельств по-прежнему может выясниться, что нейроны, нервные узлы и мозг рыб способны лишь регистрировать негативный раздражитель рефлекторным путем, без всякого психологического ощущения боли.
В следующей фазе экспериментов форели подвергались одному из четырех способов воздействия. После вылова сетью и последовавшей за этим быстрой анестезии им: (1) делали в рот (под кожу) инъекцию пчелиного яда, (2) делали инъекцию уксуса, (3) делали инъекцию нейтрального соляного раствора или (4) подвергали похожему обращению, но без инъекций. Манипуляции 3 и 4 позволили исследователям исключить эффекты, связанные с манипуляцией рыбами и уколом иглой. Затем форели были возвращены в аквариум, где проживали до этого, и за ними наблюдали из-за черного занавеса, чтобы больше их не тревожить. Ученые измеряли темп движения жаберных крышек, проверяя, насколько быстро те открываются и закрываются: это измерение известно по более ранним исследованиям как хороший индикатор дистресса у рыб. Все форели явно испытывали дистресс из-за обращения, которому подверглись, но не одинаково, а в зависимости от того, что с ними делали. В двух контрольных группах частота движений жаберных крышек возросла с исходного темпа, составляющего около 50 движ./мин до примерно 70. Частота движений жаберных крышек возросла до примерно 90 движ./мин в группах с пчелиным ядом и уксусом.
Все форели были обучены подплывать к кормушке всякий раз, когда включался свет, но после соответствующих манипуляций с ними ни одна не приблизилась к кольцу, хотя рыбы не ели целый день. (Это составляет разительный контраст с историями о рыбах, попадавшихся на крючок и возвращавшихся к наживке, когда их выпускали.) Вместо этого они стояли на дне аквариума, опираясь на грудные плавники и хвост. Кроме того, некоторые рыбы из «пчелиной» и «уксусной» групп покачивались из стороны в сторону и совершали отдельные стремительные рывки. Некоторые из рыб, обработанных уксусом, также терлись мордами о стенки аквариума или гравий, словно пытаясь облегчить жжение или зуд.
К концу первого часа скорость движений жаберных крышек контрольных рыб вернулась в норму. Для сравнения, частота движений жабр у рыб из групп с пчелиным ядом и уксусом по-прежнему составляла 70 движ./мин или больше спустя два часа после инъекций и вернулась в нормальное состояние лишь через три с половиной часа. Кроме того, через час после инъекции контрольные рыбы начали вести себя живее, когда включался свет, хотя по-прежнему не приближались к кормушке с пищей. Спустя один час двадцать минут после инъекции рыбы из обеих контрольных групп приближались к кормушке и хватали гранулы корма, когда те тонули в воде. Потребовалось почти втрое больше времени, прежде чем рыбы, обработанные пчелиным ядом и уксусом, начали проявлять интерес к кольцу кормушки.
Отрицательные реакции форели на причиненный им ущерб удалось резко снизить при помощи болеутоляющего средства – морфия, . Морфий принадлежит к семейству препаратов, называемых опиоидами, и известно, что рыбы обладают чувствительностью к таковым. Их поведение в ответ на применение опия в данном случае согласуется с их опытом облегчения боли при помощи препарата.
В других экспериментах, проводившихся примерно в это же время, физиологи Лилия Червова и Дмитрий Лапшин документально зафиксировали, что ноцирецепторы – нервная ткань, чувствительная к вредным раздражителям, – широко распределены по телу у форели, трески и карпа. Они обнаружили, что самые чувствительные места располагались вокруг глаз, ноздрей, хвоста и грудных и спинных плавников – частей тела, которые, подобно нашим лицам и рукам, играют самую основную роль в ощущении объектов и манипуляции с ними. Червова и Лапшин также обнаружили, что препарат трамадол подавлял чувствительность рыб к ударам током: чем больше было количество препарата, тем быстрее облегчалась боль.
Эксперименты Брайтвейт, Снеддон, Червовой и Лапшина явно указывают на то, что рыбы чувствуют боль, а не просто отвечают рефлекторным путем на негативный раздражитель. Но стоило провести еще один тест, который включал бы изменения в сложном поведении, требующем познавательных процессов более высокого порядка. Распознавание незнакомого объекта и сосредоточение внимания на нем были как раз тем, что нужно, и именно на это решили обратить свое внимание Снеддон, Брайтвейт и Майкл Джентл.
Как и большинство рыб, форели распознают объекты, недавно помещенные в окружающую их обстановку, и активно избегают их. Зная об этом, исследователи построили башенки из красных кирпичиков Lego и установили их в аквариумах, где жили эти рыбы. Когда они вернули «контрольных» рыб в аквариумы после того, как их брали в руки и вводили им в губы соляной раствор, эти рыбы активно избегали башенок, тогда как рыбы, получившие инъекцию уксуса, регулярно проплывали рядом с башенкой. Похоже, инъекции уксуса угнетали когнитивное поведение форелей, связанное с опознанием и избеганием нового объекта. Исследовательская команда предположила, что боль от уксуса настолько стрессировала форелей, что они оказывались неспособными проявлять нормальные формы поведения.
В ходе дальнейших попыток проверить эту гипотезу дистресса рыбам в обеих группах после инъекций соляного раствора или уксуса был введен морфий. На сей раз рыбы из обеих групп – соляной раствор + морфий и уксус + морфий – избегали башенок из Lego.
Другие исследования способности чувствовать у рыб
Эксперименты, о которых я вкратце рассказал здесь, – еще не последнее слово в вопросе о боли у рыб. Оценить то, как рыбы отвечают на раздражители, которые мы расцениваем как болезненные, можно и с других точек зрения. Одно из ожидаемых отличий осознанно испытываемой боли от бессознательной, рефлекторной реакции на неприятные раздражители – это изменчивый или специфичный ответ. Одним из способов проверки этого является изменение интенсивности стимула. Например, макроподы в ответ на слабые удары током плавали активнее, словно пытаясь найти путь к спасению. Более сильные удары, напротив, приводили к отступлению от источника удара и проявлению защитного поведения.
Другой подход состоит в том, чтобы менять психологическое состояние рыбы во время действия раздражителя. В ходе исследования, в котором использовались 132 данио-рерио, ответы на инъекцию уксусной кислоты в хвост отличались друг от друга в зависимости от того, были ли рыбы испуганы перед инъекцией. Когда производилась только инъекция, данио плавали беспорядочно и совершали движения хвостом, не приводившие к рывку вперед. Однако в том случае, когда рыбы предварительно подвергались воздействию феромона тревоги других данио, они вели себя так, как обычно поступают представители этого вида, когда сталкиваются с чем-то новым или пугающим: они либо замирали на месте, либо плавали у дна. Они не метались беспорядочно и не совершали хаотичные движения хвостами. Различие позволяет предположить, что страх рыб подавил или пересилил боль; то же явление хорошо известно у людей и других млекопитающих. Это адаптивный ответ, потому что избегание опасной ситуации, которая может закончиться смертью, берет верх над неподвижностью ради залечивания раны.
Линн Снеддон использовала то, что я расцениваю как самый убедительный способ исследования боли у данио-рерио: она задалась вопросом, готовы ли рыбы «заплатить», чтобы получить облегчение от боли. Как и многие животные, содержащиеся в неволе, рыбы положительно относятся к наличию визуальных и других стимулов. Например, данио-рерио предпочитает плавать скорее в богатой стимулами камере с растительностью и объектами, которые можно исследовать, чем в пустой камере в том же самом аквариуме. Когда Снеддон делала данио инъекцию уксусной кислоты, это предпочтение не менялось; не менялось оно и у других данио, инъецированных соленой водой (вызывавшей лишь кратковременную боль). Однако, если в пустой камере аквариума, которой не оказывалось предпочтение, было растворено болеутоляющее вещество, инъецированные кислотой рыбы выбирали прежде нелюбимый пустой отсек. Рыбы, инъецированные соляным раствором, оставались на богатой стимулами стороне аквариума. Таким образом, данио могут заплатить определенную цену за получение некоторого облегчения своей боли.
Когда Янике Нордгрин из Норвежской школы ветеринарных наук и Джозеф Гарнер, ныне работающий в Стэнфордском университете, представили иной метод для оценки боли у золотых рыбок, он дал удивительный результат. Они прикрепили маленькие нагреватели из фольги к шестнадцати золотым рыбкам и постепенно повышали температуру. (Я получил некоторое облегчение, прочитав, что аппарат был оснащен датчиками и предохранителями, отключающими нагреватели, чтобы предотвратить серьезные ожоги.) Половина золотых рыбок получила инъекции морфия, остальные – соляной раствор. Авторы полагали, что если золотые рыбки чувствуют боль от нагрева, то обработанные морфием особи были бы способны выдерживать более высокие температуры до того, как начнут реагировать на них. Однако обе группы рыб показывали соответствующий ответ на боль: они начинали «извиваться», и это происходило примерно при одной и той же температуре. Однако, проверяя золотых рыбок через тридцать минут или больше после возвращения в аквариумы, где они проживали до этого, исследователи заметили, что рыбы в каждой из групп демонстрировали различное поведение. Обработанные морфием рыбы плавали примерно так же, как обычно, тогда как рыбы, инъецированные раствором соли, проявляли больше реакций избегания хищника, в том числе совершая так называемые «скачки из С-образного положения» (сгибали голову и хвост на одну и ту же сторону тела, образуя подобие буквы «С» и, резко распрямляясь, совершали скачок) и подергивания хвостом.
Исследование Гарнера и Нордгрин свидетельствуют о том, что рыба может чувствовать и начальную острую боль, и последующую продолжительную боль. Ответ можно уподобить нашей реакции на прикосновение руки к горячей печке. Вначале мы даем немедленный рефлекторный ответ: невольно отдергиваем руку от жара, не останавливаясь, чтобы подумать об этом. И лишь через секунду или чуть позже мы ощущаем основную волну боли. Затем мы можем испытывать дискомфорт на протяжении нескольких часов или дней, пока наши тела «напоминают», чтобы мы не вздумали повторить принесшее боль действие. Этот результат позволяет мне предположить, что у золотых рыбок могло бы быть больше C-волокон, связанных с длительной, пульсирующей болью, чем у форелей, у которых они были обнаружены в небольшом количестве.
Путь к научному согласию
В настоящее время совокупность доказательств наличия у рыб чувства боли достаточно велика, поэтому ее поддерживают уважаемые организации, среди которых Американская ассоциация ветеринаров. В изданном ею в 2013 году «Руководстве по эвтаназии животных» говорится:
Утверждения о том, что реакция рыб на боль представляет собой всего лишь простые рефлексы, были опровергнуты исследованиями, демонстрирующими электрическую активность переднего и среднего мозга в ответ на возбуждение, которая различается в зависимости от типа раздражаемых ноцицепторов. Консолидация научения и запоминания в опытах, где рыб обучают избегать вредных раздражителей, помещает вопрос о способности рыб познавать и ощущать в плоскость, когда превосходство накопленных свидетельств поддерживает точку зрения, в соответствии с которой в отношении рыб должны применяться те же соображения, что и в случае наземных позвоночных, когда речь идет об облегчении боли.
В 2012 году группа весьма уважаемых ученых встретилась в Кембриджском университете, чтобы обсудить текущее научное понимание сознания у животных. После целого дня обсуждений была составлена и подписана Кембриджская декларация о сознании. Один из ее выводов:
Нейронные сети, поддерживающие поведенческие/электрофизиологические состояния внимания, сна и принятия решений, очевидно, возникли в процессе эволюции еще на стадии радиации беспозвоночных; их наличие очевидно у насекомых и головоногих моллюсков (например, у осьминога).
Перевод: для сознания не требуется наличия позвоночника. Кроме того:
Как представляется, нейронные субстраты эмоций не ограничиваются кортикальными структурами. Фактически подкорковые нейронные сети, возбуждающиеся у людей, когда их обуревают эмоции, также играют исключительно важную роль в возникновении эмоционального поведения у животных.
Перевод: эмоции также возникают в отделах мозга, не относящихся к коре больших полушарий. И еще:
Отсутствие неокортекса не является особенностью, исключающей возможность переживания организмом эмоциональных состояний.
Перевод: живому существу не нужен большой, замысловато устроенный мозг вроде человеческого, чтобы чувствовать возбуждение от пищи или страх из-за хищников.
Теперь вы можете подумать: «Браво, умники-ученые, вы додумались до нового способа показать всем, что вы – последние, кто признал то, что здравый смысл уже объявил вполне очевидным. Как сказал физиолог и автор Гай Брэдшоу, «это не новость, это банальность». Но это также говорит о серьезности проблемы признания феномена (сознания), личного по своей сути, и об исторически сложившемся нежелании науки применить его в полном объеме к кому-то иному, помимо человека.
Рыбы демонстрируют признаки ощущения боли и физиологически, и поведенчески. Они обладают такими же специализированными нервными волокнами, какие используют млекопитающие и птицы, чтобы обнаружить вредные раздражители. Они могут учиться избегать ударов током и попадания на крючки рыболовов. Они осознают наносимый им вред, когда их тела подвергаются неприятным повреждениям, и это ухудшение состояния здоровья можно повернуть вспять, если дать им облегчение от боли.
Может ли это стать последней главой в книге споров о боли и сознании у рыб? Вряд ли. Всегда могут найтись те, кто будет апеллировать к нашей неуверенности, чтобы утверждать, что рыбы лишены чувства боли. Даже если свидетельства для немногих изученных видов рыб будут считаться истинным чувством боли, по-прежнему можно заявлять, что мы просто не знаем этого в отношении множества других видов рыб, которым повезло не оказаться под скальпелями, шприцами или маленькими нагревателями из фольги.
Существование сознания и боли у рыб не просто поддерживается общим мнением научных кругов: возможно, сознание впервые эволюционировало именно у рыб. Почему? Потому что рыбы были первыми позвоночными, потому что они появились в ходе эволюции более чем за 100 миллионов лет до того, как предки нынешних млекопитающих и птиц поставили свою лапу на сушу, и потому, что эти предки получили бы немалую выгоду от наличия хотя бы минимума необходимых приспособлений к моменту начала колонизации такого разительно нового ландшафта. Также, вероятно, предки рыб приобрели в процессе эволюции сознание: ведь в наше время рыбы обладают способностями, которые согласуются с наличием у них сознания и ощущений. И, как мы увидим, рыбы используют свой мозг, чтобы добиваться иной раз весьма полезных результатов.
Назад: Навигация и осязание
Дальше: От стресса к радости