Ли и Клейн
В 1869 г. норвежский математик Софус Ли подружился с немецким математиком Клейном. Они оба интересовались линейной геометрией – ответвлением проективной геометрии, открытым Юлиусом Плюккером. Ли высказал очень оригинальную идею: мол, теория Галуа для алгебраических уравнений должна иметь аналог для дифференциальных уравнений. Алгебраическое уравнение может быть решено в радикалах, только если обладает необходимыми свойствами симметрии, – это так называемая разрешимая группа Галуа. Ли предположил, что и дифференциальное уравнение может быть решено классическими способами, только если оно остается неизменным в непрерывном семействе преобразований. Ли и Клейн работали над вариантами этой идеи в 1869–1870 гг. Кульминацией стало описание геометрии через инварианты групп, данное Клейном в 1872 г. в его «Эрлангенской программе».
Она стала результатом нового подхода к евклидовой геометрии – с точки зрения симметрии. Жордан уже указал, что симметрии евклидовой плоскости представлены разного рода движениями без деформации тела: переносом, когда плоскость скользит в каком-то направлении; вращениями, которые поворачивают ее вокруг некой фиксированной точки; отражениями, которые переворачивают ее вокруг неподвижной линии, и, что менее очевидно, зеркальными отражениями, которые отражают и затем переносят ее в направлении, перпендикулярном линии зеркала. Эти преобразования образуют евклидову группу, и они жесткие – в том смысле, что они не меняют расстояния между точками. Соответственно, они не меняют и углы. Теперь длины и углы являются основными понятиями евклидовой геометрии. И Клейн понял, что это и есть инварианты для евклидовой группы: величины, которые не меняются, когда группа подвергается преобразованию.
ФЕЛИКС КЛЕЙН 1849–1925
Клейн родился в Дюссельдорфе в элитарной семье: его отец был секретарем главы прусского правительства. Он собирался стать физиком и отправился учиться в Университет Бонна, но устроился подрабатывать в лаборатории Юлиуса Плюккера. Тот вроде бы должен был заниматься прикладной математикой и экспериментальной физикой, но его интересы сосредоточились на геометрии, и Клейн попал под его влияние. Диссертация Клейна, датированная 1868 г., была посвящена линейной геометрии, ее приложениям к механике.
В 1870 г. Клейн работал вместе с Ли над теорией групп и дифференциальной геометрией. В 1871 г. он совершил открытие, что неевклидова геометрия – это геометрия проективной поверхности с определенным коническим сечением. Этот факт весьма откровенно и бескомпромиссно доказал, что неевклидова геометрия логически обоснована, точно так же как и евклидова. Этот довод практически положил конец дискуссии о статусе неевклидовой геометрии.
В 1872 г. Клейн стал профессором университета в Эрлангене, и в своей «Эрлангенской программе» 1872 г. он унифицировал практически все известные в то время виды геометрии и четко описал связи между ними, рассматривая геометрию через инварианты группы преобразований. Так геометрия стала ответвлением теории групп. Клейн написал статью по этой теме для своей торжественной речи (при утверждении его профессором), но так и не смог обнародовать ее в тот день. Сочтя Эрланген недостаточно продвинутым местом, ученый в 1875 г. перебрался в Мюнхен. Он женился на Анне Гегель, внучке великого философа. Через пять лет он переехал в Лейпциг, где расцвел его талант математика.
Клейн был уверен, что лучшая его работа была по теории функций комплексного переменного, где он провел глубокое исследование инварианта функций для различных групп преобразований комплексной плоскости. Особенно подробно в этом контексте он развил теорию простой группы порядка 168. В решении проблемы униформизации комплексных функций он вступил в соперничество с Пуанкаре, но резко подорвал здоровье – возможно, из-за слишком напряженной борьбы.
В 1886 г. Клейн занял должность профессора в Университете Гёттингена и сосредоточился на административной деятельности – учреждении самой внушительной в мире математической школы. Он возглавлял ее вплоть до ухода на пенсию в 1913 г.
Если вам известны евклидовы группы, вы сможете вычислить их инварианты и также из них получить евклидову геометрию. То же относится и к другим видам геометрии. Эллиптическая подразумевает изучение инварианта группы движений в пространстве с положительной кривизной, гиперболическая – инварианта группы движений в пространстве с отрицательной кривизной, проективная – изучение инварианта групп проекций и т. д. Точно так же, как координаты отражают связь алгебры с геометрией, инварианты выражают связь теории групп с геометрией. Каждый вид геометрии определяет группу всех преобразований, которые сохраняют соответствующие геометрические концепции. Верно и обратное: каждая группа преобразований определяет соответствующую геометрию, со своими инвариантами.
Клейн использовал эти взаимосвязи, чтобы доказать, что одни виды геометрии практически не отличаются от других, поскольку их группы идентичны, за исключением интерпретации. Более глубокий смысл этой идеи в том, что всякий вид геометрии определяется его симметрией. Есть лишь одно исключение – риманова геометрия поверхностей, чья кривизна может меняться от одной точки к другой. Она не совсем вписывалась в программу Клейна.