Теория групп
Эти перемены стали возможны во многом благодаря тому, что математики открыли теорию групп – раздел алгебры, который возник из безуспешных попыток решать алгебраические уравнения, особенно четвертой или пятой степени. Но только через 50 лет после своего открытия теория групп была оценена как верный подход для изучения концепции симметрии. По мере того как новый метод занимал место в общественном сознании, становилось ясно, что симметрия – глубокая и важная идея, со множеством приложений как к физическим, так и к биологическим исследованиям. Сегодня теория групп стала незаменимым инструментом в любой области математики и науки в целом, а ее связь с симметрий подчеркивается в большинстве предисловий научных трудов. Но потребовалось не одно десятилетие, чтобы эта точка зрения восторжествовала. Примерно в 1900 г. Анри Пуанкаре сказал, что теория групп представляет собой всю математику, самую ее суть. Несколько преувеличенное, но верное утверждение.
Поворотным пунктом в теории групп стала работа молодого француза Эвариста Галуа. Ей предшествовала долгая и запутанная предыстория: идеи Галуа появились не на пустом месте. Затем последовала не менее запутанная и даже в чем-то не очень чистая постистория, когда математики принялись экспериментировать с новой концепцией, пытаясь выяснить, что в ней важно, а что нет. Однако именно Галуа четче всех представлял необходимость понятия групп в математике, описал ряд самых фундаментальных их характеристик и продемонстрировал их ценность для основ математики. Не особо удивляет то, что его работа осталась незамеченной при жизни ученого. Возможно, она казалась чересчур оригинальной, но в этом, по правде говоря, отчасти может быть повинна репутация Галуа как ярого революционера. Он был трагической фигурой, жившей во времена множества личных трагедий, и его судьба выглядит одной из самых драматичных и, пожалуй, романтичных по сравнению с прочими выдающимися математиками.