Книга: Креативный вид. Как стремление к творчеству меняет мир
Назад: Глава 3. Трансформация
Дальше: Глава 5. Синтез

Глава 4. Дезинтеграция

При дезинтеграции нечто целое — предположим, изображение человеческого тела — раскладывается на составляющие, а из фрагментов получается что-то новое.

 

«Парящие головы» Софи Кейв, «Тень. Торс» Огюста Родена, «Неузнанные» Магдалены Абаканович

 

Создавая скульптуру «Сломанный обелиск», Барнетт Ньюман разделил монумент на две части и перевернул его.

 

 

Сходным образом художники Жорж Брак и Пабло Пикассо разбивали визуальную плоскость на элементы пазла из линий и перспектив в кубизме. В масштабном полотне «Герника» Пикассо воспользовался этим приемом, чтобы показать ужас войны. Разрозненные фрагменты — туловище, нога, голова, все части тела разъединены, ни одной целой фигуры — создают суровый образ жестокости и страданий.

 

«Натюрморт со скрипкой и кувшином» Жоржа Брака и «Герника» Пабло Пикассо

 

Когнитивная стратегия дезинтеграции, на которую опирались Ньюман, Брак и Пикассо, также помогла повысить безопасность аэропортов. Тридцатого июля 1971 года при подготовке вылета из аэропорта Сан-Франциско борт Pan American 747 был перенаправлен на более короткую полосу. Здесь требовался более крутой угол для взлета, к сожалению, пилоты этого не учли: самолет задел осветительную вышку. В то время вышки и ограждения аэропортов были очень тяжелыми и монолитными, чтобы выдерживать сильнейшие порывы ветра. В результате воздушное судно врезалось в вышку. С поврежденным крылом, вырванной частью шасси, пробитым пассажирским салоном дымящийся самолет в течение двух часов кружил над Тихим океаном, чтобы истратить запас топлива, прежде чем идти на аварийную посадку. Когда он коснулся земли, шины загорелись, самолет занесло в сторону от посадочной полосы. Пострадали двадцать семь пассажиров.
После этого инцидента Федеральное агентство гражданской авиации ввело новые правила безопасности. В поиске решений, как предотвратить подобные ситуации, инженеры анализировали различные стратегии. Сегодня радио- и осветительные вышки, которыми оборудована взлетная полоса, выглядят словно цельнометаллические. На самом деле столкновение с ними не нанесет вреда самолету, потому что конструкция в этом случае рассыплется. Инженеры, начав работать с цельной вышкой и отталкиваясь от посыла «что, если?», придумали хрупкую, распадающуюся при ударе мачту.

 

Хрупкая мачта от компании Ercon

 

Дробление сплошного пространства привело к революции в мобильной связи. Первые ее системы действовали по принципу теле- и радиовещания: в заданной области располагалась вышка, передающая сигнал во всех направлениях. С приемом все было нормально. Однако если неважно, сколько людей одновременно смотрят телевизор, то количество звонящих по телефону значение имело: одновременно это могли делать не более нескольких десятков абонентов. При увеличении их числа система испытывала перегрузку. Звонки в пиковые часы могли просто не проходить. Инженеры корпорации Bell Labs пришли к выводу, что принцип телевещания не подходит для организации мобильной связи. Они предложили инновационное решение: разделить область покрытия на небольшие «ячейки» с вещательной вышкой на каждой из них. Так родилась современная сотовая связь.

 

Разными цветами выделены разные частоты вещания

 

Серьезное преимущество этой системы в том, что она позволяет повторно использовать ту же вещательную частоту в разных областях по соседству, так что больше абонентов могут делать звонки одновременно.
На полотнах в стиле кубизма дробление непрерывного пространства очевидно. В случае с сотовой связью суть идеи скрыта от глаз: мы знаем только то, что у нас есть надежная связь.
Поэт э. э. каммингс делил слова и синтаксические конструкции для создания своих вольных стихов. В стихотворении dim («Темнота») почти каждое слово разделено между строками.
dim
i
nu
tiv
e this park is e
mpty (everyb
ody’s elsewher
e except me 6 e
nglish sparrow
s) a
utumn & t
he rai
n
th
e
raintherain

Аналогичный прием в 1950-е годы использовал в своей работе биохимик Фредерик Сэнгер. Ученые стремились разгадать последовательность аминокислот, составляющих молекулу инсулина. Однако молекула была настолько большой, что задача становилась труднопреодолимой. Сэнгер нашел выход: разбить цепочку молекулы инсулина на более короткие участки, а затем из более коротких пептидных цепей воссоздать ее полную структуру. «Мозаичный» метод позволил наконец секвенировать молекулу инсулина. Сэнгер получил Нобелевскую премию по химии в 1958 году. Его метод продолжают применять и сегодня для определения структуры белков.
Однако это было только начало. Сэнгер разработал метод секвенирования ДНК, позволявший точно контролировать, как и когда нить ДНК будет разделена на части. Идея была та же — стратегия разделения длинных нитей на участки, пригодные для исследования. Простота метода значительно ускорила процесс генетического секвенирования. Благодаря этому стала возможна реализация проекта по расшифровке генома человека, а также проведение анализа сотен других организмов. В 1980 году Сэнгер был удостоен второй Нобелевской премии по химии.
Творчески разбивая нить текста, э. э. каммингс создал новый способ использования языка; разбивая нить ДНК, Сэнгер нашел возможность прочитать генетический код Природы.
Когнитивный процесс дезинтеграции лежит и в основе того, как сегодня мы воспринимаем кино. На заре кинематографа сцены в фильмах полностью отражали происходящее в жизни. Каждая сцена снималась одним продолжительным дублем. Монтаж применялся только при переходе от одной сцены к другой. Герой на экране говорил в телефонную трубку: «Сейчас буду». Затем он вешал телефонную трубку, искал ключи, выходил за дверь, шел по коридору, спускался по лестнице, выходил из здания, шел по улице, подходил к кафе, входил в кафе и встречался с собеседником.
Пионеры кинорежиссуры, такие как Эдвин Портер, начали теснее связывать сцены между собой, обрезая их начало и конец. Герой на экране говорил: «Сейчас буду», а в следующий момент уже сидел в кафе. Линия времени ломалась, но зрители не обращали на это внимания. По мере развития кинематографа режиссеры все больше продвигались в направлении сжатия повествования. В фильме «Гражданин Кейн» в сцене завтрака каждые несколько кадров происходят скачки во времени, исчисляемые годами. Зрители видят, как Кейн и его жена стареют, а их отношения меняются — от нежных слов любви до молчаливых взглядов. Монтировать начали так, что продолжительная поездка на машине или восхождение героя от безвестности к славе укладывались в несколько секунд экранного времени. Голливудские киностудии нанимали специалистов по монтажу, чьей единственной задачей было управлять этими последовательностями. В кинокартине «Рокки-4» треть фильма состоит из монтажа тренировок боксера Рокки Бальбоа и его противника Ивана Драго. Время в кино больше не идет как в реальной жизни. Нарушение течения времени стало частью языка кинематографии.
Разрыв непрерывного действия привел также к серьезным инновациям в области телевещания. В 1963 году велась прямая трансляция серии матчей по американскому футболу между командами Army и Navy. В то время аппаратура не очень хорошо регулировалась, что делало перемотку пленки неточной. Режиссер этой трансляции Тони Верна нашел способ записывать на пленку аудиосигналы, которые были слышны в студии, но не в прямом эфире. Это позволило ему незаметно отмечать начало каждого игрового момента. Он сделал несколько десятков попыток, прежде чем оборудование заработало должным образом. Наконец, в четвертой четверти игры, после ключевого очка, полученного командой Army, Верна перемотал видеозапись на нужное место и еще раз показал момент тачдауна в прямом эфире. Верна нарушил течение времени и изобрел повторный показ. Так как ничего подобного раньше не бывало, от спортивного комментатора потребовались дополнительные разъяснения: «Это не прямой эфир! Леди и джентльмены, Army не получила еще одно очко!»
Эпоха становления кинематографа, которая характеризовалась длинными сценами, снятыми непрерывным дублем, была похожа на эпоху зарождения вычислительных технологий, когда ЭВМ могла обрабатывать единовременно только одну задачу. Пользователь формировал перфокарты и, когда подходила его очередь, вручал их оператору. Затем он несколько часов ожидал результата обработки.
Информатик из Массачусетского технологического института Джон Маккарти выступил с идеей компьютерной технологии разделения времени: что, если вместо того, чтобы выполнять один алгоритм за раз, компьютер будет переключаться между множеством задач, подобно монтажу в кино? Тогда несколько пользователей смогут не ждать своей очереди, а работать с центральной машиной одновременно. У каждого пользователя будет складываться впечатление, что он полностью и безраздельно владеет «вниманием» компьютера, тогда как на самом деле происходит быстрое переключение между их задачами. Необходимость ожидания очереди отпадает: пользователи сидят перед терминалом и считают, что взаимодействуют с компьютером один на один.
Переход от электронных ламп к транзисторам стимулировал развитие концепции Маккарти, так же, как и разработка удобных в использовании языков программирования. Однако разделение компьютерных вычислений на микросегменты все еще оставалось сложной задачей. Первая демонстрация Маккарти провалилась: перед аудиторией из потенциальных покупателей у мейнфрейма Маккарти израсходовался объем памяти, и он начал выдавать сообщения с ошибками. К счастью, технические препятствия были вскоре устранены, и буквально несколько лет спустя операторы занимали места перед индивидуальными терминалами и в режиме реального времени общались с центральными компьютерами. На основе скрытой дефрагментации цифровых вычислений Маккарти произвел настоящую революцию во взаимодействии между человеком и компьютером. Сегодня, когда мы следуем указаниям навигатора в телефоне, наше карманное устройство использует вычислительную мощь многочисленных серверов, каждый из которых быстро переключается между миллионами пользователей, — это концепция Маккарти, реализованная в масштабах «облака».
Мозг человека способен разложить на фрагменты не только время, но и визуальный мир. Дэвид Хокни создал фотоколлаж «Кроссворд», используя большие плитки, которые пересекались и накладывались друг на друга.

 

 

Пуантилисты писали картины многочисленными маленькими точками.

 

«Воскресный день на острове Гранд-Жатт» Жоржа Сёра

 

При цифровой пиксиляции точки настолько малы, что вы обычно их не видите. Это скрытое разложение целого лежит в основе инновации, давшей начало всей цифровой вселенной.

 

 

У идеи пиксиляции — разделения целого на мелкие составляющие — длинная история. Когда мы ставим в копию электронного сообщения еще одного получателя, мы применяем скевоморф из аналогового мира — копию под копирку. В XIX и начале XX века авторы создавали копию документа с помощью синей или черной «угольной» бумаги, лист которой помещали между двумя чистыми листами бумаги обычной: человек писал или печатал на верхнем листе, а сухая краска или пигмент переносились на второй бумажный лист, создавая копию. При этом обращение с «угольной» копиркой требовало недюжинной ловкости: почти невозможно было не перепачкать все вокруг. В 1950-е годы изобретатели Барретт Грин и Лоуэлл Шлейхер предложили решение проблемы. Они представили лист разделенным на сотни небольших областей и изобрели технику микрокапсулирования. Таким образом, при письме на верхнем листе бумаги отдельные микрокапсулы с чернилами лопались и окрашивали нижний лист в синий цвет. Изобретение получило название «самокопировальная бумага» и стало удобной альтернативой традиционной «угольной» копирке. Десятилетия спустя ксерокопирование окончательно вывело из употребления копировальную бумагу, но техника микрокапсулирования, предложенная Грином и Шлейхером, жива и применяется в лекарственных препаратах с замедленным высвобождением и в жидкокристаллических мониторах. Например, в 1960-е годы в фармацевтике появилось противоотечное средство Contac — не обычная таблетка, а желатиновая капсула, содержащая более 600 крошечных «пилюль», которые переваривались последовательно. Аналогичным образом вместо цельного стекла в современных LCD-мониторах экран разделен на миллионы плотно подогнанных друг к другу микроскопических кристаллов. То, что раньше казалось целым и неделимым, было разложено на мельчайшие составляющие.
Процесс дезинтеграции происходит настолько естественно, что мы почти не замечаем, насколько часто пользуемся этой стратегией при письме или в устной речи. Чтобы ускорить коммуникацию, мы сокращаем слова — например, слово gymnasium (спортивный зал) (от греческого gymnazein, что означает «тренироваться без одежды») превратилось в gym (спортзал) (с менее свободным дресс-кодом). Мы создаем акронимы и аббревиатуры, такие как ФБР, ЦРУ, ВОЗ, ЕС и ООН. Общаясь в чатах, мы печатаем F2F (face-to-face) — «при личной встрече», OH (overheard) — «нечаянно услышал», BFN (bye for now) — «пока, до встречи».
То, с какой легкостью мы обращаемся с подобными аббревиатурами, доказывает, что человеческий мозг любит сокращать: мы свободно разлагаем целое на компоненты, выделяем главное и схватываем суть. Вот почему в нашей речи так часто встречается синекдоха — стилистический прием, когда название части выступает вместо названия целого. Когда мы говорим о «лице, отправившем в путь тысячи кораблей», очевидно, мы имеем в виду Елену Прекрасную, а не только ее лицо. Вот почему мы называем свой автомобиль «колесами», ведем подсчет «по головам» или просим чьей-то «руки», предлагая выйти замуж. Мы говорим о «белых воротничках» и называем человека, подавшего хорошую идею, «головой».

 

«Путешественники» Бруно Каталано

 

Та же компрессия характерна и для человеческого мышления в целом. Возьмем, к примеру, эти скульптуры в марсельском порту во Франции — визуальная аналогия синекдохи.
Как только мозг открывает, что целое можно разложить на части, у давно знакомых предметов появляются новые свойства. Динамическая архитектура Дэвида Фишера создает новый тип зданий: на центральную ось снизу вверх «нанизываются» независимые друг от друга этажи, между ними располагают лопасти, через которые проходит ветер, это и приводит этажи в движение. В результате форма здания постоянно меняется. Этажи могут двигаться независимо или синхронизировано и разнообразят внешний вид города. Благодаря когнитивной стратегии дезинтеграции то, что раньше было неделимым целым, разъединяется на части.

 

 

Как и с динамической архитектурой, одним из самых серьезных новшеств в классической музыке стало деление музыкальных фраз на более короткие отрезки. Возьмем в качестве примера фугу до мажор из «Хорошо темперированного клавира» Иоганна Себастьяна Баха. Так выглядит главная тема:

 

 

 

Не переживайте, если вы не владеете нотной грамотой. Суть в том, что далее Бах делит тему на две части: выбрасывает первую половину и концентрируется на четырех последних нотах, выделенных красным. В представленном ниже фрагменте накладывающиеся друг на друга версии второй части повторяются тринадцать раз, создавая быструю и прекрасную мозаику.
Эта стратегия дала Баху и другим композиторам гибкость, которая не встречается в народных песнях, например в колыбельных и балладах. Вместо повторения темы целиком ее дробление позволило Баху варьировать множество фрагментов, создавая музыку по тому же принципу, как монтировались столетиями позже фильмы «Гражданин Кейн» и «Рокки-4». Пользуясь этой стратегией, Бах во многих своих произведениях представляет темы, а затем делит их на фрагменты.
В процессе дезинтеграции, после того как целое было разложено на части, некоторые из частей можно просто опустить. Для инсталляции «Облака Супер Марио» художник Кори Аркангел взял за основу графику компьютерной игры Super Mario Brothers и удалил все элементы, кроме облаков. Затем он сделал проекцию на большие экраны. Посетители наблюдали, как мимо них мирно проплывают на экране величественные нарисованные облака.

 

 

Прием мышления, когда одни элементы исключаются, а другие сохраняются, часто ведет к появлению технических инноваций.
В конце XIX века фермеры получили возможность заменить лошадей паровым двигателем. К сожалению, с первыми тракторами не все пошло гладко: фактически эти агрегаты годились только для твердых дорог, они были настолько тяжелыми, что трамбовали почву и уничтожали посевы. Несколько помог переход на двигатель внутреннего сгорания, но сами тракторы по-прежнему оставались громоздкими и трудноуправляемыми.

 

Трактор с паровым двигателем XIX в.

 

Механическая вспашка могла так и не стать реальностью. Но затем Гарри Фергюсон предложил идею: убрать раму и корпус и установить сиденье прямо над двигателем. Его модель «Черный трактор» отличалась скромным весом и эффективностью. Благодаря сохранению одних частей конструкции и исключению других зародилось современное тракторостроение.
Почти сто лет спустя стратегия разложения целого на составляющие и исключения некоторых из них изменила область обмена музыкой. В 1982 году немецкий профессор предпринял попытку запатентовать систему предоставления музыкальных треков по запросу, когда пользователи могли бы заказывать композиции по телефонным линиям. Из-за большого размера аудиофайлов изобретение сочли невозможным, и немецкое патентное ведомство отказалось его одобрить. Профессор предложил аспиранту по имени Карлхайнц Бранденбург заняться проблемой сжатия данных. Первые схемы сжатия применялись к речи, но их недостатком было то, что они воспринимали все типы файлов как одинаковые. Бранденбург разработал адаптивную модель, которая гибко реагировала на источник звука. Это позволило ему создать схемы сжатия, соответствующие особенностям слухового восприятия человека. Бранденбург знал, что слух выборочен: например, громкие звуки маскируют более слабые, низкочастотные маскируют высокочастотные. Благодаря этому он мог исключить или уменьшить число «неслышимых» частот без особой потери качества. Больше всего хлопот Бранденбургу доставила песня Сюзанны Веги Tom’s Diner: потребовалось несколько сотен попыток, чтобы запись передавала все нюансы звучания голоса певицы. Через несколько лет упорной работы Бранденбургу с коллегами наконец удалось найти оптимальный баланс между минимальным размером файла и точностью воспроизведения. При качестве, приемлемом для человеческого уха, размер аудиофайлов сократился на 90 %.
Поначалу Бранденбург сомневался, имеет ли разработка практическую ценность. Но всего через несколько лет началась эпоха цифровой музыки, и компрессия стала необходимой, чтобы поместить как можно больше треков в iPod. Работая с акустическими данными и гибко исключая «неслышимые» частоты, Бранденбург с коллегами разработали схему МР3-сжатия, которая применяется к большей части музыки в сети. Спустя еще несколько лет термин «МР3» обогнал по числу поисковых запросов в интернете слово «секс».
Часто оказывается, что нам требуется гораздо меньше информации, чем мы думаем. С этим столкнулись Мануэла Велозо из Университета Карнеги — Меллон и ее команда при разработке CoBot — робота-помощника, который выполняет мелкие поручения, связанные с активными передвижениями по коридорам здания. Робота снабдили датчиками для трехмерного обзора пространства перед собой. Однако встроенные процессоры не справлялись с обработкой такого объема данных в режиме реального времени, и CoBot часто зависал. Д-р Велозо и ее коллеги поняли, что роботу нет необходимости анализировать все лежащее перед ним пространство, чтобы определить препятствие: ему нужны только три точки на плоскости. Хотя датчики фиксируют большой объем информации, алгоритм обрабатывает лишь малую часть, при этом задействовано менее 10 % вычислительных возможностей компьютера. Когда алгоритм определяет, что три точки находятся в одной плоскости, CoBot знает, что перед ним препятствие. Аналогично тому, как МР3-сжатие использует тот факт, что мозг человека обращает внимание не на все, что слышит, роботу нет необходимости «видеть» все, что фиксируют его датчики. Он видит лишь набросок, но этого достаточно, чтобы избегать препятствия. В открытом пространстве CoBot беспомощен, но его ограниченный обзор идеально адаптирован для помещения. Бесстрашный робот сопроводил не одну сотню посетителей в офис доктора Велозо — и всё благодаря стратегии разделения целого на части.
Стратегия дезинтеграции и исключения частей привела к появлению новых способов исследования головного мозга. Нейробиологи, изучающие ткани мозга, давно столкнулись со сложностью: мозг содержит сети связей между нейронами, спрятанные настолько глубоко, что их невозможно увидеть. Обычно ученые решали эту проблему, разрезая мозг на очень тонкие сегменты — одна из форм дезинтеграции, — а затем восстанавливая изображение каждого сегмента и кропотливо собирая их все в полноценную цифровую модель мозга. Поскольку огромное число нервных соединений разрушается в процессе разрезания на сегменты, компьютерную модель, к сожалению, можно считать лишь приблизительной.
Нейробиологи Карл Дейссерот и Квангун Чанг и их команда предложили альтернативное решение. Они нашли способ для удаления рассеивающих свет липидов при сохранении структуры мозга и провели эксперимент на мозге мертвой мыши. После удаления липидов серое вещество мозга мыши стало прозрачным. Подобно инсталляции Аркангела с облаками из компьютерной игры, метод CLARITY позволяет удалить части оригинала, но не заполняет пропуски — в данном случае, пропуски, дающие ученым шанс исследовать огромное число нейронов так, как это еще никогда не было возможно.

 

Скан гиппокампа мозга мыши с помощью метода CLARITY

 

Когнитивная стратегия дезинтеграции позволяет брать нечто цельное и непрерывное и делить на удобные фрагменты. Мозг человека разбивает картину мира на элементы, из которых можно создавать что-то новое.
Аналогично трансформации, дезинтеграция может происходить на основе одного источника: можно разложить изображение на пиксели или заставить вращаться отдельные этажи здания. Но что, если использовать несколько источников? Многие неординарные решения стали результатом удивительных сочетаний: суши-пицца, плавучий дом, бар в прачечной самообслуживания или художественные образы, созданные воображением поэтов. Здесь мы переходим к третьей когнитивной стратегии творческого мышления.
Назад: Глава 3. Трансформация
Дальше: Глава 5. Синтез