Книга: Шестое вымирание. Неестественная история
Назад: Глава 5 Добро пожаловать в антропоцен Dicranograptus ziczac
Дальше: Глава 7 Изливая кислоту Acropora millepora

Глава 6
Море вокруг нас
Patella caerulea

Кастелло Арагонезе – крошечный остров, возвышающийся над Тирренским морем наподобие орудийной башни. Он расположен примерно в тридцати километрах к западу от Неаполя, и добраться до него можно с соседнего, большего по размеру острова Искья по узкому, длинному каменному мосту. В конце моста находится кабинка, в которой за десять евро вы покупаете билет, позволяющий взобраться – или, еще лучше, подняться на лифте – к знаменитому Арагонскому замку. В строениях замка среди прочего размещены экспозиция средневековых пыточных инструментов, фешенебельная гостиница и уличное кафе. Летними вечерами очень уютно сидеть в этом кафе, потягивая кампари и размышляя об ужасах прошлого.
Как и многие другие небольшие образования, Кастелло Арагонезе представляет собой результат действия значительных сил – в данном случае дрейфа Африки в северном направлении, благодаря которому Триполи каждый год становится на несколько сантиметров ближе к Риму. Образуя сложную систему складок, Африканская литосферная плита вдавливается в Евразийскую, подобно тому как деформируется металл в плавильной печи. Время от времени этот процесс вызывает мощные извержения вулканов (одно из таких извержений, случившееся в 1302 году, заставило все население Искьи искать убежища на островке Кастелло Арагонезе). Но обычно он проявляется в том, что из фумарол на морском дне поднимаются струями пузыри газа – почти на 100 % углекислого.
Углекислый газ имеет множество интересных свойств, одно из которых состоит в том, что он растворяется в воде с образованием кислоты. Я приехала на остров Искья в конце января, в мертвый сезон, специально для того, чтобы поплавать в пузырящихся подкисленных водах залива. Морские биологи Джейсон Холл-Спенсер и Мария Кристина Буйя пообещали показать мне подводные фумаролы, если не будет ожидавшегося по прогнозу ливня.
В промозглый серый день мы отплываем на бывшем рыболовном судне, переделанном в исследовательское. Обходим Кастелло Арагонезе и бросаем якорь примерно в двадцати метрах от его каменистых берегов. С судна подводные трещины не видны, но заметны их признаки. Белая полоса усоногих ракообразных окружает основание острова – за исключением участков над фумаролами, где усоногих нет.
“Усоногие очень жизнестойки”, – замечает Холл-Спенсер, британец со светло-каштановыми волосами, торчащими во все стороны. На нем гидрокостюм сухого типа, то есть такой, который вообще не пропускает внутрь воду, поэтому Холл-Спенсер выглядит так, будто готовится к космическому путешествию. Буйя – итальянка с рыжевато-коричневыми волосами до плеч. Она раздевается до купальника, а затем одним отработанным движением натягивает свой гидрокостюм. Я пытаюсь так же лихо надеть свой, взятый напрокат. Борясь с молнией, я понимаю, что он мал мне как минимум на полразмера. Мы все надеваем маски и ласты и погружаемся.
Вода очень холодная. Холл-Спенсер взял с собой нож, он поддевает с камня нескольких морских ежей и протягивает мне. Их иглы чернильно-черного цвета. Мы плывем дальше, двигаясь вдоль южного берега острова в сторону фумарол. Холл-Спенсер и Буйя время от времени останавливаются, чтобы собрать образцы – коралловых полипов, улиток, водорослей и мидий, – которые помещают в сетчатые мешки, болтающиеся за ними в воде. Когда мы уже достаточно близко от фумарол, я замечаю пузыри, поднимающиеся с морского дна и напоминающие шарики ртути. Под нами колышется ковер водорослей необычно яркого зеленого цвета. Как я позже узнала, это объясняется нехваткой крошечных организмов, которые обычно покрывают водоросли и приглушают их натуральный цвет. Чем ближе мы подплываем к фумаролам, тем меньше образцов удается найти. Исчезают и морские ежи, и мидии, и усоногие. Буйя находит несколько жалких морских блюдечек, прикрепленных к скале. Их раковины истончились почти до прозрачного состояния. Мимо нас проскальзывает стайка медуз по цвету лишь немногим светлее воды.
“Осторожно, – предостерегает Холл-Спенсер. – Они жалят”.
С начала промышленной революции люди сожгли столько ископаемого топлива – угля, нефти и природного газа, – что в атмосферу поступило около 365 миллиардов тонн углерода. Уничтожение лесов добавило еще 180 миллиардов тонн. Каждый год мы выбрасываем в атмосферу еще примерно 9 миллиардов тонн, и это число ежегодно увеличивается почти на 6 %. В результате концентрация углекислого газа в воздухе в наши дни – немногим более 400 частей на миллион – выше, чем когда-либо за последние восемьсот тысяч лет. Вполне вероятно, что даже за последние несколько миллионов лет. Если так пойдет и дальше, то к 2050 году концентрация CO2 превысит 500 частей на миллион, что примерно вдвое больше уровня доиндустриальной эпохи. Предполагается, что такое увеличение приведет к повышению среднемировой температуры на 2–4° С, а это, в свою очередь, запустит цепочку событий, которые изменят наш мир, включая исчезновение большинства оставшихся ледников, затопление низколежащих островов и прибрежных городов, а также таяние арктической ледяной шапки. Однако это лишь половина истории.
Океан покрывает 70 % поверхности Земли, и везде, где вода контактирует с воздухом, между ними происходит обмен. Газы из атмосферы поглощаются океаном, а газы, растворенные в океане, высвобождаются в атмосферу. Когда система находится в равновесии, приблизительно одинаковое количество газа растворяется и выделяется. Но стоит изменить состав атмосферы – что мы уже сделали, – и обмен становится односторонним: в воду поступает больше углекислого газа, чем из нее уходит. Получается, человек постоянно добавляет CO2 в моря – примерно так же, как это делают подводные фумаролы, только сверху, а не снизу, причем в глобальном масштабе. Только за этот год океаны абсорбируют 2,5 миллиарда тонн углерода, а в следующем предположительно поглотят еще столько же. Фактически каждый американец ежедневно закачивает в море три килограмма углерода.
Из-за этих излишков CO2 среднее значение pH (водородного показателя) поверхностных вод океана уже упало с 8,2 до 8,1. Подобно рихтеровской, шкала pH логарифмическая, поэтому даже столь малая численная разница отражает очень большие реальные изменения. Снижение pH на 0,1 означает, что кислотность океанов теперь на 30 % выше, чем в 1800 году. Если люди будут и дальше сжигать ископаемое топливо, океаны продолжат поглощать углекислый газ, а значит, будут становиться все более закисленными. Если так будет продолжаться и дальше и прежнее количество выбросов углерода сохранится, pH поверхностных вод океана к середине этого века снизится до 8,0, а к концу века – до 7,8. А значит, океаны окажутся на 150 % более закисленными, чем в начале промышленной революции.
Вследствие выбросов CO2 из подводных фумарол воды вокруг Кастелло Арагонезе довольно точно демонстрируют, какими океаны станут в будущем. Вот почему я плыву вокруг острова в январе, постепенно коченея от холода. Здесь есть возможность уже сегодня искупаться – и даже утонуть, думаю я в минуту паники, – в морях завтрашнего дня.
К тому времени как мы добираемся до гавани острова Искья, поднимается ветер. На палубе нашего судна в беспорядке валяются пустые баллоны для воздуха, мокрые гидрокостюмы и ящики с образцами. После разгрузки мы должны будем оттащить их по узким улицам наверх – к местной морской биостанции, расположенной на крутом мысу с видом на море. Станция была основана в XIX веке немецким натуралистом Антоном Дорном. На одной из стен в вестибюле здания я замечаю копию письма, отправленного Чарльзом Дарвином Дорну в 1874 году. В нем Дарвин выражает обеспокоенность тем, что, по словам их общего друга, Дорн слишком много работает.

 

Кастелло Арагонезе

 

Животные, собранные Буйей и Холл-Спенсером вокруг Кастелло Арагонезе и помещенные в аквариумы в лаборатории, занимающей подвал здания, сначала выглядели вялыми – на мой нетренированный взгляд, пожалуй, даже неживыми. Однако немного погодя они начали шевелиться и искать пищу. Там была морская звезда без одного щупальца, кучка хилого вида коралловых полипов, а также несколько морских ежей, которые передвигались по аквариуму с помощью десятков тонких ножек-“трубочек” (каждая такая ножка работает по гидравлическому принципу, растягиваясь и сокращаясь в зависимости от давления воды). Кроме того, там был морской огурец длиной пятнадцать сантиметров, похожий на кровяную колбасу или, что еще хуже, на какашку. В холодной лаборатории разрушительное воздействие углекислых фумарол стало очевидно. Osilinus turbinatus – распространенная средиземноморская улитка с раковиной, покрытой перемежающимися черными и белыми пятнами, как на змеиной коже. Однако у Osilinus turbinatus в аквариуме не было рисунка: верхний рельефный слой раковины оказался разъеден и обнажил нижний – гладкий и белоснежный. Морское блюдечко Patella caerulea по форме напоминает китайскую соломенную шляпу. Раковины нескольких особей имели глубокие повреждения, через которые виднелись желтовато-серые тела их владельцев. Кажется, будто их окунули в кислоту, – в каком-то смысле так оно и есть.
“Поскольку это очень важно, организм человека прикладывает много усилий, чтобы обеспечить постоянство pH нашей крови, – говорит Холл-Спенсер, повышая голос, чтобы перекричать шум воды. – Однако у некоторых низших животных нет для этого физиологических возможностей. Они вынуждены сносить все происходящее вокруг – и достигают своего предела”.
Позднее, за пиццей, Холл-Спенсер рассказал мне о своей первой поездке к фумаролам. Это было летом 2002 года, он тогда работал на итальянском исследовательском судне “Урания”. В один жаркий день, когда “Урания” проходила мимо Искьи, экипаж решил бросить якорь и искупаться. Несколько итальянских ученых, кто знал о фумаролах, предложили Холл-Спенсеру посмотреть на них, просто забавы ради. Ему понравились необычные ощущения – плавание среди пузырей похоже на купание в шампанском, – но это заставило его и призадуматься.
В то время морские биологи только начинали осознавать опасности, сопряженные с закислением. Были произведены некоторые насторожившие расчеты и проведены предварительные эксперименты на лабораторных животных. Холл-Спенсер решил, что подводные фумаролы можно использовать для нового и более перспективного вида исследований. Они охватили бы не только несколько видов выведенных в аквариумах животных, но десятки видов, живущих и размножающихся в своей естественной (или, если угодно, естественно неестественной) среде.
В окрестностях Кастелло Арагонезе подводные фумаролы создают градиент pH. Воды у восточной оконечности острова почти не подверглись закислению. Эту зону можно считать современным Средиземным морем. Но по мере приближения к фумаролам кислотность воды повышается, а pH, соответственно, снижается. Холл-Спенсер понял, что распределение жизни вдоль этого градиента pH служит неплохой иллюстрацией того, что ждет Мировой океан в будущем. Словно появился доступ к подводной машине времени.
Холл-Спенсеру потребовалось два года, чтобы опять приехать на Искью. Его проект все еще не получил финансирования, а потому исследователю трудно было заставить кого-либо воспринять его затею всерьез. Не имея возможности снять комнату в гостинице, Холл-Спенсер разбил палатку на уступе скалы. Для сбора образцов он использовал выброшенные пластиковые бутылки из-под воды. “Это было немного в духе Робинзона Крузо”, – признался он мне.
В конце концов ему удалось убедить достаточно коллег, включая Буйю, в том, что он задумал нечто стоящее. Прежде всего необходимо было произвести детальные замеры уровней pH вокруг острова. Затем они провели учет всех видов, живущих в зонах с разной кислотностью. Для этого вдоль побережья были расставлены металлические рамы, благодаря которым регистрировалась каждая особь мидий, усоногих и морских блюдечек, прицепившаяся к прибрежным камням. Мало того – исследователям часами приходилось сидеть под водой, пересчитывая проплывающих рыб.
В водах далеко от фумарол Холл-Спенсер и его коллеги обнаружили вполне типичное сообщество средиземноморских видов. В том числе: губку Agelas oroides, напоминающую монтажную пену; рыбу Sarpa salpa, часто употребляемую в пищу и иногда вызывающую галлюцинации, и морского ежа Arbacia lixula сиреневого оттенка. Также в том районе обитали кустистая розоватая водоросль Amphiroa rigida и зеленая водоросль Halimeda tuna, растущая в виде соединенных друг с другом дисков. (Исследование было ограничено только достаточно крупными организмами, которые заметны невооруженным глазом.) В этой зоне, свободной от влияния фумарол, было зафиксировано 69 видов животных и 51 вид растений.
Когда же Холл-Спенсер и его команда приступили к зонам, расположенным ближе к фумаролам, результаты оказались совершенно иными82. Усоногое Balanus perforatus, напоминающее маленький сероватый вулкан, в изобилии встречается от Западной Африки до Уэльса. В зоне со значением pH 7,8, которое соответствует морям не слишком отдаленного будущего, этого вида не было. Черноморская мидия (Mytilus galloprovincialis) сине-черного цвета, обычная для Средиземноморья, настолько легко адаптируется к разным условиям, что прижилась во многих частях мира как инвазивный вид. Ее тоже не было. Также не удалось найти жесткие красноватые водоросли Corallina elongata и Corallina officinalis, червя серпулиду Pomatoceros triqueter, три вида коралловых полипов, несколько видов улиток и моллюска Arca noae, известного под названием “Ноев ковчег”. В целом в зоне со значением pH 7,8 полностью отсутствовала треть видов, обнаруженных в зоне без фумарол.
“Как ни печально, но критическое значение pH, при котором экосистема начинает разрушаться, равно в среднем 7,8, и мы полагаем, что оно будет достигнуто к 2100 году, – говорит мне Холл-Спенсер в своей сдержанной британской манере. – И это крайне тревожно”.

 

C тех пор как в 2008 году Холл-Спенсер опубликовал свою первую статью о подводных углекислых фумаролах, интерес к теме закисления и его последствий резко возрос. Международные исследовательские проекты с такими названиями, как BIOACID (Biological Impacts of Ocean Acidification – Биологические последствия закисления океанов) и EPOCA (European Project on Ocean Acidification – Европейский проект по проблеме закисления океанов), получили финансирование, что позволило провести сотни, а может, и тысячи экспериментов. Их проводили на судах, в лабораториях и в специальных резервуарах – “мезокосмах”, – которые можно погрузить в океан, воссоздавая условия, наиболее приближенные к реальным.
Раз за разом эксперименты подтверждали вред, причиняемый ростом концентрации CO2. Многие виды, несомненно, будут чувствовать себя нормально и даже процветать в закисленном океане, однако множество других – нет. Некоторые организмы, оказавшиеся уязвимыми, такие как рыба-клоун и тихоокеанские устрицы, знакомы нам по аквариуму или обеденному столу; другие менее харизматичны (или вкусны), но, вероятно, важнее для морских экосистем. К примеру, одноклеточные планктонные водоросли Emiliania huxleyi – кокколитофориды, – окружающие себя крошечными кальцитовыми пластинками. Под микроскопом эти водоросли выглядят как чья-то безумная поделка – футбольный мяч, покрытый пуговицами. В определенные месяцы года этот вид становится настолько многочисленным, что окрашивает большие участки морей в молочно-белый цвет, также он составляет начальное звено многих морских пищевых цепей. Или крылоногие моллюски Limacina helicina – улитки с “крыльями”, прозванные морскими бабочками. Они обитают в Арктике и являются важным источником пищи для многих более крупных животных, включая сельдь, лосося и китов. Оба эти вида оказались крайне чувствительными к закислению океана: в ходе одного эксперимента с мезокосмами Emiliania huxleyi полностью исчезла из резервуаров с повышенным уровнем CO2.

 

Кокколитофорида Emiliania huxleyi

 

Ульф Рибезелль – биолог-океанограф в центре изучения Мирового океана, входящем в Объединение немецких научно-исследовательских центров имени Гельмгольца (GEOMAR) и расположенном в немецком городе Киль. Рибезелль руководил несколькими крупными проектами по проблеме закисления океана у берегов Норвегии, Финляндии и Шпицбергена. Он обнаружил, что лучше всего в закисленной воде чувствуют себя планктонные организмы настолько крошечные – менее двух микрометров, – что они образуют свою собственную микроскопическую пищевую сеть. По мере увеличения численности особей этот пикопланктон, как его называют, потребляет все больше питательных веществ, отчего страдают более крупные организмы.
“Если вы спросите меня, что произойдет в будущем, я отвечу так: есть надежные доказательства того, что грядет снижение биоразнообразия”, – сказал мне Рибезелль. “Некоторые высокоустойчивые организмы станут более многочисленными, но общее разнообразие будет утрачено. Именно это и происходило всегда в результате крупных массовых вымираний”.
Закисление океана иногда называют “не менее злодейским близнецом” глобального потепления. Ирония здесь умышленная и вполне справедливая. Ни один механизм не объясняет полностью все массовые вымирания в палеонтологической летописи, и все же изменения в химическом составе океана кажутся довольно неплохим прогностическим параметром. Закисление океана сыграло свою роль как минимум в двух из Большой пятерки вымираний (в конце пермского и триасового периодов) и, вполне возможно, послужило основным фактором в третьем вымирании (в конце мелового периода). Имеются веские доказательства закисления океана во время вымирания, известного как плинсбах-тоарское83, произошедшего 183 миллиона лет назад – в начале юрского периода. Существуют подобные доказательства и относительно конца палеоцена, когда 55 миллионов лет назад несколько форм морской жизни претерпели значительный кризис.
“Да, закисление океана, – сказал мне Залашевич в Добс-Линн, – это крупная неприятность, которая уже валится нам на голову”.

 

Чем же закисление океана столь опасно? На этот вопрос сложно ответить только потому, что список причин очень уж длинный. В зависимости от того, насколько жестко регулируются внутренние химические процессы организмов, закисление способно повлиять на такие базовые процессы, как обмен веществ и ферментативная активность, и на функции белка. Поскольку закисление изменит состав микробных сообществ, оно изменит и степень доступности ключевых биогенных элементов, например железа и азота. По аналогичным причинам изменится количество света, проходящего сквозь воду, а по несколько иным причинам – то, как распространяется звук (в целом, предполагается, что океаны станут более шумными). Вероятно, закисление спровоцирует рост токсичных водорослей. Также оно повлияет на фотосинтез – многие виды растений способны извлечь пользу из повышенного уровня CO2 – и изменит химические соединения, образованные растворенными металлами, в некоторых случаях в сторону ядовитости.
Среди несметного числа возможных воздействий закисления, пожалуй, самое важное затрагивает группу существ, известных как “кальцифицирующие организмы” (так называют любые организмы, выстраивающие себе раковину или наружный скелет или, в случае растений, некий внутренний каркас из карбоната кальция). Морские кальцифицирующие организмы невероятно многообразны: это и иглокожие, в частности морские звезды и морские ежи, и моллюски, в том числе мидии и устрицы, и усоногие, которые относятся к ракообразным, и многие виды коралловых полипов (так они сооружают огромные структуры, образующие рифы). К кальцифицирующим организмам также относятся многие виды морских водорослей; зачастую они на ощупь жесткие или ломкие. Кораллиновые водоросли – мельчайшие организмы, растущие колониями, похожими на мазок розовой краски, – тоже кальцифицирующие организмы. Плеченогие, кокколитофориды, фораминиферы и многие виды крылоногих моллюсков… список можно продолжать еще долго. По некоторым оценкам, кальцификация возникала на протяжении всей истории жизни по меньшей мере двадцать раз независимо84, и вполне возможно, что реальное число еще больше.
С точки зрения человека, кальцификация напоминает одновременно и строительство, и алхимию. Для создания своих раковин, экзоскелетов или кальцитовых пластинок кальцифицирующие организмы должны соединить ионы кальция (Ca2+) и карбонат-ионы (CO32–), чтобы образовался карбонат кальция (CaCO3). Однако при тех концентрациях, в которых эти ионы присутствуют в обычной морской воде, они не могут провзаимодействовать. Следовательно, эти организмы должны по месту кальцификации изменить химический состав воды, чтобы, по сути, навязать свою собственную химию.
Закисление океана повышает затраты на кальцификацию – снижая количество доступных карбонат-ионов, необходимых для начала работы. Используем аналогию со строительством: представьте, что вы пытаетесь построить дом, а кто-то постоянно крадет у вас кирпичи. Чем выше кислотность воды, тем больше энергии требуется для завершения необходимых этапов. В определенный момент вода становится коррозионно-активной – и твердый карбонат кальция начинает растворяться. Вот почему у морских блюдечек, подобравшихся слишком близко к фумаролам у Кастелло Арагонезе, появляются дыры в раковинах.
В лабораторных экспериментах было показано, что кальцифицирующие организмы особенно сильно пострадают от снижения pH океанической воды, и это подтверждается списком исчезнувших у Кастелло Арагонезе видов. В зоне со значением pH 7,8 три четверти исчезнувших видов относятся к кальцифицирующим организмам82; среди них упоминавшиеся выше почти вездесущий вид усоногих Balanus perforatus, жизнестойкая мидия Mytilus galloprovincialis и червь серпулида Pomatoceros triqueter. Еще среди кальцифицирующих организмов там исчезли распространенный двустворчатый моллюск Lima lima, морская улитка шоколадного цвета Jujubinus striatus и морская улитка из семейства червячковых Serpulorbis arenarius. При этом полностью исчезли и кальцифицирующие водоросли.
По мнению геологов, работающих в этом районе, подводные фумаролы у Кастелло Арагонезе выпускали углекислый газ как минимум несколько сотен лет, возможно, и дольше. Любая мидия, усоногое или червь серпулида, способные адаптироваться к более низкому уровню pH, за прошедшие столетия, надо полагать, уже сделали бы это. “Им предоставлена возможность поколение за поколением учиться выживать в таких условиях, и все же их там нет”, – заметил Холл-Спенсер.
Чем сильнее снижается pH, тем хуже становится кальцифицирующим организмам. Холл-Спенсер обнаружил, что совсем рядом с фумаролами, где пузыри углекислого газа струятся вверх плотными рядами, нет вообще никаких кальцифицирующих организмов. Собственно, все, что осталось в этом районе – подводном аналоге пустыря, – это лишь кое-какие жизнестойкие виды местных водорослей и несколько видов инвазивных, по одному виду креветок и губок и два вида морских слизней.
“Вы не увидите никаких кальцифицирующих организмов в районе, где поднимаются пузыри”, – сказал мне Холл-Спенсер. “Знаете, как в загрязненной гавани обычно остается всего несколько видов, подобных водорослям и способных выносить сильно меняющиеся условия? Так вот именно это и происходит, когда повышается уровень углекислого газа”.
* * *
Приблизительно треть углекислого газа, который человечество уже успело закачать в воздух, была поглощена океанами – а это ошеломляющие 150 миллиардов тонн! Впрочем, как и в случае с другими особенностями антропоцена, здесь важен не только масштаб, но и скорость процесса. Удобно провести сравнение с алкоголем (хотя и заведомо неточное). Подобно тому как для химического состава вашей крови имеет огромное значение, выпили ли вы упаковку пива за месяц или за час, для химического состава морской воды имеет огромное значение, поступает ли углекислый газ в течение миллиона лет или ста. Для океанов, как и для печени человека, скорость важна.
Если бы мы добавляли CO2 в атмосферу медленнее, то такие геологические процессы, как выветривание горных пород, сыграли бы свою роль в противодействии закислению. Но в сложившихся условиях все происходит слишком быстро, так что столь медленно действующим силам не поспеть. Как однажды заметила Рейчел Карсон, говоря о совершенно другой, но по сути похожей проблеме: “Время – главная составляющая, но в современном мире его нет”85.
Группа ученых под руководством Бэрбель Хёниш из обсерватории Ламонта – Доэрти Колумбийского университета недавно изучила данные об изменении уровней CO2 в геологическом прошлом и пришла к выводу, что, хотя в палеонтологической летописи значится несколько серьезных случаев закисления океана, “ни одно событие прошлого не идет в сравнение” с происходящим прямо сейчас из-за “беспрецедентно высокой скорости выбросов CO2”. Оказывается, существует совсем немного способов закачать миллиарды тонн углерода в атмосферу очень быстро. Лучшее объяснение, которое удалось придумать для вымирания в конце пермского периода, – мощный всплеск вулканической активности на территории нынешней Сибири. Однако даже это яркое событие86, благодаря которому возникли Сибирские траппы, по-видимому, высвободило, в пересчете на год, меньше углерода, чем наши автомобили, заводы и электростанции.
Сжигая уголь и нефть, люди возвращают в атмосферу углерод, который был от нее изолирован десятки – в основном даже сотни – миллионов лет. В этом процессе мы прокручиваем геологическую историю не просто вспять, но и с безумной скоростью.
“Именно скорость высвобождения CO2 делает текущий великий эксперимент столь необычным с геологической точки зрения и, скорее всего, беспрецедентным в истории Земли”, – написали геолог из Университета штата Пенсильвания Ли Камп и специалист по моделированию климата из Бристольского университета Энди Риджвелл в специальном выпуске журнала Oceanography, посвященном теме закисления87. Если и дальше идти тем же путем, считают ученые, то “антропоцен станет одним из самых значительных, а вполне возможно, и самых катастрофических эпизодов в истории нашей планеты”.
Назад: Глава 5 Добро пожаловать в антропоцен Dicranograptus ziczac
Дальше: Глава 7 Изливая кислоту Acropora millepora