Глава 5
Биотехнология: ДНК, доллары и биопрепараты
Герб Бойер умеет попасть на нужную встречу. Мы уже знаем, как в 1972 году они со Стэнли Коэном зашли перекусить в ресторанчик в районе Вайкики, и в результате были поставлены эксперименты, позволившие создать рекомбинантную ДНК. В 1976 году в его жизни опять произошла нужная встреча: случилось это в Сан-Франциско, где Герб Бойер познакомился со специалистом по венчурным фондам и капиталам Бобом Суонсоном. Результатом встречи стала новая индустрия, названная биотехнологией.
Встреча эта состоялась по инициативе Боба Суонсона. Тому тогда было всего 29 лет, но он уже завоевал серьезную репутацию на финансовом рынке. Суонсон искал новые возможности для развития бизнеса и, доверяя своему естественнонаучному образованию, разглядел потенциал в новоиспеченной технологии рекомбинантной ДНК. Даже Стэнли Коэн тогда полагал, что до коммерческого применения этих разработок еще как минимум несколько лет. Сам Бойер не любил, чтобы его отвлекали, тем более люди в костюмах, которые всегда кажутся белыми воронами в академической среде, где принято носить футболки и джинсы. Однако каким-то невероятным образом Суонсон уговорил его выделить немного времени на эту пятничную вечернюю встречу.
Десятиминутная встреча, растянувшаяся на несколько часов, по ходу дела переместилась в близлежащий бар «Черчилль» и была сдобрена несколькими бокалами пива. Там Суонсон осознал, что преуспел в попытке разбудить дремавшего в Гербе Бойере скрытого предпринимателя. Еще в ежегоднике старшей школы в Дерри Боро за 1954 год было отмечено, что староста класса Бойер признался в своем желании «стать успешным бизнесменом».
Исходный посыл был невероятно прост: давайте рассмотрим, как при помощи технологии Коэна – Бойера можно производить белки, востребованные на рынке. Ген «полезного» белка – скажем, имеющеготерапевтическую ценность, такого как человеческий инсулин, – можно внедрить в бактерию, которая, в свою очередь, станет синтезировать этот белок. Далее останется просто нарастить производственные мощности от чашек Петри до промышленных чанов, а самим собирать готовый белок. Все просто в теории, но не на практике. Тем не менее Бойер и Суонсон были настроены оптимистично: оба выложили по пятьсот долларов, чтобы заключить соглашение о партнерстве и подтвердить намерения заняться этой новой технологией. В апреле 1976 года они создали первую в мире биотехнологическую компанию. Суонсон предлагал назвать фирму «Гер-Боб», чтобы упомянуть обоих основателей, но Бойер благоразумно отверг этот вариант, и компанию назвали Genentech, сокращенно от «генно-инженерные технологии».
Естественно, первый коммерческий проект Genentech был нацелен на производство инсулина. Диабетикам требуются регулярные инъекции этого белка, поскольку организм больного либо синтезирует слишком мало инсулина (как при диабете второго типа), либо вообще его не производит (как при диабете первого типа). Лишь после того, как в 1921 году было открыто, что инсулин регулирует уровень сахара в крови, диагноз «диабет первого типа» перестал звучать для больных как приговор. С тех пор производство инсулина для диабетиков превратилось в серьезную индустрию. Поскольку уровень сахара в крови практически одинаково регулируется у всех млекопитающих, человеку подошел инсулин от домашних животных – в основном от коров и свиней. Свиной и коровий инсулин несколько отличаются от человеческого: белковая цепочка человеческого инсулина состоит из 51 аминокислоты, свиной отличается от человеческого на одну аминокислоту, а коровий инсулин – на три. Иногда эти кажущиеся незначительными отличия могут давать вредные побочные эффекты: у пациентов может развиться аллергия на чужеродный белок. Биотехнологии открывали путь к устранению таких аллергических расстройств: позволяли обеспечить диабетиков настоящим, первоклассным человеческим инсулином.
В США насчитывалось около восьми миллионов диабетиков, поэтому производство инсулина представлялось золотой жилой биотехнологии. Однако не только Бойер и Суонсон разглядели этот потенциал. Группа коллег Бойера из Калифорнийского университета в Сан-Франциско и Уолли Гилберт из Гарварда также осознали, что клонирование человеческого инсулина представляет как научный, так и коммерческий интерес. В мае 1978 года ставки возросли: Гилберт и еще несколько ученых из США и Европы основали собственную компанию Biogen. Столь разные корни у Genentech и Biogen показывают, как быстро развивалась вся отрасль: Genentech выдумал двадцатидевятилетний энтузиаст, готовый общаться с нужными людьми по телефону, а Biogen была создана уже целым консорциумом опытных венчурных капиталистов, нанявших на работу первоклассных ученых. Genentech родилась в одном из баров Сан-Франциско, Biogen – в фешенебельном европейском отеле. Началась гонка «биотехнологических вооружений».
Не так-то просто было заставить бактерию продуцировать человеческий белок. Лимитирующим фактором стало наличие интронов, некодирующих фрагментов ДНК, присутствующих в человеческих генах. Поскольку у бактерий интронов нет, то процесс сплайсинга не мог быть реализован. Суть этого явления состоит в то, что в человеческой клетке матричная РНК тщательно редактируется путем вырезания интронов из РНК так, чтобы они не мешали синтезу белков. У бактерий таких возможностей не было, что, безусловно, влияло на их способность синтезировать белок на основе человеческого гена. Таким образом, если уж мы действительно собирались научить E. coli производству человеческих белков из человеческих генов, то первым делом нужно было решить проблему с интронами.
Конкурирующие стартапы подступались к решению этой проблемы по-разному. В Genentech попробовали химически синтезировать нужные участки гена, но уже без интронов, а потом внедрять такой ген в плазмиду. Фактически в данном случае клонировалась искусственная копия исходного гена. В настоящее время такой метод используется редко, поскольку он неудобный, но во времена Genentech выбор такой стратегии казался весьма разумным. Еще свежи были воспоминания об Асиломарской конференции, посвященной биологическим угрозам и биобезопасности, поэтому генетическое клонирование, особенно с использованием человеческих генов, рассматривалось, но с серьезной оглядкой и жестко регламентировалось. Однако, используя искусственную копию гена, а не «натуральный» ген, взятый у человека, Genentech фактически нашла лазейку. Компания продолжала охоту за инсулином, и новые правила помехой не были.
Конкуренты Genentech действовали иначе, именно этот подход применяется сейчас. Однако использование ДНК из человеческих клеток привело к бюрократическим трудностям, иными словами, они вскоре увязли в бюрократическом болоте. В их методе было задействовано одно из самых удивительных открытий, которыми к тому моменту могла похвастаться молекулярная биология. Оказалось, что иногда может нарушаться ключевой догмат, регулирующий передачу генетической информации и синтеза новых белков. В 1950-е годы ученые открыли группу вирусов – это так называемые ретровирусы, у которых есть РНК, но отсутствует ДНК. Вирус иммунодефицита человека, вызывающий СПИД, как раз относится к этой группе. Дальнейшие исследования ретровирусов показали, что они способны преобразовывать свою РНК в ДНК после внедрения в клетку-хозяина. После инфицирования клетки-хозяина ретровирусом в цитоплазме начинается синтез вирусного ДНК-генома с использованием вирионной РНКв качестве матрицы. Такой «трюк» обеспечивает особый фермент – обратная транскриптаза, превращающая РНК в ДНК. Ретровирусы используют для репликации своего генома механизм обратной транскрипции: вирусный фермент обратная транскриптаза (или ревертаза) синтезирует одну нить ДНК на матрице вирусной РНК, а затем уже на матрице синтезированной нити ДНК достраивает вторую, комплементарную ей нить. За открытие этого фермента Говард Темин и Дэвид Балтимор в 1975 году были удостоены Нобелевской премии по физиологии и медицине.
Клонирование кДНК для инсулина (ген без интронов) ознаменовало рождение био-чистый человеческий инсулин технологий
Обратная транскриптаза подсказала компании Biogen и другим компаниям красивый способ синтеза собственного человеческого инсулина для внедрения в бактерии – инсулина без интронов. Сначала выделяется матричная РНК, синтезируемая геном инсулина. Поскольку матричная РНК уже прошла «редактирование», в ней нет интронов, присутствовавших в ДНК, с которой она скопирована. Сама РНК не слишком полезна, поскольку в отличие от ДНК эта молекула хрупкая и способна стремительно распадаться; кроме того, система Коэна – Бойера нацелена на внедрение в бактериальные клетки именно ДНК, а не РНК. Таким образом, нужно было сделать ДНК из отредактированной матричной РНК, применив для этого фермент обратную транскриптазу. В результате получался фрагмент ДНК без интронов, но содержащий всю ту информацию, которая нужна бактерии для производства человеческого инсулина, – очищенный ген инсулина.
В итоге компания Genentech выиграла гонку, хотя с минимальным отрывом. Команда Гилберта, использовавшая метод с обратной транскриптазой, успешно клонировала крысиный ген инсулина, а затем «заставила» бактерию продуцировать крысиный белок. Оставалось только повторить такой же процесс с человеческим геном. Однако на этом этапе компания Biogen попала в бюрократическую мясорубку. Для клонирования человеческой ДНК команде Гилберта требовалось найти собственный карантинный корпус P4, помещение с максимальным уровнем защиты, таким же, какой требуется для работы со смертоносным вирусом Эболы. Ученым удалось уговорить британских военных допустить их в Портон-Даун – лабораторию, расположенную к северо-востоку от села Портон, рядом с городом Солсбери в графстве Уилтшир, которая являлась и является резиденцией Лаборатории оборонной науки и техники Министерства обороны Великобритании и Агентства общественного здравоохранения Англии.
Стивен Холл написал книгу о гонке за клонирование инсулина, в которой, в частности, описывает почти сюрреалистические унижения, которые приходилось сносить Гилберту и его коллегам.
Уже при входе в лабораторию P4 начинались настоящие мытарства. Ученые полностью раздевались, после чего натягивали казенные белые длинные трусы, черные резиновые ботинки, голубую униформу вроде пижамы, бежевый больничный халат, застегивающийся сзади, две пары перчаток и голубую пластиковую шапочку, напоминающую шапочку для душа. Затем всё быстро промывалось в формальдегиде. Всё. Все приборы, все бутылочки, вся лабораторная посуда, всё оборудование. Все научные рецепты, написанные на бумаге, также проходили такую мойку; так что ученые складывали бумагу по листику в пластиковые пакеты Ziploc и надеялись, что формальдегид туда не просочится и не превратит бумагу в бурую рассыпчатую массу вроде пергамента. Все документы, полежавшие в лаборатории на воздухе, после работы требовалось уничтожать, поэтому гарвардские специалисты даже не могли пронести в лабораторию блокноты для заметок. Миновав бассейн с формальдегидом, ученые спускались по короткой лестнице в саму лабораторию P4. Такая же гигиеническая канитель (в том числе душ) повторялась и перед выходом из лаборатории.
И все это только для того, чтобы клонировать фрагмент человеческой ДНК. Сегодня, когда паранойя отступила, а информированность повысилась, такая процедура имеет место только в технически устаревших лабораториях, где проводятся занятия с начинающими изучать курс молекулярной биологии студентами. Увы, вся эта история закончилась для Гилберта и коллег провалом, поскольку им так и не удалось клонировать ген инсулина. Неудивительно, что они кляли кошмар, пережитый ими в P4.
Команда Genentech не сталкивалась с такими регламентными препятствиями, но с технической точки зрения ученым было не менее сложно заставить E. сoli производить инсулин на основе химически синтезированного гена. Для бизнесмена Суонсона проблемы лежали не только в научной плоскости. С 1923 года на инсулиновом рынке США работал практически единственный производитель-монополист – компания Eli Lilly. К концу 1970-х годов это было предприятие с капиталом в три миллиарда долларов, которому принадлежало 85 % рынка инсулина. Суонсон понимал, что Genentech нечего противопоставить такому тяжеловесу, как Eli Lilly, даже если производить генно-инженерный человеческий инсулин – продукт, принципиально превосходивший по качеству «животноводческий» инсулин Lilly. Он решил заключить сделку и предложил на партнерских условиях приобрести исключительные права на инсулин Genentech. Так, пока ученые-партнеры вкладывали все силы в работу лаборатории, Суонсон улаживал дела в переговорной комнате. Он не сомневался, что представители Lilly согласятся; даже такой гигант едва ли мог позволить себе упустить заманчивые перспективы, связанные с технологией рекомбинантной ДНК, то есть отказаться от будущего, в направлении которого двигалась вся фармацевтическая индустрия.
Однако Суонсон не один выступал с таким предложением, и компания Lilly уже финансировала одну из конкурирующих программ. Официальный представитель Lilly даже был откомандирован во французский Страсбург, чтобы курировать многообещающий проект по клонированию инсулина, основанный на методе Гилберта. Однако когда из Калифорнии пришли известия, что Genentech достигла цели первой, в Lilly приняли решение немедленно переключиться на эту компанию. 25 августа 1978 года Genentech и Lilly подписали соглашение уже на следующие сутки после окончательного экспериментального подтверждения получения рекомбинантного инсулина. Биотехнический бизнес больше не сводился к постройке воздушных замков. Компания Genentech вышла на рынок в октябре 1980 года. Всего за несколько минут стоимость акций компании выросла с 35 до 88 долларов за штуку. На тот момент это было самое стремительное удорожание в истории Уолл-стрит. Бойер и Суонсон внезапно обнаружили, что им досталось по 66 миллионов долларов на каждого – прямо Марк Цукерберг и Питер Тиль своего времени.
Традиционно в академической биологии был важен лишь приоритет открытия: кто совершил его первым. Вознаграждение измерялось в личных одобрениях, а не в наличных деньгах. Были, конечно, и исключения. Так, Нобелевская премия – это серьезная денежная награда. Однако мы, в принципе, занимались биологией из любви к биологии. Наше скудное академическое жалованье вряд ли могло послужить серьезным стимулом к работе.
С появлением биотехнологий все изменилось. В 1980-е годы произошли такие перемены в отношениях между наукой и бизнесом, которые были невообразимы еще десятью годами ранее. Биология превратилась в новый большой рынок, а вместе с деньгами туда пришли и новый менталитет, и новые осложнения во взаимоотношениях.
Во-первых, основатели биотехнологических компаний, как правило, были университетскими профессорами – неудивительно, что исследования, лежавшие в основе коммерческой составляющей, они обычно начинали в своих вузовских лабораториях. Так, именно в одной из лабораторий Цюрихского университета Чарльз Вайсман, один из основателей компании Biogen, клонировал человеческий интерферон – лекарство от рассеянного склероза. С тех пор это стало основной статьей доходов компании – в 2013 году этого препарата было продано на три миллиарда долларов. В Гарвардском университете Уолли Гилберт предпринял попытку (в конечном итоге неудачную) пополнить ассортимент Biogen рекомбинантным инсулином. Поэтому вскоре назрел ряд логичных вопросов. Допустимо ли, чтобы профессора обогащались за счет работ, выполняемых на базе университетов? Не спровоцирует ли коммерциализация науки неразрешимые конфликты интересов? А перспектива наступления новой эры промышленной молекулярной биологии раздувала тлеющие угли недавних дискуссий о безопасности: когда на кону большие деньги, насколько строго будут готовы соблюдать требования безопасности первопроходцы этой новой индустрии?
Изначально Гарвард попытался основать собственную биотехнологическую компанию. Поскольку двое «звездных» биологов-молекулярщиков университета, Марк Ташне и Том Маниатис, обладали солидным интеллектуальным ресурсом и не испытывали недостатка в венчурных капиталах, бизнес-план, казалось, был практически готов: компания станет основным игроком на рынке биотехнологий. Однако осенью 1980 года эти планы потерпели крах. Когда вопрос вынесли на голосование, преподавательский состав отказался от участия «Честного Гарварда» в мутных коммерческих делах – как известно, наука делается в белых перчатках. Было о чем беспокоиться: предприятие могло породить конфликты интересов на биологическом факультете. Ведь если бы в университете таким образом возник источник прибылей, разве удалось бы и далее подбирать преподавателей исходя строго из их академических достоинств – либо теперь пришлось бы учитывать, какую пользу кандидат мог бы принести фирме? В конце концов, Гарварду пришлось уступить и удовлетвориться 20 % акций в новой компании. Истинная цена этого мероприятия прояснилась шестнадцать лет спустя, когда компания была продана фармацевтическому гиганту Wyeth за 1,25 миллиарда долларов.
Как только Ташне и Маниатис решили продавливать свою идею любой ценой, возник новый букет проблем. Хотя мораторий на исследования рекомбинантной ДНК в Кембридже, организованный мэром Велуччи, уже был в прошлом, неприятие работ с ДНК сохранялось. Ташне и Маниатис аккуратно дистанцировались от броских высокотехнологичных наименований вроде Genentech или Biogen и назвали свою компанию Genetics Institute, рассчитывая вызвать ассоциацию с менее грозными временами изучения дрозофил, а не с с миром ДНК. По тем же причинам новоиспеченную компанию они решили основать не в Кембридже, а в соседнем городке Соммервилле. В мэрии Соммервилля разгорелись жаркие дебаты, продемонстрировавшие, что влияние Велуччи вовсе не ограничивалось одним лишь Кембриджем. Genetics Institute отказали в праве на ведение бизнеса в Соммервиле. К счастью, совсем рядом с Кембриджем, на другом берегу реки Чарльз, раскинулся Бостон, оказавшийся более гостеприимным. Новая фирма открылась в пустом здании на территории бостонского округа Мишн-Хилл (ранее там располагалась больница). Со временем становилось все очевиднее, что рекомбинантные технологии не представляют никакой опасности ни для здоровья, ни для окружающей среды и антибиотехнологический фанатизм Велуччи не выдерживает никакой критики. Через несколько лет компания Genetics Institute перебралась в Норт-Кембридж, городок, расположенный вниз по шоссе от университетского Кембриджа, ранее отказавшегося от компании при ее рождении.
За последние 30 лет отношения между академической и коммерческой молекулярной генетикой, начинавшиеся с подозрительности и ханжества, изменились практически до неузнаваемости и доросли до состояния продуктивного симбиоза. Университеты, со своей стороны, сейчас активно стимулируют сотрудников культивировать коммерческие проекты. Памятуя о гарвардской ошибке с Genetics Institute, университеты научились вкладываться в прибыльное внедрение технологий, разработанных прямо в кампусе. Новые профессиональные кодексы также купируют конфликты интересов, возникающие у профессоров, чья работа лежит на стыке коммерческих и академических исследований. На заре развития биотехнологий кабинетным ученым слишком часто вменяли в вину, что они якобы «продались» бизнесу, вступая в сотрудничество с такими компаниями. Сегодня участие в разработке коммерческих биотехнологий – типичная составляющая крутой карьеры в исследовании ДНК. Деньги всегда кстати, они нужны не меньше интеллектуальных дивидендов. Ведь по веским коммерческим причинам биотехнологи всегда будут оставаться на переднем крае науки.
Стенли Коэн оказался не только одним из первопроходцев в технологической сфере, но и первым среди тех, кто смог отойти от чисто академического мировоззрения и приспособиться к коммерческой биологии, где крутятся огромные деньги. Он с самого начала знал, что рекомбинантная ДНК обладает большим коммерческим потенциалом, но никогда не задумывался о том, чтобы запатентовать метод клонирования Коэна – Бойера. В отделе технического лицензирования Стэнфордского университета работал Нильс Реймерс, который, прочтя в New York Times о крупном достижении родного вуза, предположил, что здесь должен быть уместен патент. Сначала Коэн колебался; он настаивал, что прорыв, о котором идет речь, – это плод многочисленных более ранних исследований, являющихся общественным достоянием, поэтому ему казалось неверным патентовать лишь самую свежую разработку. Однако любые изобретения базируются на более ранних (так, например, паровоз мог появиться лишь после изобретения парового двигателя), а патенты по праву достаются тем инноваторам, которые решительно дорабатывают инженерные находки прошлого, расширяя сферу их влияния. В 1980 году (через шесть лет после того, как Стэнфорд впервые подал заявку) метод Коэна – Бойера был запатентован.
В принципе, патентование таких методов может тормозить инновации, ограничивая применение важных технологий. Однако Стэнфорд мудро подошел к вопросу и не допустил таких негативных последствий после получения патента. Коэн и Бойер (а также институты, в которых они работали) были вознаграждены за свои коммерческие успехи, но не в ущерб академической составляющей. Во-первых, патент гарантировал, что платить отчисления за использование технологии будут лишь юридические лица; использование наработок в академических целях оставалось бесплатным. Во-вторых, Стэнфорд осознанно не поддался соблазну чрезмерно завысить планку лицензии: если бы она оказалась слишком дорогой, то лишь богатейшие компании и институты могли бы пользоваться рекомбинантной ДНК. За относительно скромную плату (10 тысяч долларов в год) и роялти лицензионного вознаграждения за использование патентов не более 3 % с продаж продукции, разработанной на основе данной технологии, метод Коэна – Бойера предоставлялся всем желающим. Эта стратегия, благотворная для науки, оказалась удобной и для бизнеса: патент принес в среднем четверть миллиарда долларов в актив Калифорнийского университета в Сан-Франциско и Стэнфорда. Бойер и Коэн великодушно поделились своими доходами с родными университетами.
Оставалось лишь дождаться, пока патентовать начнут живые организмы, чья генетика была подправлена биотехнологическими методами. Пробный случай имел место в 1972 году; тогда попытались запатентовать бактерию, видоизмененную без применения рекомбинантной ДНК, а традиционными генетическими методами. Тем не менее подоплека генно-инженерного бизнеса была очевидна: если можно запатентовать бактерию, видоизмененную традиционными методами, то это же касается бактерий, доработанных при помощи рекомбинантной ДНК.
В 1972 году Ананда Чакрабарти, инженер-исследователь из компании General Electric, подал патентную заявку на собственноручно выведенный штамм бактерии Pseudomonas, способный разлагать нефть. До этого наиболее эффективный способ уничтожения нефти заключался в использовании целой совокупности разных бактерий, разлагающих отдельную фракцию нефти. Комбинируя различные плазмиды, каждая из которых кодировала свой путь биодеградации, Чакрабарти смог создать универсальную бактерию для борьбы с нефтяными загрязнениями. Первая заявка Чакрабарти на патент была отклонена. Потратив восемь лет на борьбу с юридической системой, Чакрабарти в 1980 году наконец получил патент. Верховный суд встал на его сторону, проголосовав «пятеро за, четверо против» по вопросу: «может ли быть запатентован живой искусственно созданный микроорганизм, появившийся в результате человеческой интеллектуальной деятельности и проведенных исследований».
Несмотря на то что после процесса Чакрабарти многие вопросы прояснились, первые контакты между биотехнологиями и правовой системой неизбежно оказывались сложными и запутанными. Ставки были высоки – как и в случае с ДНК-дактилоскопией, о которой пойдет речь в главе 11, адвокатам, присяжным и ученым зачастую бывает сложно найти общий язык. К 1983 году Genentech и Genetics Institute успешно клонировали ген тканевого активатора плазминогена (TPA) – это серьезное средство против тромбов, вызывающих инсульт и инфаркт. Однако Genetics Institute не подал заявку на патент, считая, что научная составляющая, на которой базируется клонирование тканевого активатора плазминогена, «очевидна», то есть это открытие не охраноспособно. А вот Genentech, в свою очередь, подала заявку и получила патент, что, по определению, ущемляло интересы Genetics Institute и требовало рассмотрения в суде.
Сначала дело поступило в британский суд. Главный судья, его честь Уитфорд, на протяжении большей части разбирательства сидел за объемистой стопкой книг и словно дремал. Ключевой вопрос формулировался так: может ли первая сторона, клонировавшая ген, получить в дальнейшем исключительные права на производство и использование белка. Рассмотрев претензии Genetics Institute и ее инвестора, фармацевтической компании Wellford, судья Уитфорд заключил, что Genentech заслуживает удовлетворения ограниченных притязаний на тот технологический процесс, при помощи которого компания клонировала TPA, но отказал в праве на широкую формулу изобретения, то есть на весь белковый продукт. Genentech подала апелляцию. В Англии при оспаривании столь непростых технологических дел апелляцию рассматривают трое судей-специалистов, которых вводит в курс дела независимый эксперт – в данном случае таковым выступил Сидней Бреннер. Судьи отклонили апелляцию Genentech, согласившись с Genetics Institute, что открытие в данном случае действительно очевидно и патент Genentech недействителен.
В США такие дела рассматривает суд присяжных. Адвокаты Genentech обеспечили такой состав присяжных, чтобы ни у одного из них не было даже среднего специального образования. Следовательно, вопросы, очевидные для ученых или для экспертов-юристов, специализирующихся в научных делах, не были очевидны ни для кого из этих присяжных. Вердикт совета присяжных оказался не в пользу Genetics Institute – они решили, что патентные притязания Genentech на широкую формулу изобретения должны быть удовлетворены. Возможно, это не был звездный час американского правосудия, но тем не менее так был создан прецедент: с тех пор патенты подаются на любую продукцию независимо от того, насколько «очевидна» в ней научная составляющая.
Полагаю, хорошие патенты уравновешивают ситуацию; с их помощью признаются и поощряются инновационные работы и не допускается, чтобы любая работа заимствовалась. Однако к тому же они еще и способствуют развитию технологии доступными способами во имя всеобщего блага. К сожалению, мудрый пример Стэнфорда не всегда берут на вооружение при разработке каждого нового методологического приема при работе с ДНК. Например, полимеразная цепная реакция (ПЦР) – бесценный метод для амплификации и наращивания ДНК. ПЦР, изобретенная в 1983 году в корпорации Cetus (подробнее о ПЦР мы поговорим в главе 7, где речь пойдет о проекте «Геном человека»), быстро превратилась в одну из «рабочих лошадок» молекулярной биологии. Поначалу в коммерческой сфере она применялась куда более ограниченно, чем в науке. Cetus сначала предоставила коммерческую лицензию компании Kodak, а потом продала права на ПЦР за 300 миллионов долларов швейцарскому гиганту Hoffman – LaRoche, занимающейся производством химической, фармацевтической и диагностической продукции. В компании Hoffmann – LaRoche, в свою очередь, решили, что выгоднее будет не продавать лицензии, а максимально увеличить окупаемость патента, став монополистом на ПЦР-диагностику. В рамках такой стратегии компания скупила бизнес, связанный с диагностикой СПИДа. Только с приближением даты истечения патентного срока фирма стала выдавать лицензии на эту технологию – как правило, лицензия доставалась другим крупным диагностическим компаниям, которые могли позволить себе соизмеримо масштабные отчисления для Hoffmann – LaRoche. Чтобы сгенерировать дополнительный источник доходов с этого патента, Hoffmann – LaRoche установила серьезные отчисления для производителей оборудования, при помощи которого выполняется ПЦР. В результате за продажу простого устройства, с которым справятся даже школьники, учебный центр им. Долана по работе с ДНКв Колд-Спринг-Харборе должен отчислять компании 15 % лицензионного вознаграждения за использование патента.
Еще более пагубно на разумной доступности новых технологий паразитируют юристы, агрессивно патентующие не только новые изобретения, но и фундаментальные идеи, лежащие в их основе. Типичный пример – патент на генетически измененную мышь, созданную Филом Ледером. Группа Ледера из Гарварда занималась исследованиями рака и получила генетическую линию мышей, отличавшихся особой резистентностью к раку груди. Ледер с коллегами не пользовались известными методами по внедрению искусственно измененных генов рака в оплодотворенную яйцеклетку мыши. Поскольку онкогенные факторы у мышей могут напоминать подобные факторы у человека, считалось, что такая «онкомышь» поможет лучше понять патогенетические механизмы рака у человека. Однако гарвардские юристы подали патент не на конкретную разновидность мышей, полученных группой Ледера, а на всех трансгенных раковых животных, то есть даже не ставили попытки ограничиться мышами. Такой зонтичный патент был выдан в 1988 году, и на свет появился раковоперерожденный грызун, прозванный «онкомышь», или «гарвардская мышь». Хотя на самом деле работы, проводившиеся в лаборатории Ледера, гарантировались компанией «Дюпон» и коммерческими правами на мышь владел этот химический гигант, а отнюдь не Гарвардский университет. Поэтому, возможно, «гарвардскую мышь» было бы уместнее назвать «мышь Дюпон». Однако независимо от названия этот патент повлиял на исследования рака глубоким, но контрпродуктивным образом.
Компании, заинтересованные в разработке новых видов онкомышей, были быстро оттеснены в сторону, поскольку «Дюпон» требовала огромных патентных взносов, и исследователи, отваживавшиеся использовать уже «готовых» онкомышей для испытания экспериментальных противораковых препаратов, аналогично свернули свои работы. Компания «Дюпон» стала требовать, чтобы академические институты прямо указывали, какие экспериментальные исследования рака проводились на патентованных онко-мышах «Дюпон». Это было беспрецедентное и неприемлемое вторжение большого бизнеса в академические лаборатории. Калифорнийский университет в Сан-Франциско, Институт Уайтхеда в составе Массачусетского технологического института, лаборатория в Колд-Спринг-Харборе, а также ряд других учреждений отказались пойти навстречу компании «Дюпон».
Когда патенты затрагивают технологии, имеющие фундаментальное значение для выполнения необходимых операций в молекулярной биологии, владельцы патента могут в буквальном смысле заблокировать целую исследовательскую область, требуя оплаты за работу в этой области. Несмотря на то что любая патентная заявка должна оцениваться по конкретным достоинствам именно этой заявки, все равно существуют некоторые общие правила, которые необходимо соблюдать. Патентование методов, ключевое значение которых для научного прогресса очевидно, должно рассматриваться по образцу прецедента, связанного с делом Коэна – Бойера: технология должна быть общедоступной (не контролироваться единственным лицензиатом) и подчиняться разумному ценообразованию. Эти ограничения ни в коем случае не идут вразрез с этикой свободного предпринимательства. Если новый метод представляет собой подлинный «шаг вперед» в науке, то и использоваться он будет очень широко, и даже умеренные проценты лицензионного вознаграждения принесут существенную прибыль. Однако патентование продуктов – например, лекарств или трансгенных организмов – должно распространяться лишь на конкретное наименование, а не на весь спектр других продуктов, которые могут быть созданы по образцу созданного и запатентованного.
Фил Ледер со своей «гарвардской» онкомышью
Триумфальный инсулиновый проект компании Genentech стал бенефисом биотехнологии того времени. Сегодня генная инженерия с использованием рекомбинантной ДНК – рутинная процедура, существенный элемент в деле разработки новых лекарств. Такие процедуры обеспечивают массовое производство человеческих белков, которые сложно получить другим способом. Зачастую генно-инженерные белки безопаснее использовать в лечебных или диагностических целях, нежели любые другие белковые продукты. Так, крайне малый рост (карликовость) часто развивается из-за недостатка человеческого гормона роста (СТГ). В 1959 году карликовость впервые стали лечить при помощи СТГ, который на тот момент можно было получить лишь из мозга трупов. Лечение шло удачно, но, как выяснилось впоследствии, пациенты рисковали заразиться крайне неприятной болезнью. Иногда в процессе лечения у пациентов развивалась болезнь Крейцфельдта – Якоба, тяжелое дистрофическое заболевание коры головного мозга, базальных ганглиев и спинного мозга с крайне высокойлетальностью, приводящее к психическим расстройствам и сенсорным нарушениям и напоминающее так называемое коровье бешенство. В 1985 году Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) запретило использовать СТГ, взятый из тканей трупов. По счастливому совпадению в том же году был получен рекомбинантный СТГ, разработанный компанией Genentech и не угрожающий пациентам заражением.
На первом этапе развития биотехнологической индустрии большинство компаний сосредоточились на получении белков, функция которых уже была известна. Клонированный человеческий инсулин был просто обречен на успех: в конце концов, к моменту появления продукта Genentech люди уже более полувека принимали инсулин. Другой пример – эритропоэтин (ЭПО), белок, стимулирующий в организме синтез эритроцитов. В ЭПО жизненно нуждались пациенты, постоянно проходившие диализ почек, которые страдают из-за анемии, связанной с потерей красных кровяных телец. Чтобы удовлетворить потребность в этом продукте, компания Amgen, расположенная в Южной Калифорнии, и Genetics Institute независимо друг от друга разработали варианты рекомбинантного эритропоэтина. Такой ЭПО по определению являлся полезным и коммерчески выгодным продуктом; оставалось лишь выяснить, какая из компаний захватит рынок сбыта. Хотя Джордж Ратман, генеральный директор компании Amgen, и не изучал таинственных нюансов физической химии, он вполне приспособился к суровым законам большого бизнеса. В конкурентной борьбе он проявлял самые «некуртуазные черты» своего характера: его переговоры с конкурентами напоминали схватку с дюжим медведем, в горящем взоре Ратмана читалась уверенность в том, что он может вас поколотить лишь потому, что так принято в бизнесе. Amgen и ее гарант Johnson & Johnson ожидаемо выиграли судебную тяжбу против Genetics Institute, и продажи эритропоэтина в 2006 году принесли пять миллиардов долларов одной лишь компании Amgen; впоследствии они стали снижаться. На сегодняшний день Amgen – один из крупнейших игроков на биотехнологическом рынке; стоимость компании оценивается в 125 миллиардов долларов.
После того как первопроходцы биотехнологического рынка разобрали между собой все легкодоступные активы – белки с известными физиологическими свойствами, в частности инсулин, тканевый активатор плазминогена (TPA), человеческий гормон роста (СТГ) и эритропоэтин (ЭПО), начался второй, более спекулятивный этап в развитии этой индустрии. Поделив все однозначно выигрышные продукты, компании, изыскивающие новые источники обогащения, предприняли попытки застолбить другие перспективные продукты с прицелом даже на отдаленную перспективу. Знающим, что некое вещество «работает», производителям оставалось лишь надеяться, что потенциальный продукт не подведет. К сожалению, производителям приходилось сталкиваться со значительной неопределенностью, техническими сложностями и бюрократическими препонами, прежде чем препарат получал одобрение Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA), и многие биотехнологические стартапы, построенные лишь на энтузиазме, разваливались на пути к цели.
Открытие факторов роста – белков, обеспечивающих размножение и выживаемость клеток, – также породило активный рост новых биотехнологических компаний. В частности, две из них – Regeneron, расположенная в Нью-Йорке, и Synergen (позже поглощенная Amgen), находящаяся в Колорадо, – пытались найти лекарство от бокового амиотрофического склероза (БАС), также известного в США под названием «болезнь Лу Герига». Это тяжелое, медленно прогрессирующее, неизлечимое заболевание нервной системы, связанное с дегенеративным расстройством нервных клеток. В принципе, обе компании руководствовались верными идеями, но на практике в те времена было попросту слишком сложно определить, как работают нервные факторы роста, так что это практически поиски вслепую. Клинические испытания на двух группах пациентов с боковым амиотрофическим склерозом провалились, и болезнь по сей день остается неизлечимой. Однако эксперименты дали интересный побочный эффект: те, кто принимал лекарство, хорошо сбрасывали вес. Это показывает, какие неожиданные повороты случаются в биотехнологическом бизнесе. Компания Regeneron опробовала модифицированную версию препарата как средство для похудения, но результаты клинических испытаний получились противоречивыми, и лекарство так и не попало на рынок. Тем не менее компания Regeneron добилась своего процветания благодаря разработке некоторых других сверхуспешных препаратов, среди которых ингибитор фактора роста эндотелия сосудов (Eylea), применяемый для лечения старческого макулярного отека, который формируется, когда жидкость и белковые отложения накапливаются на макуле или под макулой глаза (желтое пятно в центральной части сетчатки) и заставляют ее утолщаться и набухать, вызывая отек, который может привести к искажению центрального поля зрения человека, так как пятно располагается рядом с центром сетчатки в задней части глазного яблока.
Другое, исходно спекулятивное начинание, похоронившее изрядное количество коммерческих надежд, было связано с технологией получения моноклональных антител. Когда в середине 1970-х годов Сезар Мильштейн и Жорж Кёлер получили такие антитела в Лаборатории молекулярной биологии Совета по медицинским исследованиям (MRC) при Кембриджском университете, моноклональные антитела восхваляли как «серебряные пули», которые вскоре изменят облик медицины. Тем не менее MRC допустил немыслимый по нынешним меркам просчет и не позаботился о том, чтобы их запатентовать. Серебряных пуль из моноклонов не вышло, но спустя целые десятилетия разочарований эти антитела наконец-то заняли достойную них нишу.
Антитела – это молекулы, которые синтезируются факторами адаптивной иммунной системы; их назначение – идентифицировать враждебные микроорганизмы, антигены и связываться с ними. Моноклональные антитела происходят от одной и той же линии антителообразующих клеток (плазмоцитов), и они «запрограммированы» на связывание с уникальной для каждого антитела мишенью. В организме мышей они быстро образуются в ответ на инъекцию вещества-мишени, вызывающего иммунный ответ. Затем в культуре клеток выращиваются мышиные В-лимфоциты, продуцирующие моноклональные антитела. Поскольку данный тип антител способен распознавать конкретные молекулы и связываться с ними, ученые надеялись, что их можно будет с прицельной точностью использовать для борьбы против многочисленных патологических образований, содержащих антигены, например раковых клеток. На волне такого оптимизма был основан целый ряд компаний, занятых разработкой мышиных моноклональных антител, но очень скоро все они столкнулись с трудностями. По иронии судьбы, основным препятствием оказался человеческий иммунитет как таковой, воспринимавший мышиные моноклоны как инородные тела и уничтожавший их еще до того, как они успевали добраться до мишеней в макроорганизме. Предлагались различные методы по «очеловечиванию» мышиных моноклональных антител – ученые пытались максимально сблизить по составу антитела мыши с человеческими. Последнее поколение таких антител – это наиболее бурно развивающаяся отрасль современных биотехнологий.
Компания Centocor, располагавшаяся близ Филадельфии, а сегодня принадлежащая Janssen Biotech, разработала препарат ReoPro (абциксимаб) – антитело, специфичное к белку, появляющееся на поверхности бляшек, которые приводят к образованию тромбов. ReoPro не допускает склеивания бляшек и поэтому, например, снижает вероятность смерти от тромбоэмболии у пациентов, проходящих ангиопластику. Genentech, никогда не дававшая спуску конкурентам в биотехнологической гонке, в 1998 году успешно запатентовала герцептин – антитело, нацеленное на борьбу с некоторыми разновидностями рака груди (см. в главе 14). Пятнадцать лет спустя Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США одобрило Kadcyla – гибридный конъюгат антител с лекарственным препаратом, который вскоре стал новым многомиллиардным проектом, «тяжелой артиллерией» против рака груди. Компания Immunex из Сиэтла (приобретенная Amgen) производит препарат Enbrel, используемый в лечении ревматоидного артрита. Это расстройство возникает из-за избыточной продукции конкретного белка, фактора некроза опухолей (ФНО), участвующего в регуляции иммунного гомеостаза. Enbrel захватывает лишние молекулы ФНО, ослабляя таким образом активность иммунного реагирования на антигены собственных тканей суставов. Это был один из самых востребованных препаратов в 2014 году, его продажи составили восемь миллиардов долларов.
Есть и такие биотехнологические компании, которые занимаются клонированием генов, чьи белковые продукты являются потенциальными мишенями для новых препаратов. Так, весьма активно отыскиваются гены поверхностных белков, располагающихся на поверхности клетки и выполняющих функции рецепторов для нейромедиаторов, гормонов и факторов роста. Именно при помощи таких химических мессенджеров с плейотропным действием человеческий организм координирует работу каждой отдельной клетки с работой триллионов других клеток, осуществляя гомеостатическое регулирование. Недавно выяснилось, что лекарственные средства, ранее разработанные практически вслепую методом проб и ошибок, воздействуют именно на такие рецепторы.
Крупнейшая и, пожалуй, наиболее важная группа подобных препаратов – это рецепторы, сопряженные с G-белком (G-protein-coupled receptors, GPCR), – семейство трансмембранных рецепторов, выполняющих функцию активаторов внутриклеточных путей передачи сигнала, приводящих в итоге к клеточному ответу. Это тип молекул, которые находятся снаружи клетки и служат проводником сигналов между клеткой и окружающей ее средой. GPCR обеспечивают работу органов зрения, обоняния, участвуют в работе иммунной системы и многих других сигнальных систем. Так, когда человек принимает атропин, расширяющий зрачки, либо морфин, притупляющий невыносимую боль, эти препараты модулируют сигнальные пути различных GPCR. В 2012 году Роберт Лефковитц (Университет Дьюка) и Брайан Кобилка (Стэнфордский университет) совместно получили Нобелевскую премию по физиологии и медицине за сложные исследования атомной структуры и биохимической функции GPCR. Известно, что сотни уже изученных GPCR служат мишенью примерно для 30 % лекарств, присутствующих на современном рынке; среди них Zyprexa для лечения шизофрении и Zantac для борьбы с язвой желудка.
Теперь, когда мы рассматриваем механизм действия этих лекарств на новом, молекулярном уровне, становится понятным, почему многие лекарства, мишенью для которых являются рецепторы, дают побочные эффекты. Рецепторы зачастую относятся к большим семействам схожих по структуре белков. Препарат действительно может «бить по непосредственной цели», то есть по рецептору, вызывающему заболевание, с которым мы боремся, но при этом случайно затрагивать и схожие рецепторы, провоцируя побочные эффекты. Интеллектуальный подход к разработке лекарств должен обеспечить более избирательное действие на отдельные рецепторы, так чтобы блокировались исключительно те из них, на которые нацелено действие препарата. Однако большинство моноклональных антител, которые на бумаге кажутся просто превосходными, очень часто пробуксовывают при практическом применении, и извлечь из них прибыль оказывается еще более сложным делом.
Несмотря на имеющиеся успехи препаратов, действие которых направлено на рецепторы, иногда даже самые «высоконаучные» попытки по разработке такой терапии терпят фиаско. Возьмем, к примеру, SIBIA – стартап из Сан-Диего, связанный с Институтом Солка. Открытие мембранного рецептора для нейромедиатора никотиновой кислоты сулило настоящий прорыв в лечении болезни Паркинсона, но, как часто бывает в биотехнологиях, хорошая идея оказалась лишь первым шагом в начале долгого пути к научному достижению. Потенциальное лекарство, разработанное SIBIA, в итоге показало хорошие результаты только в испытаниях на обезьянах, но для людей оказалось непригодным. Другая многообещающая биотехнологическая компания, EPIX Pharmaecuticals, разработала несколько препаратов, нацеленных на GPCR, но была расформирована в 2009 году.
Тем не менее иногда такие решения оправдывают себя самым неожиданным образом. Мы уже упоминали разработанный Regeneron фактор роста нервной ткани, неожиданно проявивший себя в качестве средства для похудения. Многие другие биотехнологические прорывы также связаны с чистым везением, а не с точным расчетом и тщательной разработкой. Например, в 1991 году компания ICOS из Сиэтла, которой руководил Джордж Ратман, прославившийся еще в Amgen, работала с классом ферментов под названием фосфодиэстеразы, которые разрушают молекулы, обеспечивающие клеточную сигнализацию. Компания искала новые препараты для борьбы с повышенным давлением, но при разработке обнаружился весьма удивительный «побочный эффект». Оказалось, что полученные вещества действуют подобно «Виагре» и лечат эректильную дисфункцию, так что здесь производителям удалось сорвать такой джекпот, о котором никто даже и не мечтал.
Несмотря на процветание рынка препаратов по лечению эректильной дисфункции, все-таки основной и важнейшей движущей силой биотехнической индустрии (что совсем неудивительно) стал поиск лекарства от рака. Классический способ борьбы с раком, связанный с уничтожением клеток (при помощи облучения или химиотерапии), неизбежно губит и нормальные, здоровые клетки, что обычно дает чрезвычайно губительные для организма побочные эффекты. Научившись работать с ДНК, исследователи наконец-то начинают синтезировать препараты, нацеленные на белки, среди которых много факторов роста и их рецепторов, расположенных на поверхности клеток. Белки, на которые обратила внимание научная общественность при изучении проблем рака, обеспечивают рост и деление раковых клеток. Разработка препарата, который ингибирует лишь конкретный белок, не затрагивая другие жизненно необходимые структуры, – чудовищно сложная задача даже для экспертов по клинической биохимии. Тернистый путь от определения мишени лекарственного препарата до одобрения лекарства в Управлении по санитарному надзору за качеством пищевых продуктов и медикаментов США и его широкого применения на рынке лекарственных средств – это подлинная одиссея, редко занимающая менее десяти лет. При этом каждый препарат, который успешно пройдет этот непростой путь через доклинические и клинические испытания и будет одобрен, требует подстраховки со стороны биотехнологических и фармацевтических компаний, поскольку приходится тратиться и на разработку других лекарств, которые в итоге останутся не у дел.
Еще совсем недавно истории успеха таких проектов оставались единичными, теперь я с облегчением наблюдаю, как их число постоянно преумножается. Классический образец успешного противоракового лекарства – препарат Gleevec от компании Novartis, один из представителей нового класса таргетных цитостатиков, избирательно воздействующих на клетки, имеющие те или иные характерные для опухолей генетические дефекты, эффективный в лечении хронического миелолейкоза. Препарат прицельно блокирует ростстимулирующую активность аберрантного белка, который в переизбытке синтезируют раковые клетки такого типа, и ингибирует гибридную тирозинкиназу BCR-ABL, ген которой находится на «филадельфийской хромосоме» (Ph), образующейся вследствие реципрокной транслокации между 9-й и 22-й хромосомами, происходящей при данной патологии. Обычно, если прием Gleevec начинается на ранней стадии болезни, препарат обеспечивает длительные периоды ремиссии, а иногда и полное излечение. Однако к некоторым несчастным пациентам болезнь возвращается из-за новых мутаций онкогена, после которых Gleevec теряет эффективность. На основе Gleevec разработано несколько препаратов второго поколения, помогающих эффективнее сдерживать рак (мы более подробно поговорим о противораковой терапии в главе 14).
В 1998 году – ни много ни мало в пятницу тринадцатого – Джон и Эйлин Кроули узнали убийственную новость: оказалось, что их дочь Меган (в возрасте года и трех месяцев) страдает болезнью Помпе – редким генетическим расстройством, из-за которого организм не в состоянии перерабатывать сахар (гликоген). В результате сахар накапливается в теле и становится токсичен, повреждая мышечные и нервные клетки по всему организму. Ожидаемая продолжительность жизни при такой болезни обычно составляет всего два года. Джон Кроули бросил прежнюю работу в фармацевтической сфере и основал небольшую биотехнологическую компанию Novazyme специально для того, чтобы найти лекарство для Меган. Кроули продал свою компанию примерно за 135 миллионов долларов фирме Genzyme, завершившей разработку нового препарата, названного Myozyme. В 2006 году вышла книга о мытарствах Кроули под названием The Cure («Лекарство»), и после публикации Джону позвонил актер Харрисон Форд (естественно, Джон подумал, что это розыгрыш). Форд хотел снять фильм об истории семьи Кроули. В итоге вышла лента «Крайние меры», в которой Харрисон Форд сыграл ведущего исследователя. Премьера фильма состоялась в 2010 году. Миниатюрного Кроули сыграл высокорослый Брендан Фрейзер, звезда фильма «Джордж из джунглей». Кроули тогда грустно пошутил, что у кого-то в отделе подбора актеров на роли явно была дислексия.
Немногие руководители биотехнологических компаний удостоились внимания Хана Соло, но в биотехнологическом мире хватает драматизма – от захватывающих историй успеха до бесславных поражений и забытых технологий. Прошлое десятилетие характеризовалось стабильным развитием биотехнологической индустрии. В 2015 и 2016 годах этот сегмент фармацевтической индустрии получил более чем по семь миллиардов долларов ежегодных инвестиций от венчурных компаний. Среди многочисленных новых лекарств, одобренных Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов в 2013 году, есть не менее семи потенциальных «тяжеловесов» (каждый из которых может принести более миллиарда долларов прибыли ежегодно). Кроме того, инвесторы вложили еще миллиарды долларов в стартапы, продвигая новые диагностические средства и методы терапии.
В индустрии произошла явная «смена караула» – те компании, что ранее классифицировались как биотехнологические (то есть занятые разработкой биохимических лекарств или миноклональных антител), в частности Amgen, Gilead Sciences и Regeneron Pharmaceuticals, в настоящее время окрепли и диверсифицировались. Сейчас они оцениваются выше, чем многие традиционные гиганты фармацевтической индустрии, не справившиеся с «патентным обвалом», из-за которого они практически за одну ночь лишились миллиардов долларов прибыли из-за истечения срока действия патента на их флагманский препарат. Учитывая, как растут активы биотехнологических компаний, эти амбициозные фирмы всерьез вкладываются в развитие геномики, считая, что именно она – ключ к дальнейшему прогрессу в разработке лекарств. Так, Amgen за 415 миллионов долларов приобрела deCODE Genetics – исландскую компанию, прославившуюся тем, что ей удалось собрать полную базу данных о геномах всех 320 тысячах жителей Исландии. Regeneron, в свою очередь, объединила усилия с Geisinger, одной из крупнейших американских компаний, занятых в сфере здравоохранения, чтобы секвенировать геномы 100 тысяч добровольцев и найти ответы или подсказки, которые позволили бы превратить рекомбинантные ДНК в новые лекарства. В 2016 году компания AstraZeneca анонсировала десятилетнюю программу по секвенированию геномов двух миллионов человек, руководить которой будет стэнфордский генетик Дэвид Голдстейн. Компания собирается инвестировать сотни миллионов долларов в поиск редких патологических разновидностей генов. По-видимому, наконец-то настали времена геномики.
Биотехнология зародилась в Сан-Франциско, поэтому совершенно неудивительно, что и специалисты из Кремниевой долины всерьез присматриваются к этой отрасли. Так, компания Google (от лица своего холдинга Alphabet) пригласила на работу Арта Левинсона (Art Levinson), легендарного бывшего директора Genentech, а также ряд других ключевых управленцев и основала новую биотехнологическую компанию Calico (это своеобразная аббревиатура названия California Life Company, которое является реверансом в адрес Genentech, где действовало такое правило именования). Calico изучает генетику процессов старения и долголетия – эта тема, по-видимому, вызывает у предпринимателей из Кремниевой долины настоящую одержимость. Компания 23andMe, занимающаяся персонифицированной геномикой, была основана при участии Анны Воджицки, бывшей жены сооснователя Google Сергея Брина, и в начале деятельности ее иногда порицали как «компанию по развлекательной генетике» (об этом мы поговорим в главе 8). Тем не менее компания 23andMe, подписавшая контракты с крупными игроками на фармацевтическом рынке на доступ к базе ДНК по одному миллиону клиентов, четко обозначила, что собирается сама стать одним из таких игроков. Фирма пригласила на работу Ричарда Шеллера, бывшего директора Genentech по исследованиям и разработкам, возглавившего в 23andMe их собственную программу по поиску новых лекарственных средств. Двое ветеранов Twitter основали Color Genomics – диагностическую компанию, предлагающую секвенировать набор из 30 раковых генов (в том числе BRCA1) за неслыханно низкую цену – всего 224 доллара.
Двое других ученых – «титанов» от геномики также развивают амбициозные биотехнологические проекты. Крейг Вентер, ключевой деятель в области секвенирования генома человека (подробнее см. главу 7), основал две компании: Synthetic Genomics, занимающуюся разработкой биотоплива, и Human Longevity, которая, по планам Крейга Вентера, к 2020 году должна отсеквенировать один миллион человеческих геномов. Сайд-проект подназванием Health Nucleus предлагает персонализированную лечебную платформу, в рамках которой выполняется секвенирование генома, полный бактериальный и метаболический скрининг, а также полное МРТ-сканирование всего тела. Лерой Худ, гигант геномной индустрии, изобретатель технологий автоматизированного синтеза ДНК и белков, помог запустить Arivale, компанию, позиционирующую себя как фирму «научного оздоровления», которая предлагает годичную программу стоимостью 3500 долларов, сочетающую генетический анализ и персональный коучинг.
Несмотря на то что большинство биотехнологических компаний все-таки сосредоточиваются на разработке небольших молекул или моноклональных антител, существует также ряд других стратегий. Результатом реализации этих стратегий стали подлинно захватывающие успехи в лечении печально известных генетических заболеваний. Бостонская компания Vertex Pharmaceuticals, финансируемая при поддержке Фонда муковисцидоза, разработала лекарства для пациентов, страдающих муковисцидозом и имеющих специфические мутации гена муковисцидоза (CFTR), который локализован в середине длинного плеча 7-й хромосомы. Следствием мутации гена является нарушение структуры и функции белка, получившего название муковисцидозного трансмембранного регулятора проводимости (МВТП). Выпустив первый препарат под названием Kalydeco (нацеленный на лечение небольшой выборки пациентов), компания представила Orkambi, предназначенный для лечения больных с наиболее распространенной мутацией (Delta F508). Аналитики считают, что Orkambi, появившийся в продаже в 2015 году, должен принести Vertex прибыль. Правда, скептики при этом отметили бы, что оптовая цена годового курса лечения, требуемого одному пациенту, составит целых 250 тысяч долларов.
Лечение другого генетического расстройства – мышечной дистрофии – было настоящей мечтой еще до того, как Лу Кункель и Тони Монако (Tony Monaco) в конце 80-х годов идентифицировали ген наиболее распространенной формы такого заболевания – миодистрофии Дюшена. Заболевание вызывается делециями или дупликациями одного или нескольких экзонов либо точечными мутациями в гене дистрофина, кодирующем белок дистрофин (ген DMD). Делеции располагаются по длине гена неравномерно, чаще в его начале (5'-концевая область) и в середине. Дис-трофин в больших количествах находится в клеточной мембране мышечных клеток; нарушение структуры мембраны ведет за собой дегенерацию органелл и гибель миофибрилл (органеллы, отвечающие за сокращение мышц). Разработка лекарства тормозилась из-за того, что белок дистрофина оказался просто огромен, но биотехнологические компании применили инновационные стратегии. Две американские фирмы, Sarepta Therapeutics и PTC Therapeutics, воспользовались технологиями, помогающими «намеренно» просматривать участок кодирующей ДНК (или экзон), в котором находится специфическая мутация, имеющаяся у некоторых пациентов с миодистрофией Дюшена. Результатом может стать наличие укороченной, но при этом рабочей разновидности дистрофина. Тем временем в компании United Kingdom Summit Therapeutics, которую основала Дейм Кей Дэвис, генетик из Оксфордского университета, на этапе клинических испытаний исследуют препарат, который должен включать близкородственный ген. Препарат называется «утрофин», причем есть заметные признаки того, что белок, продуцируемый этим геном, может функционально замещать недостающий дистрофин.
Широкие коммерческие перспективы биотехнологического бизнеса по-прежнему привлекают инноваторов, инвесторов и просто мечтателей. Так, например, тридцатилетний Вивек Рамасвами, бывший специалист по хедж-фондам, выложил скромные пять миллионов долларов за отбракованный препарат-кандидат компании GlaxoSmithKline, предназначенный для лечения болезни Альцгеймера. Однако после выхода на рынок его компания Axovant Sciences оценивается уже почти в три миллиарда долларов – это крупнейшая биотехнологическая котировка в истории. Если соединение под названием RVT-101 будет одобрено, оно станет новым лекарством от болезни Альцгеймера за более чем десятилетний период.
Элизабет Холмс бросила Стэнфорд, чтобы основать Theanos – потенциально революционную диагностическую компанию, предлагающую плановое исследование, для которого требуется всего несколько капель крови пациента. Theanos заключила крупную сделку с Walgreens, и рыночная стоимость компании составила около девяти миллиардов долларов, хотя подробности этой технологии хранятся в строгом секрете. Настроения общества и бизнес-сообщества переменились после выхода журналистского расследования, опубликованного в Wall Street Journal обладателем Пулитцеровской премии Джоном Каррейру. В нем сообщалась сенсационная новость: оказывается, большинство анализов в Theanos проводилось при помощи традиционных технологий, а не в рамках проприетарной платформы, которую запатентовала компания. Последовала тщательная проверка со стороны организации «Центры государственной медицинской помощи по программам Medicare и Medicaid», а затем на Theanos были наложены суровые санкции. В результате Элизабет Холмс решила закрыть все лаборатории своей компании и сосредоточиться на производстве коммерческого оборудования для анализов крови. Такая головокружительная и авантюрная история просто просилась на экран. Вышел фильм, сценарий которого был основан на книге Джона Каррейру Bad Blood («Дурная кровь»). Роль Элизабет Холмс в этой ленте сыграла Дженнифер Лоуренс.
В 2015 году еще один менеджер по хедж-фондам, переквалифицировавшийся в гендиректора биотехнологической фирмы (по имени Мартин Шкрели), оказался под огнем критики за наглое искусственное взвинчивание цен. Компания Шкрели Turing Pharmaceuticals приобрела фактическую монополию на генетический препарат Daraprim, применявшийся для лечения токсоплазмоза (паразитическая инфекция, часто встречающаяся у больных СПИДом). Когда Шкрели объявил, что планирует повысить цены на препарат на немыслимые 5000 % – с 13,5 до 750 долларов за таблетку (один прием), – его просто демонизировали в бизнес-СМИ, порицали участники президентской гонки, а также коллеги-управленцы из фармакологической индустрии, среди которых, надо сказать, были и такие, кто сам занимался ценообразованием на грани фола. В США, в отличие от других развитых стран, правительство никак не регулирует цены на лекарственные препараты. Компания Gilead, добившись в рекордные сроки одобрения своего препарата Sovaldi от гепатита C, установила в США цену по 1000 долларов за одну таблетку (курс лечения рассчитан на двенадцать недель по одной таблетке в день). В то же время за границей этот препарат продается со скидкой до 99 %. Пациенты, налогоплательщики и организации здравоохранения просто бы взвыли от чека на 84 тысяч долларов за курс лечения, отметив, что себестоимость производства одной таблетки – около одного доллара. Главный директор по медицине в компании Express Scripts назвал такое ценообразование «антиробингудовским».
Впоследствии Мартин Шкрели взялся урегулировать цены на свои препараты, и его позиция вновь привлекла всеобщее внимание к острому вопросу ценообразования на лекарства. По иронии судьбы, последнее слово может остаться за свободным рынком: конкурирующая биотехнологическая компания Imprinis заявила о планах производить аналог Dataprim по цене один доллар за дозу, что скажется на ценообразовании.
С тех пор как рекомбинантные технологии подчинили себе клетки, заставив их продуцировать любые интересные человеку белки, возникает логичный вопрос: а стоит ли вообще ограничиваться только лекарствами? Возьмем, к примеру, паутину. Так называемые каркасные нити, образующие расходящиеся лучи паутины, состоят из исключительно прочных волокон. В пересчете на вес каркасная паутина впятеро прочнее стали. Хотя, казалось бы, всегда можно завести пауков, которые пряли бы достаточное количество паутины сверх собственных нужд, все попытки создания паучьих ферм, к сожалению, провалились: пауки – слишком территориальные животные, выращивать их «скопом» не получается. Однако сегодня уже можно выделить паутинные гены и внедрить их в другие организмы, которые, таким образом, послужат «фабриками паутины». Исследователи из Университета штата Юта вывели трансгенных коз, у которых основной ген паутины встроен в генетические схемы синтеза молока. Как только у козы в возрасте 18 месяцев начинается лактация, при дойке у нее выделяется каркасная паутина, которая затем очищается, как при сыроварении. Эти исследования финансировал Пентагон, планирующий в будущем вооружить солдат «арсеналом Человека-паука». Возможно, когда-нибудь солдаты и смогут облачиться в защитные костюмы из паучьего шелка; такая броня будет во много раз прочнее кевлара.
Еще один захватывающий рубеж биотехнологических исследований связан с доработкой естественных белков. Зачем довольствоваться дарами природы, сформировавшимися под действием некого случайного и сегодня уже нерелевантного эволюционного давления, если при помощи минимального вмешательства можно получить вещество с гораздо более полезными свойствами? Например, берем существующий белок, вносим мельчайшие продуманные изменения в его аминокислотную последовательность. Потенциал такого метода весьма ограничен, поскольку мы не всегда представляем, как повлияет на общие свойства белковой молекулы изменение хотя бы одной аминокислоты.
Вариант решения проблемы нам снова подсказывает сама природа: разработан метод направленной молекулярной эволюции, фактически имитирующий естественный отбор. При естественном отборе новые разновидности генов возникают случайным образом в результате мутаций, а затем отсеиваются в ходе конкуренции с другими вариантами. Успешные (более приспособленные) варианты генов с большей вероятностью будут сохранены и переданы следующему поколению. При направленной молекулярной эволюции этот процесс протекает in vitro. После биохимических манипуляций, позволяющих внести в ген белка случайные мутации, можно опытным путем сымитировать генетическую рекомбинацию и, таким образом, комбинировать мутации, создавая новые последовательности аминокислот. Из полученных в результате экспериментов новых белков система выбирает те, которые лучше всего функционируют в заданных нами экспериментальных условиях. Весь цикл повторяется многократно, причем на каждой итерации срабатывают «успешные» молекулы из предыдущих циклов.
Для иллюстрации яркого примера, раскрывающего возможности направленной молекулярной эволюции, достаточно заглянуть в прачечную. Вообразите себе, какая катастрофа разразится, если единственная цветная вещь попадет в кипу белого белья. Краска с нашей, например, красной футболки обязательно окрасит общую кучу – и все белые простыни в доме станут розоватыми, о чем вы узнаете постфактум. Оказывается, фермент пероксидаза, который естественным образом синтезируют некоторые несъедобные грибы (точнее, грибы-навозники), эффективно обесцвечивает текстильные красители. Правда, есть проблема: этот фермент не действует в горячем мыльном растворе, которым наполнена стиральная машина. Тем не менее при помощи направленной молекулярной эволюции удалось оптимизировать свойства фермента и добиться, чтобы он функционировал в любой среде. Например, один специально «доработанный» фермент выдерживает температуру в 174 раз выше, чем естественный фермент гриба-навозника. Такая полезная «эволюция» совершается достаточно быстро в сравнении с естественным отбором, который длится целую вечность. Для сравнения – направленная молекулярная эволюция in vitro позволяет решить задачу в течение считаных часов или дней.
Инженеры-генетики давно обнаружили, что подобные технологии могут быть полезны также в сельском хозяйстве. Всем, кто сегодня занимается биотехнологиями, отлично известно, какие жаркие споры бушуют по поводу генно-модифицированных растений (ГМО). Поэтому интересным является более раннее, чем в растениеводстве, использование биотехнологии в животноводстве с целью повышения надоев. В свое время информация об этом технологическом решении также вызвала неадекватную реакцию в обществе.
Бычий гормон роста во многом похож на человеческий, но обладает полезным животноводческим эффектом: увеличивает надои у коров. Сельскохозяйственная химическая компания Monsanto из Сент-Луиса клонировала ген бычьего гормона роста и синтезировала рекомбинантный вариант (rbGH). У коров этот гормон образуется естественным путем, но после инъекций rbGH от Monsanto надои увеличивались примерно на 10 %. В 1993 году Управление по санитарному надзору за качеством пищевых продуктов и медикаментов одобрило использование rbGH, и к 1997 году примерно 20 % из 10 миллионам коров в США давали пищевые добавки с rbGH. Их молоко ничем не отличалось от молока обычных коров: в надоях коров, получавших и не получавших rbGH, содержалось незначительное количество бычьего гормона роста. На самом деле основной аргумент против маркирования молока как «без bGH» и «с bGH» заключался в том, что первое молоко совершенно неотличимо от второго, поэтому невозможно определить, являлась ли такая реклама злоупотреблением власти. Поскольку rbGH позволяет фермерам достигнуть высоких производственных показателей при меньшем поголовье коров, применение этого гормона даже благоприятно для окружающей среды, поскольку позволяет сократить численность молочных стад. Проблема в том, что в организме скота образуется метан, который вносит ощутимый негативный вклад в общий парниковый эффект. Поэтому в долгосрочной перспективе планируется сокращение численности стад, что должно благотворно сказаться на климате и привести к ослаблению глобального потепления. Метан в двадцать пять раз лучше, чем углекислый газ, сохраняет тепло, а пасущаяся корова в среднем производит шестьсот литров метана в день – им можно надуть сорок больших праздничных шариков.
Джереми Рифкин, профессиональный скептик: дайте ему тему, и он на нее ополчится
На тот момент я удивился, что rbGH спровоцировал такой всплеск лоббирования против ДНК. Теперь, когда разгораются споры о ГМО-продуктах, я убедился, что профессиональные полемисты могут раздуть проблему из чего угодно. Джереми Рифкин, самый закоренелый противник биотехнологий, начал свою карьеру скептика еще в 1976 году – в двухсотлетнюю годовщину образования США. Он поднял протесты до невероятных высот, ополчившись против рекомбинантной ДНК. Когда в 1980-е годы ему указали, что rbGH вряд ли вызовет возмущение в обществе, он ответил: «Я подниму волну! Найду что-нибудь! Это первый биотехнологический продукт, и я буду против него бороться». Так он и сделал. «Он ненатурален» (но неотличим от гормона из «натурального» молока). «Он содержит канцерогенные белки» (нет, не содержит, причем при пищеварении все белки все равно расщепляются). «Он вытеснит с рынка мелких фермеров» (но в отличие от примеров с другими новыми технологиями rbGH не требует никаких запредельных расходов, так что мелкие фермеры никоим образом не дискриминируются). «Он навредит коровам» (двадцать лет коммерческого применения гормона на миллионах коров показали, что это не так). В конце концов, как во времена асиломарского скепсиса против рекомбинантной ДНК, проблема была исчерпана сама собой, когда выяснилось, что все апокалиптические сценарии Рифкина безосновательны.
Заваруха с bGH стала предтечей последующих событий. Для Рифкина и подобных ему ДНК-фобов bGH послужил своеобразным аперитивом; главным блюдом для таких скептиков вскоре стали генетически модифицированные продукты.
Британская пресса «кормится» на проблеме генетически модифицированных продуктов