Книга: Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта
Назад: Глава 7 Цели
Дальше: Биология: эволюция целей

Физика: происхождение целей

Дабы пролить свет на эти вопросы, давайте сначала изучим основы происхождения целей. Когда мы оглядываемся вокруг, некоторые процессы кажутся нам нацеленными на определенный результат, а другие нет. Рассмотрим для примера такой процесс: ударили по футбольному мячу, чтобы забить решающий гол в игре. Само поведение мяча при этом не кажется целенаправленным и экономнее всего описывается ньютоновским законом движения как реакция мяча на удар. С другой стороны, поведение игрока экономнее всего объясняется не механистически (атомы толкают все вокруг себя), а тем, что у него была цель – добиться для своей команды улучшения счета. Каким образом такое целенаправленное поведение вырастает из физики нашей ранней Вселенной, которая состояла в основном из группы частиц, ударяющихся обо все вокруг себя, на первый взгляд, безо всякой цели?
Любопытно, что источник целенаправленного поведения может быть найден в самих законах физики и обнаруживает себя даже в простых процессах, которые не подразумевают наличия жизни. Если девушка-спасатель приходит на помощь купальщику, как показано на рис. 7.1, мы ожидаем от нее движения по прямой, но она пробегает дальше по берегу, где можно двигаться быстрее, чем в воде, а потом немного изменяет направление, когда входит в воду. Мы естественно объясняем ее выбор траектории наличием конкретной цели, так как из всех возможных она осознанно выбирает оптимальную, которая поможет ей добраться до утопающего быстрее всего. Но ведь и луч света преломляется, когда проходит через воду (см. рис. 7.1), так чтобы время пробега до конечной цели оказалось минимальным. Как такое возможно?
Это явление известно в физике и называется принципом Ферма – по имени ученого, описавшего его в 1662 году и предложившего свое объяснение поведения светового луча. Примечательно, что физики с тех пор открыли, что все законы классической физики могут быть математически переформулированы аналогичным способом: из всех путей, которыми располагает природа, чтобы что-то сделать, она всегда выбирает оптимальный, который обычно сводится к минимизации или максимизации количества. Существует два математически эквивалентных способа сформулировать закон физики: либо через связь прошлого с будущим, либо через природную оптимизацию чего-нибудь. И хотя второй способ обычно не упоминается в элементарных курсах физики, потому что он предполагает больше математических расчетов, мне он кажется более элегантным и обоснованным. Когда человек пытается что-то оптимизировать (счет, благосостояние или счастье), мы склонны описывать такое поведение как целенаправленное. Поэтому, если сама природа старается что-то оптимизировать, нет ничего удивительного в том, что проявляется целенаправленное поведение: оно было зашито у нее в “харде” самими законами физики.

 

Рис. 7.1
Чтобы скорее добраться до тонущего купальщика, спасательнице надо двигаться не по прямой (изображенной пунктиром), а по ломаной линии, выигрывая время за счет того, что по берегу она может двигаться быстрее, чем плыть в воде. Луч света в воде подчиняется тому же правилу: преломившись, он достигает дна или стенки сосуда за кратчайшее время.

 

Известна физическая величина, которую природа старается максимизировать, – это энтропия, или, грубо говоря, мера беспорядка в описываемых предметах. Второй закон термодинамики утверждает, что энтропии свойственно увеличиваться до тех пор, пока она не достигнет максимально возможного значения. Если забыть на время о наличии сил тяжести, то конечная стадия, когда максимальный беспорядок повсеместно достигнут, называется тепловой смертью – это означает, что все обретает скучное безупречное однообразие, без сложности, без жизни и без изменений. Когда вы, например, наливаете холодное молоко в горячий кофе, ваш напиток начинает безудержно стремиться к своей собственной тепловой смерти и вскоре превращается в однородную тепловатую жидкость. При смерти живого организма энтропия в нем также возрастает, и вскоре организованность его частиц существенно снижается.
Стремление природы увеличить энтропию объясняет, почему время имеет определенное направление, заставляя фильмы выглядеть нереалистично, если просматривать их задом наперед: если вы уроните бокал вина, вы ожидаете, что он разлетится вдребезги, ударившись об пол, и тем самым увеличит глобальный хаос (энтропию). Если же вы увидите, как он собирается и летит назад в руку (энтропия при этом явно уменьшается), то, скорее всего, вы решите больше из него не пить, посчитав, что вам на сегодня хватит.
Когда я впервые узнал о нашем неумолимом движении по направлению к тепловой смерти, я очень расстроился – и был в этом не одинок: один из основателей термодинамики, лорд Кельвин, писал в 1841 году, что “в результате [все] неизбежно придет в состояние всеобъемлющего покоя и смерти”, и сложно утешать себя тем, что такова, видно, долгосрочная цель природы – торжество смерти и разрушения. Однако последующие исследования показали, что все не так плохо. Во-первых, гравитация ведет себя не так, как все другие силы, и старается сделать нашу Вселенную не однообразной и скучной, а все более разнообразной и интересной. Благодаря этому гравитация превратила нашу скучную раннюю Вселенную, которая была абсолютно однообразна, в сегодняшний прекрасный и сложный космос, наполненный галактиками, звездами и планетами. Благодаря гравитации во Вселенной сегодня колоссальный разброс температур, который позволяет жизни процветать, лавируя между горячим и холодным: мы живем на теплой комфортной планете, которая сначала поглощает солнечную энергию, пришедшую с поверхности нагретого до 6 000 °C светила, а потом излучает ее, отдавая холодному космическому пространству, температура которого всего на три градуса отличается от абсолютного нуля.
Во-вторых, недавняя работа моего коллеги по MIT Джереми Ингланда с соавторами принесла нам хорошие новости: термодинамика находит в природе и более вдохновляющую цель, чем тепловая смерть. Эта цель называется диковатым словосочетанием диссипативно-направленная адаптация, подразумевающим, что случайно сформировавшиеся группы частиц стремятся самоорганизоваться таким образом, чтобы получать энергию из окружающей среды наиболее эффективным способом (слово “диссипация” здесь означает, что энергия распределяется между степенями свободы с увеличением энтропии, то есть превращается в тепло, зачастую производя попутно какую-то полезную работу). Например, в группе молекул, выставленных на солнце, со временем проявится тенденция так расположиться по отношению друг к другу, чтобы лучше поглощать солнечный свет. Другими словами, природа, похоже, сама собой нацелена на производство самоорганизующихся систем, которые, все усложняясь и усложняясь, все больше походят на жизнь, и эта цель зашита в “хард” самих физических законов.
Как мы можем увязать это космическое стремление к жизни с космическим стремлением к тепловой смерти? Ответ можно найти в известной книге 1944 года What’s Life? Эрвина Шрёдингера, одного из основателей квантовой механики. Шрёдингер указал на то, что живая система поддерживает свою энтропию на постоянном уровне или даже сокращает ее за счет увеличения энтропии вокруг себя, – и в этом отличительная черта живых систем. Другими словами, второй закон термодинамики имеет лазейку: хотя всеобщая энтропия должна увеличиваться, в некоторых местах разрешается сокращать энтропию, – при условии, что она еще больше увеличивается где-то еще. Так жизнь поддерживает или увеличивает свою сложность за счет создания хаоса вокруг себя.
Назад: Глава 7 Цели
Дальше: Биология: эволюция целей