Книга: История биологии с древнейших времен до начала XX века
Назад: Глава 33 Начало перестройки морфологии и систематики растении на эволюционной основе
Дальше: Глава 35 Формирование микробиологии как самостоятельной науки

Глава 34
Оформление физиологии растении в самостоятельную науку

Благодаря внедрению эксперимента в изучение жизни растений к середине XIX в. были выработаны основные приемы количественного учета газового обмена растения, выяснены значение листьев и корней, как органов питания, необходимость для поддержания жизни растений минеральных и азотсодержащих соединений, наличие дыхания, сходного с дыханием животных; положено начало разработки правильного объяснения поглощения, передвижения и выделения воды и растворенных веществ клетками растительных тканей, изучения ростовых движений и других процессов жизнедеятельности растений. Все это сделало возможным окончательное оформление физиологии растений во второй половине XIX в. в самостоятельную науку.
Интенсивное развитие фитофизиологии в этот период и выделение ее из ботаники было обусловлено рядом причин и прежде всего запросами сельского хозяйства. Быстрый рост городского населения и переход к товарному производству в период капитализма требовали интенсификации сельского хозяйства; назрела необходимость использования в этих целях специальных научных знаний не только по общему земледелию, почвоведению и агрономической химии, но и по физиологии растений. Знание основ питания, размножения, распространения и приспособления растений к неблагоприятным условиям и других жизненных процессов стало настоятельной потребностью сельскохозяйственной практики.
Формированию физиологии растений в самостоятельную науку в большой степени способствовали успехи физики и химии. Первоначально фитофизиологи стремились раскрыть сложные законы жизни растений лишь путем сведения их к более простым уже изученным физико-химическим процессам.
Развитие эксперимента в биологии расширяло сферу исследований процессов жизнедеятельности растений и вызывало появление новых. Дисциплин — физической, биологической и агрономической химии, в свою очередь способствовавших превращению физиологии растений в самостоятельную науку. Использование новейших физических и химических методов исследования имело существенное значение для успешного решения таких проблем, как оптические свойства растительных пигментов, осмотические явления, транспирация, воздушное и минеральное питание, рост и движение растений.

 

Продукты и схемы процесса фотосинтеза.
Особенно успешной была разработка ряда вопросов, связанных с воздушным питанием растений. Значительный вклад в изучение углеродного питания растений в процессе фотосинтеза был сделан Ю. Саксом, широко использовавшим экспериментальный метод для изучения различных проблем физиологии растений.

 

Юлиус Сакс. 1832–1897.

 

Сакс настойчиво и последовательно проводил мысль о необходимости изучения не только результатов тех или иных процессов в растениях, но их назначения и причин.
Для исследования воздушного питания растений Сакс использовал метод водных культур и убедительно показал, что растения, выращенные на питательных растворах, лишенных углеродных соединений, успешно синтезировали органические вещества, черпая углерод из воздуха. Этот процесс усвоения растением углекислого газа атмосферы под воздействием солнечного света он назвал ассимиляцией и одним из первых в начале 60-х годов провел изучение продуктов этой ассимиляции. Посредством разработанного им метода йодной пробы (или «реакции Сакса») он наглядно показал, что первым продуктом ассимиляции углерода является крахмал, накапливающийся в зеленых пластидах высших растений. Аналогичное явление при помощи того же метода наблюдал в 1866 г. А.С. Фаминцын у зеленых водорослей. Этот крахмал Сакс назвал первичным в отличие от вторичного крахмала, откладывающегося в растении в виде запасного вещества.
В дальнейшем уточнением вопроса о первичном продукте ассимиляции занимались многие исследователи. Шимпер (1875), например, полагал, что таким продуктом является глюкоза, а Бем (1883) и А. Мейер (1885, 1888) — фруктоза, или фруктовый сахар. В 1887 г. ученик Фаминцына В. Храповицкий показал, что в процессе фотосинтеза в пластидах листа образуется не только крахмал, но и белковые вещества, а В.В. Сапожников (1889, 1894) доказал правильность этого положения количественными методами. Однако должным образом эти работы были оценены лишь спустя более полувека. Исследования же Винклера (1892), Г. Брауна и Д. Мориса (1893) на многие десятилетия утвердили в науке представление, что сахар является исходным продуктом всех метаболических изменений, происходящих в зеленых листьях: будучи первичным продуктом ассимиляции углерода, он выполняет роль временного запасного вещества в хлоропластах. При высокой концентрации сахар полимеризуется в крахмал, а при передвижении по растению последний гидролизуется на глюкозу и фруктозу.

 

Андрей Сергеевич Фаминцын. 1835–1918.

 

Более простые продукты фотосинтеза обнаружить не удавалось, поэтому предположения о составе веществ, образующихся на первых этапах ассимиляции двуокиси углерода и воды, носили сугубо гипотетический характер. К числу таковых относится формальдегидная гипотеза А. Байера (1870), согласно которой первым продуктом фотосинтеза, возникающим при взаимодействии воды и углекислого газа, является формальдегид. Несмотря на более чем полувековой успех у широкого круга ученых, ее несостоятельность была полностью доказана в 40-х годах XX в. Исходя из этой гипотезы, Байер построил в 1870 г. первую схему механизма фотосинтеза. В следующем году схема была существенно дополнена К.А. Тимирязевым, который ввел в нее в качестве одного из действенных компонентов хлорофилл. «Рабочая гипотеза» Тимирязева, как называл ее сам автор, была единственной на протяжении четверти века, хотя многие зарубежные ученые склонны были видеть в ней лишь повторение схемы Байера, что не соответствует действительности.

 

Климент Аркадьевич Тимирязев. 1843–1920.

 

В 1896 г. А.Н. Бах предложил схему фотосинтеза, в которой процесс ассимиляции углекислоты рассматривался не как результат отщепления кислорода от молекулы углекислоты, а как сопряженный окислительно-восстановительный процесс, происходящий за счет водорода и гидроксила воды. Таким образом, Бах утверждал водное происхождение фотосинтетического кислорода, следовательно, в его схеме получили отражение непризнанные широким кругом ученых предположения Ю. Либиха (1843), А.И. Ходнева (1847), Ж. Буссенго (1858), М. Бертло (1864) и других о выделении кислорода при фотосинтезе за счет воды, а не углекислого газа, предположения, которым суждено было ждать своего окончательного подтверждения целый век. Недостаток схемы Баха состоял в том, что в ней не получила никакого отражения роль хлорофилла в процессе фотосинтеза.

 

Пигменты растений.
Между тем во второй половине XIX в. исследователи уже не сомневались в тесной зависимости фотосинтеза от зеленого пигмента растений, а поэтому исследования хлорофилла стали проводиться значительно шире, что привело к существенному изменению представлений о пигментном составе листовой вытяжки. Было доказано, что получаемая из листьев зеленая вытяжка содержит не один пигмент. В 1860 г. французский химик Э. Фреми разделил ее на две части — голубовато-зеленую и желтую. Первую часть он считал истинным хлорофиллом, а вторую — ксантофиллом. В 1864 г. английский физик Д.Г. Стокс в свою очередь показал, что хлорофилловая вытяжка зеленых растений представляет собой смесь не двух, а четырех пигментов — двух зеленых и двух желтых. Такие же данные позднее получил англичанин Г.К. Сорби (1878), но их наблюдения не были должным образом оценены современниками. Выводы Стокса и Сорби о существовании в хлорофилловой вытяжке двух желтых пигментов подтвердились исследованиями А. Арно, который в 1885–1887 гг. обнаружил в листьях желтый пигмент со свойствами, соответствующими свойствам уже известного пигмента корней моркови — каротина. К концу века Г. Молиш (1894–1896) извлек из водорослей ранее неизвестные пигменты — фикоциан и фикоэритрин. В 1882 г. И.П. Бородин получил твердый кристаллический хлорофилл, изучением которого в дальнейшем занимались русские исследователи Н.А. Монтеверде (1890, 1893) и М.С. Цвет (1901).
Широкое распространение получили исследования оптических свойств хлорофилла, начатые в 1852 г. Стоксом. Этому способствовал открытый в 1859 г. Г.Р. Кирхгофом и Р.В. Бунзеном метод спектрального анализа, успешно использованный для изучения хлорофилла и его производных Тимирязевым (1869, 1871). Объектом изучения оптических свойств стали все растительные пигменты. Это позволило окончательно доказать неоднородность состава листовой вытяжки и изучить ее компоненты.
Тимирязев же первый связал изучение роли света в процессе фотосинтеза с изучением оптических свойств хлорофилла. При этом он показал преимущества применения спектрального анализа по сравнению с методом цветных фильтров при изучении не только пигментов растений, но и происходящих в них физиологических процессов. Тимирязев опроверг господствовавшее до 70-х годов представление об определяющей роли в фотосинтезе желтых лучей спектра. Если Сакс (1964) объяснял высокую интенсивность разложения углекислоты в желтой части спектра ее максимальной яркостью, то Тимирязев (1869, 1871, 1875) доказал, что максимум фотосинтеза соответствует не световой, а температурной напряженности, с которой в то время связывали энергетическую способность лучей. При этом он вскрыл, что причина ошибочности выводов предшественников — несовершенство их методики. Тимирязев (1871), Е. Ломмель (1871) и Н. Мюллер (1872) обнаружили максимум поглощения не только в красных, но и в синих лучах спектра и высказали мысль о более полном использовании при фотосинтезе именно тех лучей, которые поглощаются хлорофиллом.

 

Первый микроспектроскоп К.А. Тимирязева. 1871.

 

В 1881 г. Энгельман посредством разработанного им бактериального метода экспериментально доказал существование второго максимума фотосинтеза в сине-фиолетовой части спектра. В 1871 г. Тимирязев высказал предположение об окислительно-восстановительном характере превращений хлорофилла при фотосинтезе. Опираясь на открытие Г. Фогелем (1873) хроматических сенсибилизаторов, он в 1875–1885 гг. развил представление о хлорофилле как химическом и физическом сенсибилизаторе, доказав затем (1885–1886) экспериментально способность хлорофилла претерпевать химические превращения, характерные для сенсибилизаторов фотохимических процессов.
Основываясь на химических и оптических исследованиях хлорофилла и гемоглобина и их производных, Э. Шунк и Л. Мархлевский (1897) высказали некоторые доводы в пользу химической близости состава пигментов крови и листьев, которую предугадывал еще в 1871 г. Тимирязев. На основании этих доводов и собственных исследований М. Ненцкий в том же 1897 г. развил представление о генетической связи хлорофилла и гемоглобина, а в 1900–1902 гг. экспериментально доказал, что основой молекул обоих пигментов являются гомологи пиррола.
Предметом многочисленных исследований был вопрос об условиях образования хлорофилла. Сакс (1859) отметил, что при умеренной освещенности распад и восстановление пигмента идут непрерывно, а Фаминцын (1866) установил, что этот синтез возможен и при искусственном освещении. Ряд исследований показал, что на биосинтез хлорофилла оказывает влияние температура, наличие в клетках кислорода и сахара. Многие эксперименты и наблюдения свидетельствовали и о том, что для нормального зеленения растений необходимы соединения, содержащие железо; их отсутствие в источниках питания вызывало у растений хлороз — развитие бесхлорофильных листьев, неспособных к фотосинтезу. Природа же хлороза в XIX в. не была раскрыта. Ученые неправильно полагали, что железо необходимо растению потому, что оно входит в состав хлорофилла так же, как в гемоглобин крови. Роль железа при синтезе зеленого пигмента была выяснена лишь в следующем столетии.

 

О существовании исходного бесцветного предшественника хлорофилла высказывались Бем (1859), Сакс (1862), Прингсгейм (1874) и Визнер (1877), но первые опыты по его выявлению и изучению спектральных свойств протофиллина предпринял Тимирязев в 1885–1889 гг. Другой русский физиолог Н.А. Монтеверде, продолживший исследование предшественника хлорофилла, — назвал его протохлорофиллом.

 

Фотосинтез и различные факторы среды.
Во второй половине XIX в. были получены данные о зависимости фотосинтеза от различных условий внешней среды (интенсивности света, концентрации углекислого газа и кислорода воздуха, влажности, температуры и прочих факторов), которые затем были положены в основу эколого-физиологических исследований фотосинтеза. Хотя многие исследователи отмечали, что в природе эти факторы действуют одновременно, однако до XX в. изучение их воздействия на фотосинтез происходило в значительной мере изолированно. Исследования сводились в основном к выяснению оптимальных условий (освещенности, температуры, оводненности, концентрации углекислого газа и кислорода) для фотосинтеза. Одновременно определялись минимальные и максимальные величины названных факторов, в пределах которых может протекать этот процесс. Многое в этом направлении сделали Буссенго (1868), Фаминцын (1880), Крейслер (1885), Тимирязев (1889), Жюммель (1892) и другие. В конце XIX в. исследователей стал интересовать вопрос о влиянии на фотосинтез таких внешних факторов, как различные атмосферные газы и химические соединения, и внутренних факторов — содержание хлорофилла листа и накопление ассимилятов. Вместе с тем многие исследователи отмечали связь фотосинтеза с другими процессами жизнедеятельности растений — ростом и клеточным делением (Фаминцын, 1886), дыханием (Бородин, 1876), транспирацией (Тимирязев, 1893) и другими — и пытались вскрыть ее закономерности.
Во второй половине XIX в. развернулись исследования роли фотосинтеза в цепи энергетических превращений на Земле. Вслед за Тимирязевым (1875), высказавшим положение о применимости закона сохранения энергии к фотосинтезу, его ученик Ф.Н. Крашенинников (1901) опытным путем доказал справедливость этого положения, показав посредством энергетического анализа, что поглощенный растением свет преобразуется в теплотворную способность ассимилятов.
Первым, кто обратил особое внимание на значение зеленого растения в космическом круговороте энергии и веществ, был К.А. Тимирязев. Он отметил неразрывную связь между энергией солнца и зеленым растением, улавливающим часть этой энергии и накапливающим ее в молекулах органических веществ. В крунианской лекции «Космическая роль растения» (1903) он убедительно показал, как солнечная энергия «запасается растениями впрок». Лишь небольшая группа бактерий представляет исключение, так как, подобно зеленым растениям, может синтезировать органические вещества из тех же неорганических веществ, но не при помощи света, а за счет энергии химических реакций. Заслуга открытия таких микроорганизмов, названных хемосинтетиками, принадлежит С.Н. Виноградскому (1889, 1890).

 

Почвенное питание растений.
Не менее интенсивно развивались исследования по почвенному питанию растений, стимулированные работами Ю. Либиха и Ж. Буссенго. Окончательное доказательство ими первостепенной важности для жизни растений минерального питания сыграло большую роль в дальнейшем развитии земледелия и разработке основ агрохимии.
Успешное развитие учения о минеральном питании растений в значительной степени объясняется тем, что лабораторные исследования этой проблемы тесно сочетались с полевыми опытами. Первые скромные шаги, предпринятые в этом направлении Буссенго во Франции, Шпренгелем в Германии и Лоузом и Джильбертом в Англии, стимулировали исследования в этой области и в других странах. Стали создаваться опытные станции не только на личные средства, но и как государственные учреждения. Первая такая станция была организована в Меккерне (Германия) в 1852 г., а в следующем 1853 г. по общественной подписке в Ротгамстеде (Англия) была построена новая лаборатория и передана Лоузу для продолжения его успешных опытов. В 1867–1869 гг. в четырех губерниях России под руководством Д.И. Менделеева проводилось изучение действия 24-х видов удобрений при различной обработке почвы. С 70-х годов полевые опыты с удобрениями получили широкое распространение в Германии, США и других странах. Проводились они преимущественно на специальных опытных станциях, общее число которых к концу XIX в. превысило 80.
Полевые опыты стали все теснее сочетаться с лабораторными исследованиями потребностей растений в минеральных веществах. В середине XIX в. в Германии зародился и стал широко внедряться как на опытных станциях, так и в институтских лабораториях вегетационный метод — испытание действий удобрений на отдельных растениях, выращиваемых в небольших сосудах со строго определенным составом питательного раствора. При разработке вегетационного метода было предложено пользоваться тремя способами, или культурами. О первом из них уже упоминалось в главе 19, когда в качестве субстрата Сальм-Хорстмар (1849) использовал специально обработанный песок или дробленый кварц и положил начало постановке песчаных культур. В 70-80-е годы этот способ успешно использовал и совершенствовал Г. Гельригель. Второй способ вегетационного метода — почвенные культуры — был предложен в те же годы П. Вагнером, который помещал в сосуды совершенно истощенную или совсем неплодородную почву. Однако наибольший успех в дальнейшем выпал на долю третьего способа — водных культур, прообраз которых можно усмотреть в опытах 1699 г. Вудворда в Англии. Спустя полтора века Ю. Сакс (1860) использовал этот способ вначале для наблюдения за ростом корня, а затем и для изучения питания растений.

 

Сакс значительно обогатил и уточнил результаты Сальм-Хорстмара. Им было установлено, что приемом «фракционированных растворов», т. е. растворов отдельных солей, представляемых растению поочередно, не следует пользоваться, так как такие растворы действуют на растения отравляюще. В смеси же их действие нейтрализуется. Это явилось основой для развитой позже Ж. Лебом (1901) теории ионного антагонизма.

 

Над разработкой оптимального состава питательного раствора для водных культур трудились Ю. Сакс, И. Кноп, Ф. Ноббе и другие исследователи. Рецепт Кнопа оказался самым удачным и был назван его именем.
Методы выращивания растений на нейтральном твердом субстрате и в водных культурах позволили разработать всеобъемлющий вегетационный метод, без которого невозможно было бы изучение физиологии минерального и азотного питания растений. Эти исследования проводились в летнее время в специальных вегетационных домиках. Первые такие постройки были осуществлены немецким агрохимиком Ф. Ноббе (1869) по его планам на Тарандской опытной станции, а затем Г. Гель ригелем (1870) на опытной станции в Бернбурге. В России первый вегетационный домик был построен К.А. Тимирязевым в 1872 г. в Петровской (ныне Тимирязевской) сельскохозяйственной академии и сыграл большую роль центра агрохимических исследований в нашей стране.
Использование вегетационного метода уже к 70-м годам позволило установить необходимость для нормального развития растений таких зольных элементов, как фосфор, сера, калий, кальций, магний, железо, кремний, марганец и цинк, а также азот, водород и хлор. Для некоторых из них были определены соединения, в составе которых они могут быть усвоены растением. Гораздо труднее было установить, какие элементы не нужны растению. Физиологов растений, однако, интересовал не столько сам факт необходимости растению тех или иных химических элементов, сколько их влияние на различные жизненные процессы растений. Не один десяток исследователей провели серии опытов в этом направлении. Почти все они исходили из предположения, что каждый из химических элементов имеет определенную лишь ему свойственную функцию, которая не может быть выполнена другим элементом. Нередко результаты этих исследований были противоречивы, и единого мнения о физиологическом значении того или иного элемента не было. Тем более не было сколько-нибудь четкого представления о механизме поступления элементов и их роли в обмене веществ растения. Решение комплекса этих вопросов принадлежало будущему.

 

Азотное питание растений.
К рассматриваемому периоду относится окончательное выяснение вопроса об источниках азота в питании растений, начатое еще в первой половине XIX в. опытами Буссенго, Лоуза и Джильберта. Согласно Буссенго, растения получают азот не только из аммиака, как думали многие, но и из нитратов. Однако позднее сравнительные исследования действия нитратов и аммиачных соединений в водных культурах показали преимущества первых и даже вредность последних, а открытие микробиологического процесса нитрификации способствовало утверждению мнения, что аммиачные соединения не являются непосредственным источником азота для растений, а лишь материалом для образования в почве нитратов посредством микроорганизмов. Хотя опыты Т. Шлезинга (1874), Мюнца (1889) и Мазе (1898) свидетельствовали о способности растений усваивать минеральный азот не только в нитратной, но при небольшой концентрации и в аммонийной форме, окончательно вопрос был решен исследованиями Д.Н. Прянишникова (1895, 1899). В «Учении об удобрении» (1900) Прянишников доказал, что при определенных условиях растения могут усваивать аммиачный и аммонийный азот не хуже, чем азот нитратов. Тем самым был открыт путь для использования аммиачных удобрений.
В то же время известный французский химик М. Бертло выступил против представления об абсолютной невозможности использования растениями молекулярного азота воздуха, утверждая, что азот может поступать в них через почвенные соединения. Первоначально он усматривал причину образования этих азотных соединений в электрическом напряжении между почвой и воздухом, а затем — в деятельности неких почвенных бактерий. Опыты Бертло были подхвачены французскими химиками. Одни — сторонники Бертло — считали, что азот воздуха фиксируется микроорганизмами почвы, другие полагали, что эту функцию выполняют низшие растения — водоросли и мхи, находящиеся на поверхности почвы на свету и при наличии воздуха. Их пытался примирить П.С. Коссович (1894), связывавший усвоение атмосферного азота с деятельностью симбиотических форм зеленых водорослей и бактерий.
В 1866 г. М.С. Воронин впервые обнаружил в корневых клубеньках бобовых микроорганизмы. Это открытие могло бы способствовать решению загадки фиксации азота растениями, если бы оно не встретило резкого возражения со стороны многих ученых. Лишь через два десятка лет Гельригель и Вильфарт (1886–1887) подтвердили это открытие и показали, что на стерильных почвах бобовые могут черпать азот лишь из удобрений, а при добавлении к ним вытяжки из обычных почв на корнях развиваются клубеньки с микроорганизмами и растения больше не нуждаются в азотных удобрениях. В том же году М. Бейеринк выделил чистую культуру Bacillusradicicola из корневых клубеньков бобовых, а польский микробиолог Пражмовский описал процесс зарождения и развития клубеньков на корнях бобовых растений, дав название их возбудителям Bacteriumradicicola Beijerinkii. В 1890–1892 гг. П.С. Коссович провел тонкие эксперименты, доказавшие, что бобовые связывают азот посредством корневых клубеньков. Наконец, Т. Шлезинг и Лоран (1890, 1892) опытным путем подсчитали, что вес азота, усвоенного растением из воздуха, примерно, равен приросту его в бобовых растениях. Несмотря на это, некоторые немецкие ученые, в частности Франк (1892), продолжали отрицать связь клубеньковых бактерий с усвоением азота воздуха, считая образование клубеньков результатом деятельности паразитического гриба. Проблема была решена исследованиями С.Н. Виноградского (1893), показавшего, что молекулярный азот воздуха способны фиксировать нитчатые бактерии Clostridium pasteurianum, культура которых была получена им тогда же (подробнее см. главу 35). В 1901 г. Бейеринк обнаружил, что усваивать атмосферный азот могут также Azotobacter и синезеленые водоросли Anabaena и Nostoc.
Способность некоторых растений питаться животной пищей в XIX в. подвергалась основательным сомнениям, хотя факты о захватывании мелких насекомых такими растениями, как венерина мухоловка росянка и другие, описывались еще в XVI в. Летом 1860 г., отдыхая близ Хартфилда, Ч. Дарвин обратил внимание на то, какое большое количество насекомых улавливают росянки, в изобилии произраставшие там. Он выкопал несколько из них и стал вести дома специальные наблюдения над ними, поставив своей целью раскрыть, по возможности, природу их движений и причину обильного улавливания насекомых. Опыты, наблюдения и размышления над результатами заняли пятнадцать лет, пока в 1875 г. не вышла в свет книга Ч. Дарвина «Насекомоядные растения». С большой тщательностью автор описал и сравнил различные способы ловли и переваривания насекомых разными видами насекомоядных растений. Он открыл, что при надлежащем раздражении растение выделяет жидкость, содержащую кислоту и фермент и напоминающую по составу пищеварительный сок животных, и с ее помощью извлекает из животной пищи азотсодержащие вещества, необходимые для каждого растения, но малодоступные для болотистых растений. Эти факты свидетельствовали об отсутствии резкой грани между животным и растительным миром.

 

Новые научные данные позволили приступить к внедрению знаний о минеральном питании растений в практику сельского хозяйства и решать вопрос об удобрениях на научной основе, что не замедлило дать положительные результаты уже в те годы. Достаточно отметить, что Германия, где в середине прошлого века особенно много занимались этим вопросом, начиная с 1847, г. в течение нескольких десятилетий не знала ни одного неурожая, грозившего населению голодом. Наоборот, урожаи из года в год повышались.

 

В XIX в. были проведены первые работы по внекорневому питанию растений. Опыты Е. и А. Гри (1847, 1857), Сакса (1861), Рейнша (1871), Т. Шлезинга (1874), Коха и Мейера (1873) показали, что листья растений могут усваивать различные соединения азота, фосфора и калия, усиливая при этом синтез органического вещества. Наиболее обстоятельные исследования по внекорневому питанию растений путем введения через листья растворов минеральных солей провел Буссенго (1878).
Изучение минерального питания растений в прошлом веке велось почти оторванно от изучения других процессов обмена веществ. Господство упрощенных представлений о проницаемости протоплазматической мембраны, когда всей протоплазме отводилась пассивная роль, исключало исследования зависимости поглощения веществ от жизнедеятельности клетки. Корневое питание связывалось лишь с транспирацией, поскольку вода является растворителем питательных веществ почвы.

 

Осмос и передвижение растительных соков.
Изучение водного режима растений в XIX в. было менее успешным по сравнению с изучением воздушного и минерального питания. Оно касалось преимущественно поступления и передвижения воды в растении и транспирации. Результаты экспериментов способствовали усилению интереса к физическим закономерностям поступления воды в корни и дальнейшего ее перемещения, в частности к изучению осмотических свойств растительных клеток, которое в 1826–1828 гг. начал Дютроше.
В 1862 г. Грехем обнаружил явление диосмоса, а М. Траубе (1867–1874) изучил его на так называемых «искусственных клетках». В 1877 г. была опубликована работа В. Пфеффера «Осмотические исследования», в которой излагались основные положения о роли осмоса в жизнедеятельности клетки. Это исследование положило начало разработки мембранной теории клеточной проницаемости. В. Пфеффер показал, в частности, что не оболочка клетки, как предполагалось раньше, а протоплазма, точнее, ее слои, прилегающие к оболочке и вакуолям, обеспечивают полупроницаемость клетки. Им же была разработана гипотеза о механизме проникновения различных веществ через «протоплазматические мембраны», локализованные на поверхности протопласта. Особое внимание Пфеффер обращал на большую роль полупроницаемой мембраны в обмене веществ, в частности, на регуляцию их поступления и выделения из клетки. Работу Пфеффера дополняли одновременные и последующие исследования Г. де Фризом (1878, 1888) осмотических сил, вызывающих изменение объема клеток. Явление отставания протоплазмы от оболочки при действии гипертоническими растворами, наблюдавшиеся еще К. Негели (1846), Г. Молем (1846) и Н. Прингсгеймом, Г. де Фриз назвал плазмолизом.
Усиление внимания к изучению осмотических явлений клетки заставило пересмотреть некоторые устаревшие к тому времени представления о проникновении питательных растворов в растение и их передвижении. Так, Сакс (1865) признал, что поглощение воды корнями и дальнейшее ее передвижение объясняется не наличием в них особых насасывающих клеток — спонгиол, а осмотическими свойствами всех клеток. Он считал, что при тургорном состоянии на клеточные мембраны действует сильное гидростатическое давление, в результате чего и происходит фильтрация растворов. Хотя эта гипотеза «фильтрации под давлением» в дальнейшем оказалась тоже несостоятельной, она позволила Саксу приступить к более глубокому изучению явления, названного им корневым давлением. Корневое давление стало объектом исследований многих ботаников (Гофмейстер, 1862; Баранецкий, 1873; Брозиг, 1876; Детмер, 1877; Вилер, 1893), установивших периодичность его изменений в различное время.
Признавая, что корневое давление может обеспечить подъем питательных растворов у травянистых растений, Сакс отрицал его действие по поднятию воды на большую высоту у деревьев. Эту способность перемещения восходящего тока воды по пустотелым сосудам — трахеям и трахеидам — он приписывал только силе испарения. Если сторонники механистических воззрений на процессы, протекающие в растении, считали, что поднятие воды по сосудам осуществляется так же, как поднятие жидкостей по капиллярам, то Сакс обратил внимание на те особенности, которые были обусловлены спецификой физиологии растений. И хотя сама гипотеза Сакса не оправдала себя в дальнейшем, его мысль об активной выработке растениями своих функций была, несомненно, прогрессивной.
Развив предположение Ф. Унгера (1858) о возможности прохождения потока воды через стенки Клеток благодаря их способности к набуханию (имбибиции), Сакс разработал имбибиционную теорию. Согласно этой теории, вода передвигается в растениях не в полостях сосудов, заполненных воздухом, а в их стенках, способных к впитыванию, набуханию и засасыванию воды при потере ее в процессе транспирации. Гипотеза Сакса принималась ботаниками около 20 лет. Обнаружение Гофмейстером (1857) в сосудах растений так называемых «цепочек Жамена» (смеси воды с пузырьками воздуха), подтвержденное позднее Хенелем и Бемом (1878), побудило искать новые объяснения механизма передвижения восходящего тока питательных растворов.

 

В 1883–1884 гг. Вестермайер дал одно из них: причина поступления воды в сосуды ксилемы и ее поднятия заключается в насасывающем действии живых клеток. Он считал, например, что клетки паренхимы стебля и сердцевинных лучей получают воду посредством эндосмоса из примыкающих к ниш клеток и инфильтруют ее в ксилему; также происходит первоначальная инфильтрация воды в сосуды корня, а так как эта инфильтрация прерывиста — вода и воздух проходят в трахеи поочередно, то и образуются «цепочки Жамена». Его поддерживали Годлевский (1888), Янзе (1887) и Швенденер (1892). Допущение активного нагнетания воды в ксилему путем пульсации клеток древесины отбрасывало эти исследования к давним представлениям Грю (1682) о живых клетках, которые, пульсируя, подобно миллионам сердец, гонят воду по сосудам. Кроме того, оно упрочивало пошатнувшиеся позиции витализма в физиологии растений.
В то же время наблюдения Страсбургера (1891) свидетельствовали о том, что в убитых тканях стеблей вода могла подниматься выше безжизненных участков на 10–12 м. Начался горячий, длившийся до конца столетия спор между исследователями, связывающими поднятие воды с деятельностью живых клеток, и их противниками. Он породил ряд работ физического характера, оказавших положительное влияние на дальнейшее решение этой проблемы. В 1894–1895 гг. Диксон и Джоуль в Ирландии и Аскенази в Германии выдвинули независимо друг от друга теорию сцепления воды, которая объясняла движение воды вверх сцеплением между собой ее частиц под действием насасывающей силы — транспирирующих листьев.

 

В 1897 г. Е.Ф. Вотчал на основании многочисленных опытов, проводимых с применением тончайших физических методов и автоматической записи изменений давления в проводящих воду элементах древесины, убедительно опроверг представление о существовании в них каких бы то ни было промежуточных двигателей. К сожалению, эта важная работа Вотчала своевременно не получила известности за пределами России и развиваемые в ней представления получили признание лишь спустя 10–15 лет в связи с работами английского исследователя Г. Диксона.

 

Скорость движения воды в растении впервые достаточно удовлетворительно была исследована Макнабом (1871) посредством спектроскопических определений скорости распространения слабого водного раствора лития, в который опускалось растение. Аналогичные определения проводили затем Поритцер (1877) и Сакс (1878).

 

Транспирация растений.
Начало экспериментальных исследований транспирации растений относится к первой четверти XVIII в., однако научный подход к объяснению этого явления наметился лишь в середине XIX в. Обнаружение определяющей зависимости транспирации от устьиц привлекло особое внимание к изучению транспирационного аппарата растений.
Первое исследование движения устьиц провел Г. Моль (1856), который показал, что величина устьичных отверстий определяется тургором замыкающих клеток и зависит от света, тепла и влажности воздуха. Он же обратил внимание на присутствие в замыкающих клетках хлоропластов, синтезирующих осмотические вещества, и таким образом влияющих на работу устьиц и на транспирацию. В этом же направлении вел исследования Унгер (1857), опубликовавший в 1862 г. большую работу о транспирации. С. Швенденер (1883) высказал мысль, что устьица обеспечивают не только испарение, но и усвоение СО2. Представление об активной роли замыкающих, а не прилегающих к ним эпидермальных клеток, как это считал Дейтгеб (1886), окончательно утвердил сын Чарлза Дарвина Ф. Дарвин (1898). Действие различных лучей спектра на работу устьиц первым исследовал Коль (1895). Он установил, что красные и синие лучи, т. е. лучи, поглощенные хлорофиллом, вызывают открывание устьиц.
Кроме устьичной транспирации в 1878 г. была обнаружена еще и кутикулярная (Хенель). Определения количеств испаряемой воды (Габерландт, 1877; Хенель, 1879, 1880) показали, что эта величина различна в зависимости от природы самого растения и условий его произрастания.
Многое для изучения природы транспирации в 50-е годы сделал Ю. Сакс. В противоположность Шлейдену Сакс подошел к изучению испарения у растений не как к физическому, а как к физиологическому процессу, имеющему важное биологическое значение для жизни растений. Так, он обнаружил, что испарение с поверхности листа происходит менее интенсивно, чем с такой же поверхности воды. Сакс в еще большей степени, чем его предшественники, связал действие испарения с поглощающей деятельностью корневой системы. Он показал, что транспирация может измениться в зависимости от температуры и характера почв, в которых находятся корни растений.
Опыты П.Я. Крутицкого (1875), Бюргерштейна (1876) и Веска (1880) еще более расширили знания об испарении срезанных ветвей и листьев, находящихся на растении, о зависимости испарения от состава и концентрации растворов, поглощаемых корнями растений. Проводилось много определений потребления воды культурными растениями. Из внешних факторов изучали в основном влияние на транспирацию влажности воздуха и ветра. Утверждения об усилении испарения под действием света без учета теплового излучения или влияния на устьица, как отметил Тимирязев (1892), оказались несостоятельными. Все эти исследования велись преимущественно в лабораторных условиях и не касались проблемы засухоустойчивости растений, которая в силу благоприятных климатических условий не была актуальной для Западной Европы.
Необходимость всестороннего изучения данной проблемы с особой остротой встала перед русскими физиологами растений в связи с сильной засухой 1891 г., широко охватившей юг России и приведшей к гибели от голода многих тысяч людей. Почвоведы В.В. Докучаев (1892), П.А. Костычев (1893) и А.А. Измаильский (1893) предложили ряд приемов для лучшего сохранения влаги в почве, а К.А. Тимирязев (1892) первый из ботаников обратил внимание на биологические основы засухоустойчивости растений. Он показал, что лишь небольшая часть воды, поступающей в растение, используется им для синтеза органических веществ («организационная вода»), а большая ее часть («расхожая вода») испаряется. Вслед за французским агрохимиком Т. Шлезингом Тимирязев окончательно доказал, что интенсивность испарения не влияет на количество питательных растворов и минеральных веществ, поступающих в растения из почвы. Рассматривая взаимодействие между транспирацией и фотосинтезом, Тимирязев впервые высказал суждение об антагонистическом характере этих процессов: полезное для растений снижение, расходования воды путем замыкания устьиц влечет за собой прекращение фотосинтеза, и наоборот, при фотосинтезе усиливается испарение необходимой растению воды. Более широко развернулись исследования водного режима растений в XX в.

 

Дыхание и брожение.
Изучение ассимиляционных процессов, протекающих в растении, велось одновременно с разносторонними исследованиями диссимиляционных процессов и прежде всего дыхания и брожения. Не касаясь развития представлений относительно биохимической сущности и микробиологической природы этих явлений, о чем будет речь в следующей главе, назовем лишь физиологические аспекты этих проблем.
Во второй половине XIX в. впервые появляются специальные сообщения о дыхании растений. В 1850–1851 гг. фармацевт Гарро установил разобщенность процессов дыхания и фотосинтеза, показав затем непрерывность первого из них и наличие его во всех частях растительного организма. Это способствовало утверждению мнения об идентичности процессов дыхания растений и животных. Оба они рассматривались как медленное сгорание внутри тканей с выделением тепла. Однако в последней четверти XIX в. становилось все более очевидным несоответствие явлений дыхания и сгорания вначале в отношении животных, а затем и растений. Лишь спустя полвека окончательно было доказано, что при дыхании растений кислород не окисляет непосредственно молекулы органических веществ, а вступает в реакцию после ряда анаэробных превращений этих соединений (цикл Кребса).
Большое число исследований было посвящено изучению влияния на дыхание количества и качества света, концентрации кислорода и углекислого газа, температуры и других факторов. Изучая действие света на дыхание, И.П. Бородин (1876) заложил основу разработанного позднее В.И. Палладиным (1886–1896) учения о различии между дышащим субстратом и дыхательным материалом. Палладии (1893) впервые отметил различную интенсивность дыхания у зеленых и этиолированных листьев и объяснил это наличием в клетках первых большего количества не только сахаров, но белков и нуклеопротеидов. Это наблюдение еще раз подтверждало предположение А.Е. Зайкевича (1877) о связи дыхания с углеводным питанием и являлось как бы иллюстрацией к обстоятельному труду А.С. Фаминцына «Обмен веществ и превращение энергии в растениях» (1883), в котором дыхание рассматривалось как процесс, тесным образом связанный с углеродным (воздушным) и минеральным (почвенным) питанием растений.
Исследования дыхательного коэффициента, проведенные Боннье и Манженом (1886) и Палладиным (1886, 1894), показали, что его величина может быть равна единице, а также быть меньше или больше ее… Наблюдая изменение интенсивности дыхания в прорастающих семенах, Бородин (1875), А. Мейер (1875) и Л.А. Ришави (1877) проследили эту зависимость графически, установив так называемую большую кривую дыхания растений, очень сходную с открытой незадолго до того Саксом большой кривой роста.
В 1872 г. Л. Пастер обнаружил у растений явление анаэробного дыхания, которое протекало в бескислородной среде с образованием спирта и углекислого газа. Дальнейшее исследование этого типа дыхания (Мюнц, 1876, 1878; Трефельд, 1876; Де-Лука, 1878) показало, что оно широко распространено в растительном мире. Как и нормальное дыхание, оно способно изменяться под воздействием внешних условий (Детмер, 1892; Палладии, 1892, 1894; Худяков, 1894).

 

Рост растений.
Во второй половине XIX в. были проведены интересные исследования в области роста, раздражимости и движения растений. Объектами изучения роста были семена, побеги, корни, стебли, листья и растение в целом. В 1872 г. Сакс сконструировал самопишущий прибор для фиксирования скорости роста — ауксонометр, усовершенствованный в 1876 г. О.В. Баранецким. С помощью этого прибора Сакс дал графическое изображение скорости прироста растений в ходе вегетации, и полученная S-образная кривая была названа им большим периодом роста. Баранецкий (1879) изучал суточную периодичность роста и обнаружил, что у одних растений максимальный прирост происходит ночью или ранним утром, а у других — днем или вечером. По мнению Баранецкого, этот ритм связан с определенным ритмом биохимических процессов в листьях и в конусе роста, а эти процессы в свою очередь зависят от периодичности смены дня и ночи.
Рост растений в прошлом столетии отождествлялся с увеличением их объема и сводился к росту отдельных клеток. Сакс первым поднял вопрос о внутренних причинах роста вообще и растительных клеток в частности. В 1863 г. он высказал мысль, что причиной более интенсивного роста клеток весной и летом является более высокий тургор в это время, благодаря чему клеточная оболочка растягивается и создается возможность для отложения веществ. Такой взгляд разделяли многие ботаники. Однако Г. Краббе (1884) взял его под сомнение, а А. Вилер (1887) установил, что тургор клеток весенней и осенней древесины одинаков. Кроме того, С. Швенденер и Краббе (1895) наблюдали остановку роста в зоне растущего стебля, несмотря на то, что тургорное давление в ней было равно давлению в зоне наибольшего роста, а Р. Хеглер (1893), механически растягивая растущую часть стебля, обнаружил уменьшение скорости его роста. Опытами Ф. Нолля (1887), Э. Цахариаса (1891) и Э. Страсбургера (1898) было доказано, что рост клетки может осуществляться как путем наложения (аппозиции), так и путем внедрения (интуссусцепции).
Много работ, в том числе русских, исследователей, было посвящено изучению зависимости роста растений от условий освещенности, температуры, наличия в воздухе кислорода, углекислого газа, этилена. Я.Я. Вальц (1876), изучая рост корней в водных культурах, отметил, что свет усиливал рост и ветвление как при освещении листьев, так и еще в большей степени листьев и корней. Баталин (1872) и Сакс (1882) свидетельствовали о существовании связи между процессами роста и явлениями раздражимости, утверждая при этом наличие тесной зависимости между морфофизиологическими структурами растении и протекающими в них химическими процессами.

 

Раздражимость и движение растений.
Значительно увеличилось во второй половине XIX в. число работ, посвященных изучению тропизмов — ориентировочных движений растений под действием одностороннего раздражителя, особенно силы тяжести и света, т. е. гео- и фототропизмов. Исследователей интересовали не только различные проявления тропизмов, но и их природа. Следуя за Т. Найтом (1806), В. Гофмейстер (1876) ошибочно утверждал, что геотропический изгиб обусловлен пассивным сгибанием под действием силы тяжести кончика корм, не содержащего механических тканей и поэтому находящегося в особом «мягко-пластическом» состоянии. Обнаружение А. Франком (1868) неравномерного роста различных сторон корня и стебля при их гео- и фототропизме ставило под сомнение выводы Найта и Гофмейстера о пассивности реакции растений. В 1869 г. Н.Н. Спешнев повторив остроумный опыт Пино (1829) по врастанию корней в ртуть показал, что их движение активно, так как кончик корня направляется вниз, преодолевая сильное выталкивающее действие ртути. Вскоре Т. Цессельский (1871) обнаружил, что при удалении верхушки корня последний терял способность реагировать на земное притяжение. Геотропизм плазмодиев слизистых грибов исследовал С.М. Розанов.
При изучении фототропизма Н. Мюллер (1872) и Ф. Ольтманс (1887) установили, что положительная или отрицательная реакция растении зависит от интенсивности света. О.В. Баранецкий (1876) обнаружил отрицательный фототропизм миксомицетов на ранней стадии развития. Для устранения одностороннего действия силы тяжести или света при изучении движений растения Ю. Сакс (1879) сконструировал специальный прибор, назвав его клиностатом.
В 1865 г. вышла большая работа Ч. Дарвина «Движения и повадки лазящих растений». В ней Дарвин описал различные уже известные формы движения, в том числе фото- и геотропические, а также новое явление — гаптотропизм — изгибание растений в ответ на раздражение прикосновением (трением). Он провел опыты и наблюдения более чем над ста видами вьющихся и лазающих растений, собрал воедино сведения о механизме их движения, об устройстве их раздражимых органов, определил порог чувствительности растительных усиков в их различных частях, скорость реакции, открыл массу разнообразных приспособлений растений для лазания. Н.Ф. Леваковский (1866, 1867), изучая механизм движения мимозы от прикосновения и изменения этой реакции от температуры, влажности, аэрации и освещенности, связывал этот механизм с сократительными свойствами протоплазмы клеток мимозы. Процессами, проходящими внутри клеток, объяснял также таксические движения и Баталин (1870), выступая против тех, кто пытался объяснить сугубо физическим процессом возникновение электрических токов в растении.
В 1875 г. в исследовании о насекомоядных растениях Дарвин описал особые движения росянки, мухоловки и других, связанные с захватыванием мелких насекомых, попадающих на их листья и дающих растению азотсодержащую пищу. С конца 70-х годов прошлого века он начал работать над исследованием нутаций — вращательных движении растущих органов растений. Результаты обширных и многолетних исследований легли в основу написанной вместе с сыном Френсисом книги «О способности к движению у растений» (1880), где впервые были обстоятельно описаны вращательные движения растущих верхушек растений, особенно ярко выраженные у усиков и вьющихся стеблей. Эти движения Дарвин назвал циркумнутацией и объяснил их неравномерным ростом клеток то одной, то другой стороны верхушки стебля. В дальнейшем Нолль (1885), О.В. Баранецкий (1886) и Вортман (1587) изучали причины и закономерности круговой нутации стеблей и корней.
Однако ближе всех к раскрытию истинной природы тропических явлении подошел Ч. Дарвин (1880). В процессе тропизма он различал два этана. 1) восприятие одностороннего действия раздражителя верхушками стеблей или корней и 2) изгибание этих органов в силу ускоренного роста клеток в зоне растяжения. В опытах с проростками канареечной травы Дарвин показал, что фототропический изгиб — сложное явление, состоящее из поступления светового раздражения, появления возбуждения, проведения его и конечной реакции, выражающейся в определенном движении. В основе гео- и фототропизмов, по его мнению, лежит «распространение вдоль органа некоторого вещества, содержащегося в верхушке» корня или стебля. Это было замечательное предвидение более чем за полвека до открытия физиологически активных веществ.
Критика воззрений Дарвина со стороны Ю. Визнера (1881), Ю. Сакса (1887), Г. де Фриза (1873), Г. Фиттинга (1903) и других, как и использование его высказываний о роли корневой верхушки отдельными фитопсихологами для утверждения наличия у растений элементов психики, не смогли дискредитировать ее. В 1893 г. В.А. Ротерт посредством точных опытов по удалению верхушек проростков доказал, что вывод Дарвина о разделении «сенсорной» и «моторной» зон у растений является правильным. Он установил скорость передачи геотропического импульса и доказал также, что после удаления «физиологической верхушки» корня она через несколько часов как бы вновь регенерирует.
В 80-90-е годы предметом изучения стали самые разнообразные тропизмы. В 1870–1880 гг. Визнер обнаружил тропические изгибы в красных и ультракрасных лучах, которые в дальнейшем объяснял как реакцию на тепловое раздражение. Термотропические изгибы спорангиеносцев изучал Ю. Вортман (1883), а у корней — И. Клернер (1891). Ван-Тигем (1884) и Ю. Вортман (1885) предприняли попытки установить природу термотропизма.
Э. Эльфвинг (1882) первый наблюдал искривление корней при пропускании электрического тока через воду, в которой они находились, и установил, что характер гальванотропического изгиба зависит от природы растений, а Брунхорст (1884–1889) определил зависимость этого явления от силы тока и характера проводящих их растворов. Изучению гальванотропизма растений были посвящены также работы русского ботаника Л.А. Ришави (1888).
В 1894 г. М. Миоши обнаружил, что гифы мукоровых грибков ориентируют свои движения в отношении распределения растворимых в воде веществ, т. е. проявляют хемотаксис. Г. Молиш (1884) установил, что хемотропными раздражителями могут быть не только жидкие или растворимые вещества, но и тазообразные. Он наблюдал хемотропные искривления корней и пыльцевых трубок под влиянием отдельных газов и их смеси, назвав это явление аэротропизмом. Наблюдая за ростом растений в химических лабораториях, Д.Н. Нелюбов (1898) объяснил их различные изгибы содержанием в воздухе ничтожных количеств этилена и ацетилена.
Еще в 1872 г. Сакс показал на опыте с корнями проростков гороха существование гидротропизма, а в 80-х годах Молиш и Пфеффер доказали, что положительный гидротропизм корня определяется его кончиком. Тогда же были установлены такие новые понятия, как травматотропизм — явление изгибания растущих частей при их поранении (Дарвин, 1880) и реотаксис — движение организма под влиянием одностороннего действия тока воды (Иенсон, 1883).
С 50-х годов внимание ученых начали привлекать также движения, вызываемые раздражителем, действующим не односторонне, а равномерно на все растение (температурой, влажностью, освещенностью). Такие движения были названы настическими, или настиями. С.А. Рачинский (1857) полагал, что изменение положения листьев при переходе от дня к ночи связано с изменением тургора паренхимы листовых сочленений. Франка (1870) и Сакса (1879) интересовали причины дорзовентрального направления роста хвои, ветвей тисса и ели.
Передовые ученые прошлого столетия и среди них, может быть, особенно активно русские исследователи выступали против антропоморфизма при объяснении раздражимости и таксических движений растений. В противовес телеологической трактовке этих явлений они старались прежде всего выяснить их физиологические причины, избегая при этом упрощенчества (механицизма) в объяснении тропизмов.

 

Экспериментальная морфология растений.
В середине XIX в. в естествознании стало формироваться новое направление — экспериментальная биология и одним из действенных ее звеньев стала физиология растений и прежде всего исследования в области развития растений. Изучение этого вопроса до середины XIX в. заключалось в прослеживании морфологических изменений растений от эмбриональных стадий до взрослого состояния. Однако уже в 1862 г. русский ботаник А.Н. Бекетов стал говорить о необходимости «открыть причины растительных форм», считая важнейшими факторами формообразования физиологические функции растений и их взаимодействие с внешними условиями.
В 1863 г. Н.Ф. Леваковский одним из первых поставил ряд опытов о действии искусственно создаваемых условий среды на форму растений. А.Ф. Баталин (1875) установил, что для цветения луковичных многолетников необходимо временное действие пониженных температур, а студент Судзиловский (1890) в опытах с озимой рожью пришел к выводу, что на ранней стадии развития озимых хлебов им необходимо влияние низких температур. В 1884 г. В.И. Ковалевский обнаружил зависимость скорости развития некоторых культурных растений от продолжительности «солнечного озарения», т. е. длины дня.
Большая серия опытов по изучению влияния различных внешних естественных условий на форму растений была поставлена Г. Фехтингом (1878–1882), открывшим явление полярности у растений, и Г. Боннье (1884, 1896), выращивавшим одинаковые культуры в горах и на равнине. В 80-е годы начал работать немецкий ботаник Г. Клебс, поставивший своей задачей вместо простого описания внешних форм проникнуть во внутреннюю сущность их образования. В результате десятилетних экспериментов (1896) он показал, как изменением условий внешней среды можно добиться перехода от одного способа размножения некоторых водорослей и грибов к другому, изменяя таким образом цикл их развития. Более широко свои исследования по управлению развитием не только низших, но и высших растений Клебс развернул в XX в. К тому же времени относятся важные исследования И.В. Мичурина в этом направлении, которые он начал в конце прошлого столетия.

 

* * *
Таким образом, во второй половине прошлого века физиология растений окончательно оформилась в одну из самостоятельных биологических дисциплин с четко ограниченными проблемами, методами и задачами. Наиболее интенсивно развивались те ее направления, которые были связаны с изучением обмена веществ (фотосинтез, минеральное и азотное питание, дыхание, проникновение и перемещение питательных веществ). Расширялись начатые в первой половине XIX в. исследования водного режима, раздражимости и движения растений. Началось изучение новых проблем, в частности, устойчивости к неблагоприятным условиям — засухо-, морозо- и солеустойчивости. Зарождалось новое направление — экспериментальная морфология растений. Началось проникновение эволюционных идей в фитофизиологию, главным образом в форме попыток объяснить приспособительный характер процессов жизнедеятельности растений.

 

Назад: Глава 33 Начало перестройки морфологии и систематики растении на эволюционной основе
Дальше: Глава 35 Формирование микробиологии как самостоятельной науки