Книга: Укрощение бесконечности. История математики от первых чисел до теории хаоса
Назад: Дедекинд
Дальше: Множества и классы

Аксиомы целых чисел

Книга Дедекинда была очень хороша для тренировки базовых навыков, но общие вопросы определения терминов в ней опущены. Она всего лишь сместила фокус с действительных чисел на рациональные. Но откуда нам знать, что рациональные числа существуют? Если мы предположим, что существуют целые числа, это просто: определим рациональное число p/q как пару целых чисел (p, q) и составим формулы для сумм и произведений. Если целые числа существуют, то существуют и их пары.
Но откуда нам знать, что существуют целые числа? Кроме знаков + и –, целые числа – обычные натуральные числа (включая 0). А учесть знаки не составит труда. Иными словами, целые числа существуют, если существуют натуральные.
Но мы так и не пришли к концу. Мы так хорошо знакомы с натуральными числами, что нам и не приходит в голову поинтересоваться, существуют ли на самом деле знакомые нам 0, 1, 2, 3 и т. д.? И если да, то что это такое?
В 1889 г. Джузеппе Пеано обошел вопрос существования, воспользовавшись подходом Евклида. В своей книге Евклид вместо спора о существовании точек, линий, треугольников и прочих фигур привел список аксиом – описание свойств, очевидных без сомнений. Ему было не важно, существуют ли точки и прочие элементы. Вот гораздо более интересный вопрос: если они существуют, какие свойства вытекают из этого? Итак, Пеано составил свой список аксиом для натуральных чисел. Вот основные из них.
• Число 0 существует.
• Каждое число n имеет следующее за ним s(n), которое мы принимаем как n + 1.
• Если P(n) – свойство, такое, что P(0) верно, и каждый раз, когда P(n) верно, то и P(s(n)) тоже верно, тогда P(n) верно для любого n (принцип математической индукции).
Затем он определил числа 1, 2 и т. д. с точки зрения этих аксиом, в частности получив:
1 = s(0),
2 = s(s(0))
и т. д. И еще он определил базовые арифметические действия и доказал, что они подчиняются обычным законам. В его системе 2 + 2 = 4 – доказуемая теорема, которая констатирует, что s(s(0)) + s(s(0)) = s(s(s(s(0)))).
Огромное преимущество такого аксиоматичного подхода в том, что он точно определяет то, что мы должны доказать, если хотим как-то показать, что натуральные числа существуют. Нам лишь надо сконструировать некую систему, удовлетворяющую всем аксиомам Пеано.
Здесь более глубоким вопросом становится значение самого существования для математики. В реальном мире существующим считается объект, который мы можем наблюдать или, если это не удается, сделать вывод о его существовании благодаря тому, что мы можем наблюдать. Например, мы знаем о существовании силы притяжения, поскольку можем наблюдать ее эффекты, хотя и не ее саму.
В реальном мире мы можем обоснованно заявлять о существовании двух кошек, двух велосипедов или двух ломтей хлеба. Но с числом два всё не так просто. Это не предмет, а идея. В реальном мире мы никогда не встретим число два. Ближе всего к этому можно считать символ «2», написанный, или напечатанный на бумаге, или высветившийся на экране компьютера. Но никто не думает, что символ – то же, что представляемый им предмет. Слово «кот», написанное черным по белому, не кот. Точно так же символ «2» не число два.
Значение слова «число» оказалось неожиданно трудной концептуальной и философской проблемой. Положение усугубляется тем, что все мы превосходно разбираемся в том, как использовать числа. Мы знаем, как они себя ведут, но не знаем, что они собой представляют.
Назад: Дедекинд
Дальше: Множества и классы