Книга: Второй мозг: Как микробы в кишечнике управляют нашим настроением, решениями и здоровьем
Назад: Роль серотонина
Дальше: Оборотная сторона раннего очищения кишечника

Еда как информация

Все сказанное выше ставит важный вопрос: если люди редко осознают возникающие в ЖКТ ощущения, даже сильное вздутие живота после обильной трапезы, зачем пищеварительному тракту нужен свой специализированный сенсорный аппарат?

Простой (и подтверждаемый научными данными) ответ таков: эти чувствительные механизмы имеют важное значение для нормального функционирования и координации основных функций ЖКТ (опорожнение желудка, перемещение пищи по кишечнику, секреция кислоты и пищеварительных ферментов), и для связанных с приемом пищи функций организма (аппетит, чувство сытости), и, наконец, для основного обмена, включая контроль уровня сахара в крови. Эти функциональные аспекты ощущений в пищеварительном тракте возникли, скорее всего, миллионы лет назад, когда крошечные примитивные морские животные были колонизированы микроорганизмами, которые помогли им усваивать определенные питательные вещества.

Есть и другой, более провокационный ответ на вопрос о том, зачем нужна эта сенсорная система: ей приходится справляться с потоком информации, поступающей из пищеварительного тракта в головной мозг, – информации, которая не связана непосредственно с функциями ЖКТ и метаболическими потребностями и в основном не замечается нами. Огромное количество информации из ЖКТ, направляемой в головной мозг и включающей лавину сообщений от триллионов кишечных микроорганизмов, позволяет оси головной мозг – ЖКТ играть уникальную и весьма неожиданную роль регулятора здоровья и общего состояния, чувств и даже, как будет показано в главе 5, принимаемых нами решений.



Когда мы задумываемся над тем, насколько сложны с научной точки зрения сенсоры пищеварительного тракта и блуждающий нерв, а также над их функцией в процессе пищеварения и рассматриваем их в общем контексте внутренних ощущений, возникает совершенно новая картина наших пищевых привычек. Помимо того, что пищеварительный тракт способен не только поглощать бóльшую часть питательных веществ и калорий из еды (в то время как микробиота занимается остатками того, что ЖКТ переварить не может), сложная система наблюдения, имеющаяся в пищеварительном тракте, может анализировать состав питательных веществ в пище и извлекать информацию, необходимую для ее оптимального усвоения. Другими словами, еда поступает в ЖКТ одновременно с точными указаниями о том, как ее следует переварить, а также с набранными мелким шрифтом длинными дополнительными инструкциями. До недавнего времени ученые вообще о них не знали и лишь теперь пытаются уяснить их смысл. Это важно для всех – для веганов и мясоедов, для фанатиков модных диет и для того несчастного, который подхватил кишечную инфекцию во время поездки в Мексику. Самое удивительное, что сенсорная система пищеварительного тракта начинает извлекать эту информацию, как только пища попадает в рот (вкусовые рецепторы на языке и энтеральные нейроны в пищеводе начинают передачу данных о том, что мы собираемся съесть), и продолжает свою работу до тех пор, пока пища не оказывается в толстой кишке. И все это пищеварительный тракт делает без всякого вмешательства в наши повседневные дела.

Когда мы видим скопления сенсорных рецепторов и обширную область, которую они занимают в слизистой оболочке стенки ЖКТ, становится очевидно, что пищеварительный тракт ежесекундно передает огромные объемы информации в головной мозг. Сам он получает эту информацию и в результате сложных процессов, связанных с пищеварением, и напрямую от 100 трлн обитающих в нем и любящих поболтать друг с другом микроорганизмов. В том, что касается сбора, хранения, анализа и реагирования на огромный объем информации, ось головной мозг – ЖКТ похожа на настоящий суперкомпьютер. Такое сравнение серьезно отличается от наших прежних представлений о пищеварительной системе: в прошлом ее считали чем-то вроде медленно работающего парового двигателя.

Это часть нового, современного понимания механизма работы ЖКТ. Повышенное внимание к макро- и микроэлементам, нюансам обмена веществ и килокалориям сменяется интересом к тому, что ЖКТ с собственной нервной системой и сообществом населяющих его микроорганизмов по сути является удивительным механизмом обработки информации. Он серьезно превосходит головной мозг по числу клеток, участвующих в этом процессе, а по некоторым своим возможностям способен соперничать с «большим собратом». Через продукты питания эта система плотно связывает нас с окружающей средой, собирая жизненно важную информацию о том, как выращивается пища, что мы вносим в почву и какие химические вещества были добавлены в еду, прежде чем она попала на полки супермаркета. В следующей главе мы узнаем, какую роль в связи между тем, что мы едим, и тем, как себя чувствуем, играет кишечная микробиота.

Глава 4

Разговор микроорганизмов – важный компонент общения между головным мозгом и пищеварительным трактом

В 1970–1980-е гг. важнейшие исследования коммуникаций между головным мозгом и желудочно-кишечным трактом проводились в Лос-Анджелесе в Центре исследований язвенных болезней и подготовки специалистов (CURE, Center for Ulcer Research and Education, сейчас входит в состав Министерства по делам ветеранов США). Этот Центр, основанный выдающимся физиологом Мортоном Гроссманом, был Меккой для исследователей и лечащих врачей со всего мира, которые хотели на фундаментальном уровне изучать проблему язвы желудка (серьезную врачебную проблему в то время) и основные механизмы, участвующие в работе пищеварительной системы. Об этом Центре и сделанных в нем научных открытиях, о его харизматичном основателе и об ученике Гроссмана по имени Джон Уолш написаны книги, а рассказы об их работах можно услышать и сегодня.

Когда я приехал в Лос-Анджелес в начале 1980-х гг. и начал работать в Центре, я хотел изучать биологию процессов коммуникации в пищеварительном тракте. В учебной программе медицинского факультета Университета Людвига и Максимилиана в Мюнхене, где я учился, тема взаимодействия головного мозга и ЖКТ почти не затрагивалась. Я только что закончил стажировку по внутренним болезням в Университете Британской Колумбии в Ванкувере и не мог дождаться начала обучения в ординатуре, чтобы продолжить углубленно заниматься интересующей меня темой. Я полагал, что на эти исследования и ординатуру у меня уйдет два года.

В то время Джон Уолш был блестящим молодым исследователем, который уже принял много дальновидных решений и сделал немало открытий, руководствуясь своими внутренними ощущениями, что я понял гораздо позже. Он уже тогда заинтересовался группой таинственных сигнальных молекул – «кишечных гормонов» или «кишечных пептидов», которые были выделены из кожи экзотических лягушек, а затем из ЖКТ и головного мозга млекопитающих. В то время биологи полагали, что эти сигнальные молекулы работают как простые химические переключатели, которые запускают или останавливают выработку желудком соляной кислоты, или секрецию поджелудочной железой пищеварительных гормонов, или сокращения желчного пузыря. Однако в течение следующих нескольких лет, которые я провел в этой колыбели новейших исследований пищеварительного тракта и головного мозга, я видел, как менялось понимание функции сигнальных молекул – от простых двухпозиционных переключателей до основы сложного универсального биологического языка, которым пользуются триллионы микроорганизмов для общения с пищеварительной системой и головным мозгом человека.

Группа итальянских биологов под руководством Витторио Эрспамера обнаружила первые гастроинтестинальные (кишечные) пептиды в коже экзотических лягушек. В тот момент казалось, что роль этих веществ заключалась в отпугивании хищников. Когда неопытная молодая птица проглатывает лягушку, эти молекулы выбрасываются в ее желудочно-кишечный тракт, вызывая такую острую реакцию, что это побуждает птицу отрыгивать лягушку. Неприятный опыт учит птицу не трогать этот вид лягушек в будущем. А так как лягушка вырабатывает пептид, на который реагирует желудок птицы, то получается, что лягушки и птицы имеют общую систему химической связи, что и показали результаты исследований.

Вскоре после того, как итальянцы сообщили о своих находках, Виктор Матт с коллегами из Каролинского института в Швеции начал поиски гастроинтестинальных пептидов в тканях млекопитающих. В конце концов они научились выделять эти молекулы в промышленном масштабе из специально подготовленных свиных кишок и снабдили ими интересующихся этой темой исследователей во всем мире. Драгоценные экстракты были отправлены и в лабораторию Уолша. Мы отнеслись к ним с благоговением, зная, сколько труда и времени потребовалось для их выделения. Позже мы стали сами ездить по утрам на бойню в Лос-Анджелесе и возвращались оттуда с контейнерами свиных кишок, из которых выделяли гастроинтестинальные пептиды. Мы вводили одно из этих веществ – гастрин – и наблюдали, как желудок животного усиливал секрецию соляной кислоты. Инъекция другого пептида – секретина – приводила к секреции пищеварительных соков поджелудочной железой, а инъекция соматостатина, как правило, обе эти функции выключала. Гастроинтестинальные пептиды также называют гастроинтестинальными гормонами, так как, попав в кровь, они могут достигать отдаленных целей в организме, как вырабатываемые щитовидной железой или яичниками гормоны, отправляющие свои сообщения на дальние в масштабах тела расстояния.

Ученым не потребовалось много времени, чтобы обнаружить, что гастроинтестинальные пептиды присутствуют не только в гормон-содержащих клетках пищеварительного тракта, но и в нервных клетках энтеральной нервной системы, которая использует их для тонкой настройки перистальтики, поглощения жидкости и секреции. Далее нейробиологи обнаружили идентичные вещества в головном мозге. Там пептиды играли роль химических переключателей, которые могут включать и выключать различные модели поведения и моторные программы, участвующие в формировании чувства голода, гнева, страха и тревоги.

История приняла неожиданный оборот в начале 1980-х гг., когда группа ученых из Национальных институтов здоровья США (National Institutes of Health) во главе с биологами Джесси Ротом и Дереком леройтом решила выяснить, существуют ли микроорганизмы, способные производить те же сигнальные молекулы, которые Уолш, Матт и Эрспамер выделили у лягушек, свиней, собак и других животных. Они выращивали различные микроорганизмы в питательном бульоне, отделяли их и проверяли на наличие инсулина – гормона, который посылает тканям сигнал выделять энергию из сахара.

И в клетках, и в бульоне были обнаружены молекулы, похожие на человеческий инсулин, – настолько похожие, что они стимулировали выращенные в лаборатории жировые клетки крыс выделять энергию из сахара. Этот впечатляющий результат позволил предположить, что инсулин впервые появился не у животных, как думали биологи, а у примитивных одноклеточных организмов, которые возникли около миллиарда лет назад.

Я узнал об увлекательном исследовании Рота и Леройта, когда они прислали экстракты других микроорганизмов в лабораторию Уолша. Там для идентификации и количественной оценки этих молекул был проведен радиоиммунологический анализ. Он дал удивительные результаты: помимо инсулина мои коллеги обнаружили молекулы, похожие на гастроинтестинальные пептиды других млекопитающих. С тех пор были идентифицированы древние микробные версии многих гастроинтестинальных и других пептидов, гормонов и сигнальных молекул, в том числе норадреналина, эндорфина и серотонина и их рецепторов.

В статье, опубликованной в 1982 г. в журнале New England Journal of Medicine, Рот и Леройт обобщили полученные результаты и написали, что сигнальные молекулы, которые эндокринная система и головной мозг человека используют для коммуникаций, вполне вероятно, возникли у древних микроорганизмов. Несколько лет спустя меня так сильно заинтересовало это формировавшееся направление науки, что я решил написать дискуссионную обзорную статью. К работе над ней я привлек моего друга и блестящего математика Пьера Бальди, работавшего в Калифорнийском технологическом институте. И хотя один известный профессор лингвистики пытался тогда убедить меня, что о языке можно говорить только в контексте общения между людьми, мы назвали нашу работу так: «Не являются ли гастроинтестинальные пептиды словами универсального биологического языка?» (Are Gut Peptides the Words of a Universal Biological Language?). Наша статья была опубликована в American Journal of Physiology в 1991 г.

Когда я показал ее рукопись Уолшу, он шутливо заметил: «Тебе повезло, что этот дискуссионный материал приняли к публикации. Эти идеи лет на тридцать опережают наше время». (И эта оценка, как всегда бывало с предсказаниями Уолша, оказалась точной.) В статье мы высказали предположение, что сигнальные молекулы являются своего рода словами универсального биологического языка, которым пользуются не только пищеварительный тракт, но и нервная система, в том числе маленький и большой мозг, а также иммунная система. Не только люди используют эту систему клеточных коммуникаций: ученые уже показали, что ей также пользуются лягушки, растения и даже микроорганизмы, живущие в пищеварительной системе человека. Применив к биологическим данным математическую теорию, которая называется теорией информации, мы даже оценили объемы информации, которые различные типы сигнальных молекул – от гормонов до нейромедиаторов – могли бы посылать между разными клетками и органами.

К сожалению, научный мир еще не был готов осознать значение тех открытий. Как и предсказывал Уолш, потребовалось почти три десятилетия исследований взаимодействия между головным мозгом и пищеварительным трактом, чтобы кишечная микробиота снова привлекла к себе серьезное внимание.

Назад: Роль серотонина
Дальше: Оборотная сторона раннего очищения кишечника