Книга: Фабрика планет. Экзопланеты и поиски второй Земли
Назад: Луна с жидкими озерами
Дальше: В поисках Эндора

Глава 16. Фабрика лун

«Ситуация с лунами сейчас такая же, как с планетами в 1990-е гг., — объясняет немецкий астрофизик Рене Геллер, беря за точку отсчета эпоху накануне открытия первых экзопланет. — Мы стоим на пороге».
Геллер одержим естественными спутниками. В сферу его научных интересов входят вопросы образования и обнаружения лун вокруг внесолнечных планет. Как раз на этих экзолунах Геллер надеется найти жизнь.
С учетом огромных расстояний, исключающих возможность отправки космических зондов, обнаружить жизнь на экзоспутниках можно только по следам в атмосфере. Поэтому искать жизнь в экосистемах, скрытых под ледовой оболочкой, не имеет смысла — она должна быть на поверхности спутника. Если оставить в стороне тела вроде Титана, наиболее вероятное место, где может встретиться населенный бактериями или эвоками ландшафт, — это зона умеренных температур. Этому критерию не соответствуют покрытые льдом спутники планет Солнечной системы, но что, если бы Юпитер мигрировал во внутреннюю область на место Земли? Привело бы это к таянию ледяных панцирей Европы, Ганимеда и Каллисто? Появилось бы в результате в Солнечной системе три новых объекта с потенциально пригодными для жизни условиями на поверхности?
Для живых форм условия на таких землеподобных спутниках могут оказаться даже лучше, чем на планетах. Серьезная проблема планет, орбиты которых проходят вблизи не столь горячих красных карликовых звезд, — приливный захват. Когда планета все время повернута к звезде одной и той же стороной, на двух ее сторонах формируются два принципиально разных температурных режима — испепеляющая жара на одной и ледяная тьма на другой. В случае спутника приливный захват возможен скорее с планетой, чем со звездой. Поэтому даже при нахождении в зоне умеренных температур системы с красным карликом на спутнике может сохраниться обычный цикл смены дня и ночи.
К настоящему моменту в зонах умеренных температур астрономы открыли в пять раз больше газовых гигантов, чем землеподобных миров. Если аналоги Юпитера окружены таким же количеством лун, как наши планеты-гиганты, то экзолуны являются основными объектами с твердой поверхностью в этой зоне. Казалось бы, наши шансы на успех в поисках пригодных для жизни миров повышаются, но существует ли похожий на Землю спутник вроде Эндора, космического дома эвоков?
Чтобы на Эндоре могли существовать густые леса и мохнатые мишки, этот спутник должен иметь атмосферу. Глядя на толщину газовой оболочки Титана, можно подумать, что любой спутник может запросто удержать необходимый объем воздуха. Однако у Титана есть одно существенное преимущество перед спутником, находящимся в пределах зоны умеренных температур: температура пространства вокруг него очень низкая.
Молекулы газа покидают верхние слои атмосферы, если они могут разогнаться настолько, чтобы преодолеть силу притяжения планеты (или спутника). Поскольку плотность газа уменьшается по мере приближения к верхней границе атмосферы, при достижении достаточной скорости его молекулы вряд ли встретят какие-либо препятствия на своем пути в окружающее планету пространство. Чтобы атмосфера планеты сохранялась в течение длительного времени, газ из нее должен утекать очень медленно. Для этого либо планета должна быть очень массивной, чтобы создавать мощную силу притяжения, либо молекулы атмосферы должны двигаться с очень низкой скоростью. Спутники во внешней части нашей Солнечной системы не очень большие, но верхние слои их атмосфер очень холодные. Благодаря этому молекулам газа трудно набрать достаточную скорость, чтобы покинуть спутник.
Но стоит переместить такой спутник поближе к Солнцу, и в результате нагрева атмосферы газ из него начнет улетучиваться. Температура в верхней части атмосферы Земли в сто раз выше, чем на Титане. Если поместить на место нашей планеты Титан, его гравитации не хватит для удержания атмосферы.
Если бы на экзоспутнике была такая же атмосфера, как на Земле, потерю кислорода мог бы компенсировать фотосинтез, а потерю углекислого газа — эрозия силикатов. Впрочем, улетучивание азота из атмосферы мира, потенциально пригодного для жизни, будет иметь самые печальные последствия: азот — элемент, который плохо вступает в химические реакции, благодаря этому молекулы азота выступают в качестве буфера, снижающего риск возникновения лесных пожаров. Кроме того, азот является ключевым компонентов белков и ДНК, используемых всеми формами жизни на Земле. При отсутствии азота лес на Эндоре обречен на гибель. Поэтому условием пригодности спутника для жизни должна быть его достаточно большая масса и гравитация, обеспечивающая удержание более теплой атмосферы на протяжении миллиардов лет.
Чтобы каменистый мир мог удерживать азот и кислород при тех же температурах верхних слоев атмосферы, что и на Земле, в течение свыше 4,6 млрд лет (возраст нашей Солнечной системы), его масса должна быть чуть больше массы Марса. Таким образом, мы сталкиваемся с очередной проблемой: масса самого крупного спутника в окрестностях нашего самого большого газового гиганта составляет лишь 23% массы Марса. Даже если бы Ганимед находился в зоне умеренных температур, у него бы не было атмосферы. А могут ли вообще быть спутники больше Ганимеда? Ответ зависит от способа их образования.
Спутники в Солнечной системы формировались разными путями, которые можно объединить в три независимые группы. Наша собственная Луна относится к не совсем обычной подгруппе естественных спутников: у нее нетипично большая масса в сравнении с массой планеты — она весит как 1,2% (или 1/81 часть) Земли. Этот показатель выше только у Плутона и его гигантского спутника Харона, масса которого составляет 12% (1/8 часть) массы Плутона. Напротив, массы спутников Марса, Юпитера, Сатурна, Урана и Нептуна не превышают 0,025% (1/4 000 часть) массы их планет. Откуда у небольших миров вроде Земли и Плутона такие большие спутники?
Ответ заключается в том, что и наша Луна, и Харон являются результатами мощного столкновения. Полагают, что Луна появилась на свет в тот момент, когда в молодую Землю врезался объект размером с Марс, в результате чего на орбите нашей планеты оказалось много осколков потерянных нарушителем ее спокойствия и выбитых с ее собственной поверхности. Слившись, они образовали Луну. Своим строением Луна похожа на мантию Земли, но при этом лишена более легких элементов, которые улетучились в окружающее пространство при ударе.
Еще одна аномалия среди лун Солнечной системы — спутник Нептуна Тритон. При диаметре 2700 км и массе, превышающей массу Плутона на 40%, Тритон является самым крупным из 14 известных нам спутников Нептуна и седьмым по величине в Солнечной системе. В отличие от прочих спутников большого размера, Тритон обращается вокруг Нептуна в направлении, противоположном направлению вращения планеты. Эта необычная ретроградная орбита может быть свидетельством того, что Тритон и Нептун сформировались независимо друг от друга, а затем в какой-то момент Тритон оказался вблизи планеты и был захвачен ее гравитацией. По своему строению Тритон очень похож на Плутон. Поэтому вполне возможно, что он сформировался в поясе Койпера в качестве карликовой планеты, а затем оказался во власти Нептуна в процессе миграции планеты-гиганта.
Захват такого большого спутника, как Тритон, — событие далеко не рядовое. Закрепиться на орбите Нептуна будущая луна могла лишь в том случае, если она двигалась со скоростью, обеспечивающей ее удержание гравитационным полем планеты. Однако по обычной орбите вокруг Солнца карликовая планета двигалась бы слишком быстро, чтобы ее мог захватить Нептун. Кроме того, большая масса Тритона делает невозможным столкновение с каким-то из спутников Нептуна, обеспечившего достаточную силу торможения без катастрофических последствий для его участников.
Согласно популярной гипотезе, Тритон в качестве карликовой планеты когда-то был частью двойной системы, аналогичной системе Плутона и Харона. При вращении вокруг общего центра масс в процессе движения по орбите вокруг Солнца скорость каждого компонента системы относительно Нептуна должна была меняться, становясь то больше, то меньше общей скорости системы.
При сближении Нептуна с двойной системой входящие в нее карликовые планеты должны были разойтись под воздействием его мощной гравитации. Карликовая планета, которая двигалась чуть медленнее, чем двойная система, была захвачена планетой-гигантом, а ее компаньон был выброшен в окружающее пространство.
Захваченная карликовая планета впоследствии и стала Тритоном. В результате рассеивания менее крупных спутников Нептуна и столкновений с ними этот новый гигантский спутник занял доминирующее положение, в результате чего на его долю приходится 99,5% массы всего вещества на орбитах вокруг Нептуна.
Большинство спутников в Солнечной системе сформировались не в результате страшного столкновения или захвата — они образовались в газово-пылевом диске, окружавшем молодые газовые гиганты. Такие околопланетные диски похожи на уменьшенную версию протопланетного диска, окружавшего молодое Солнце. Подобно протопланетному диску, околопланетный диск состоит из газа, круговое движение которого уравновешивает гравитационное притяжение планеты-гиганта.
Однако кое-чем эти два типа дисков все-таки различаются. В частности, на пыль в околопланетном диске действует гравитационное поле как планеты, так и звезды. В результате взаимодействия двух сил образуется особая область околопланетного диска, в которой могут формироваться спутники. Если расстояние до планеты будет слишком мало, спутник разорвут приливные силы, создаваемые гравитацией планеты. А при слишком большом расстоянии он окажется во власти притяжения звезды, перейдя на нестабильную орбиту. В качестве четкой внешней границы выступает сфера Хилла планеты, за пределами которой гравитация звезды сильнее гравитации планеты. На практике формирование спутника должно проходит в пределах ближайшей к планете трети сферы Хилла — только в этом случае он останется прочно привязан к своей родительской планете. Внутренняя граница области формирования спутников проходит там, где влияние гравитации планеты оказывается столь сильным, что спутник распадается на части. Это тот самый рубеж, о котором мы говорили в разделе о хтонических горячих юпитерах, атмосферы которых переливаются при приближении к звезде.
Поскольку это основной способ образования спутников, то вероятность появления пригодного для жизни определяется способностью околопланетного диска обеспечить формирование спутника большого размера. Если допустить, что размер околопланетного диска зависит от размера планеты, то юпитероподобные миры, обращающиеся вокруг других звезд, являются многообещающим местом для поиска. Осталось ответить на вопрос о возможности формирования гигантских спутников размером с Марс, способных удержать атмосферу.
Как и в протопланетном диске, ключевым фактором формирования спутника сверхбольшого размера служит наличие твердого льда. Если есть условия для замерзания воды, количества вещества может хватить для появления спутника размером с Марс. Но потребность во льде приводит нас к одной проблеме: при формировании в зоне умеренных температур спутник находится во внутренней части Солнечной системы, не пересекая снеговую линию. Температура во внутренней части слишком высока, чтобы вода могла замерзать, превращаясь в околопланетную пыль. Поэтому сверхбольшой спутник должен формироваться за пределами снеговой линии и затем мигрировать во внутреннюю область или закончить свой путь так, как Тритон, — оказавшись в захвате. Поскольку для захвата требуются особые условия, среди потенциально пригодных для жизни спутников вполне могут быть покрытые водой миры, лед на которых растаял при перемещении в зону умеренных температур. Как мы видели в главе 14, у нас нет оснований полностью исключать возможность появления жизни в таких мирах, но при этом существовать ей придется в условиях, которые очень сильно отличаются от земных.
Разумеется, формирование за снеговой линией не гарантирует образования льда. Вулканически активный спутник Юпитера Ио доказывает, что температура на спутниках может существенно отличаться от температуры на планетах.
В пределах околопланетного диска на протоспутник будут действовать силы притяжения звезды и планеты, также у него будет два источника тепла. Благодаря теплу светила, отражаемому и излучаемому планетой, в диске появляется своя собственная снеговая линия. Если расстояние от объекта в диске до планеты меньше, чем до снеговой линии, он будет получать такое количество тепла, при котором лед не сможет сохранять твердую форму. Формирующиеся в этой области спутники будут сухими, независимо от расстояния от планеты до звезды. Поэтому потенциально пригодный для жизни спутник должен формироваться за пределами двух снеговых линий: он должен быть дальше от звезды, чем протопланетная снеговая линия, и дальше от планеты, чем околопланетная снеговая линия.
Заполучив воду, спутник должен сохранить ее. Примеры галилеевых спутников Энцелада и Титана показывают, что на спутники газовых гигантов большое влияние оказывает приливный разогрев. Таким образом, появляется еще одно внутреннее кольцо вокруг планеты, при пересечении которого спутник на вытянутой орбите рискует потерять свои озера и океаны, если они у него имеются.
Если орбита спутника будет проходить внутри области, ограниченной этой линией, то даже при нахождении в зоне умеренных температур он может оказаться в тисках неконтролируемого парникового эффекта. Применительно к спутникам эта линия выступает в качестве своего рода дополнительной температурной границы.
Точное расположение границы околопланетной зоны умеренных температур зависит как от размера планеты, так и от размера спутника. Чем массивнее планета и спутник, тем мощнее приливный разогрев. Такие образом, если допустить наличие незначительного эксцентриситета орбиты, запускающего приливный разогрев, спутник размером с Марс может находиться ближе к планете, чем спутник размером с Землю, без резкого повышения температуры, как на Венере. Соответственно, потенциально пригодные для жизни спутники вокруг планеты с массой, превышающей массу Юпитера, должны находиться на большем расстоянии, чем спутник планеты размером с Нептун.
При нахождении на круговой орбите риск деформации, приводящей к приливному разогреву спутника, отсутствует. В этом случае потенциально пригодный для жизни спутник может пересечь границу околопланетной зоны умеренных температур до того, как тепло от планеты заставит испариться всю воду с его поверхности. За счет большей площади крупный спутник будет терять большее количество энергии, чем спутник меньшего размера, то есть ему будет проще сопротивляться повышению температуры. Однако приливный разогрев сводит на нет это преимущество, поэтому искать миры с умеренными температурами следует среди тех из них, которые имеют больший размер и не подвергаются деформации.
Дополнительный нагрев не всегда является помехой для жизни. Благодаря приливному разогреву на поверхности спутника, находящегося на внешней периферии зоны умеренных температур, могут сохраняться озера. Если бы Марс был спутником, а не планетой, он бы вполне мог быть пригоден для жизни. Прежде всего это относится к многочисленным планетам, движущимся по вытянутым орбитам вокруг своих звезд. При выходе такой орбиты за пределы звездной зоны умеренных температур, планета способна обеспечить свои спутники таким количеством тепла, которое не даст замерзнуть воде на их поверхности.
Приливный разогрев также может стать решением второй большой проблемы большинства некрупных миров — вялой геологической активности. Для поддержания круговорота углерода или магнитного поля спутник нуждается в поступлении внутреннего тепла, которое бы заставляло перемещаться тектонические плиты и давало энергию для извержения вулканов. Без этого спутник или планета могут превратиться в «снежок» даже в пределах зоны умеренных температур. Источниками внутреннего тепла на Земле служат энергия столкновений, оставшаяся с момента ее формирования, а также радиоактивные породы. У мира меньшего размера будет меньший запас тепла, а геологические процессы на нем замрут намного раньше. Определить, какая именно масса нужна для поддержания геологической активности на протяжении существования Солнечной системы, непросто, но, согласно расчетам, она должна составлять приблизительно 25% массы Земли. То есть спутник размером с Марс, который будет в 10 раз легче Земли, уже не соответствует этому критерию. Единственное спасение для него — приливный разогрев.
Доказательством эффективности приливного разогрева является Ио: при массе не более 1,5% массы Земли этот спутник демонстрирует наиболее интенсивную вулканическую активность в Солнечной системе. Более умеренный уровень такой активности мог бы обеспечить движение поверхности спутника, не давая при этом его атмосфере перейти в состояние неконтролируемого парникового эффекта.
Однако даже такая энергетическая подпитка не гарантирует наличие у некрупного спутника столь же сильного магнитного поля, как поле вокруг Земли. Можно ли здесь рассчитывать на помощь планеты? Самое мощное магнитное поле в Солнечной системе — это поле Юпитера. Оно надежно защищает его спутники от солнечного ветра. Может ли спутник, находящийся под магнитным колпаком планеты-гиганта, сохранить атмосферу, избежав губительного воздействия звезды?
Как водится, за все надо платить. У этой защиты есть и другая сторона. Отражаемые магнитным полем планеты высокоэнергетические частицы попадают в радиационные пояса. У Земли не менее двух таких областей, называемых поясами Ван Аллена в честь открывшего их американского астрофизика Джеймса Ван Аллена. Эти кольцеобразные пояса высокоэнергетических частиц окружают Землю, представляя серьезную опасность для находящихся там искусственных спутников. Соответственно, газовый гигант с магнитным полем в тысячи раз сильнее земного должен быть окружен куда более опасными радиационными поясами, способными убить все живое на любом спутнике. Вот почему при подготовке космических миссий к Юпитеру и его внутренним спутникам должны быть приняты специальные меры для защиты космических аппаратов. Пригодность поверхности спутника для жизни зависит от ориентации магнитного поля планеты и от орбиты спутника.
Итак, формирование нашего пригодного для жизни спутника должно проходить внутри снеговой линии в звездной системе и внутри околопланетной снеговой линии. Достигнув размера, позволяющего удерживать атмосферу, он должен мигрировать вместе с планетой к центру системы, в зону умеренных температур. Температура на поверхности спутника должна быть настолько высокой, чтобы лед мог растаять и превратиться в озера воды, но она не должна быть слишком высокой — иначе условия в океанских глубинах окажутся не самыми благоприятными. Возможность поддержания умеренного климата зависит от орбиты спутника. Если ему удастся уклониться от радиационных поясов, а влияние на него планеты не будет чрезмерным, то на спутнике может запуститься продолжительный цикл геологической активности. Именно так может появиться на свет настоящий Эндор.
Учитывая, что наши газовые гиганты находятся в холодных дальних областях Солнечной системы, о процессе формирования спутника с пригодной для жизни поверхностью мы можем рассуждать только умозрительно. Чтобы подтвердить эти теории, мы должны найти экзоспутник.
Назад: Луна с жидкими озерами
Дальше: В поисках Эндора