Железные скрепы гравитации
Если добавить в процесс формирования планеты гравитацию, вместо безопасного бытового клея-карандаша вы получаете высокопрочный промышленный клей. Орбиты планетезималей меняются под действием гравитационного притяжения соседних объектов, в результате чего они оказываются на пересекающихся курсах и сталкиваются друг с другом. Тела небольшого размера при таких столкновениях могут разрушаться или отталкиваться. Однако их скоростей недостаточно для преодоления гравитационного притяжения самых крупных планетезималей, которые притягивают их обратно к себе. Таким образом, самые массивные объекты начинают поглощать все на своем пути.
Темп роста планетезимали зависит от количества твердых тел, с которыми она сталкивается, добавляя их массу к своей. Чем больше длина щита-отвала снегоуборочной машины, тем больше она сгребает снега, чем больше размер планетезимали, тем больше она поглощает материала. Эффективность ее продолжает увеличиваться за счет слияния небольших планетезималей в более крупные тела до тех пор, пока не начинается падение плотности объектов меньшего размера. На первый взгляд, все отлично работает, но на самом деле в таком виде она просто недостаточно быстра.
Чтобы стать такой планетой, как Земля, находящаяся на расстоянии 1 а.е. от Солнца, планетезималь должна поглощать твердые тела в течение 20 млн лет. А с учетом того, что эффективность поглощения падает по мере исчерпания количества окружающих планетезималь твердых тел, этот период растягивается до 100 млн лет. Чем дальше от Солнца, тем более рассредоточенными становятся планетезимали, их плотность падает. В точке, где находится Юпитер, минимальный срок, необходимый для формирования твердого ядра планеты-гиганта, составляет уже 100 млн лет. Это больше, чем время жизни газового диска, который является источником массивной атмосферы Юпитера, а значит, должен существовать до момента завершения формирования ядра. Там, где находится Нептун, для набора массы планетному ядру потребуется больше времени, чем существует Солнечная система. Это означает, что мы должны каким-то образом ускорить этот процесс роста.
К счастью, сила гравитационного притяжения действует не только на поверхности объекта. Несмотря на то что для планетезимали она уже слишком слаба, она по-прежнему способна заставлять находящиеся рядом с планетезималью объекты менять траекторию на такую, которая ведет к столкновению. В результате эффективный размер планетезимали увеличивается за счет того, что к ее геометрическому размеру добавляется дополнительный фактор роста, обусловленный влиянием гравитации. Величина прироста пропорционально массе планетезимали: она увеличивается вместе с геометрической площадью по мере увеличения размера планетезимали. Процесс становится настолько эффективным, что скорость, с которой планетезималь поглощает новый материал, растет вместе с ее размером, и это приводит к постоянному ускорению темпов роста. На этой стадии неудержимого роста самые крупные планетезимали быстро слипаются с окружающими их соседями, доказывая, что принцип «богатые становятся богаче» применим и к процессу образования планет.
Если бы не звезда, непрерывный рост планетезимали продолжался бы до полного поглощения диска. Находясь рядом с более крупным телом, небольшая планетезималь испытывает на себе действие двух сил: гравитационного притяжения находящейся по соседству массивной планетезимали и притяжения звезды, вокруг которой она обращается. Точку, в которой влияние этих двух сил уравновешивают друг друга, называют радиусом сферы Хилла, и она относится к массивной планетезимали. Внутри сферы с этим радиусом гравитационное притяжение планетезимали сильнее притяжения звезды.
Поскольку даже в период неудержимого роста планетезималь несоизмеримо меньше звезды, радиус сферы Хилла ближе к ней по сравнению с расстоянием до звезды, хотя при этом он может многократно превышать размер самого тела. Все, что находится внутри сферы Хилла, притягивается к стремительно растущей планетезимали, оказываясь на траектории столкновения с ней. Но и объекты за ее пределами также ощущают на себе ее воздействие. При этом планетезималь не сможет удерживаться на безопасно стабильной орбите, если расстояние от нее до соседнего объекта не превышает радиус сферы Хилла примерно в 3,5 раза. Как только планетезималь сходит со своей орбиты, ее траектория может пересечься со сферой Хилла, что приведет к ее поглощению. Таким образом, обращаясь вокруг звезды, растущая планетезималь может поглощать объекты в пределах полосы шириной приблизительно 7 радиусов сферы Хилла.
С ростом планетезимали радиус сферы Хилла увеличивается, а вместе с ним — и зона питания, в которую могут втягиваться другие планетезимали размером поменьше. Пока сама планетезималь и ее сфера Хилла остаются маленькими, она прирастает объектами на близких к ней орбитах. Однако в период неудержимого роста планетезималь уже может притягивать тела с намного большего участка диска благодаря увеличению радиуса сферы Хилла. Изначально эти объекты движутся со скоростями, которые существенно отличаются от скорости главной планетезимали, но затем под действием ее силы гравитационного притяжения их орбиты меняются. Величина этой силы такова, что планетезимали меньшего размера несутся по направлению к притягивающему их объекту на намного более высоких скоростях. Благодаря этому им удается избежать лобового столкновения, и они движутся вокруг основной планетезимали по хаотичным орбитам. По эффективности такое кружение не идет ни в какое сравнение с обычным столкновением. В результате неудержимый рост замедляется и начинается новая стадия — олигархическая аккреция.На этом этапе самые крупные планетезимали продолжают увеличиваться, но делают они это медленнее, чем их менее массивные соседи, находящиеся на стадии неудержимого роста. В результате менее крупные объекты растут быстрее самых массивных объектов, постепенно догоняя их в размерах.
С уменьшением количества маленьких объектов запасы свежей «пищи», попадающие в расширяющуюся сферу Хилла планетезимали, иссякают, что со временем приводит к прекращению роста. На этом этапе планетезималь достигает максимальной массы, которую называют массой изоляции. К этому моменту на ее пути не остается никаких других объектов. При ширине полосы питания, равной приблизительно 7 радиусам сферы Хилла, масса изоляции составляет около 10% массы Земли для объекта на расстоянии 1 а.е. от Солнца, если исходить из оценки доступной массы на основе минимальной массы протосолнечной туманности для нашей Солнечной системы. Рядом с Юпитером она увеличивается до 1 массы Земли, так как при большем удалении от Солнца гравитационное притяжение нашей звезды слабее, что обеспечивает больший радиус сферы Хилла. Ядро размером с Землю недостаточно велико, чтобы собрать вокруг себя большую газовую атмосферу, поэтому возникло предположение, что в минимальной массе протосолнечной туманности недооценивается масса области планет-гигантов. Для такого предположения есть основания: огромные силы притяжения больших планет способны разгонять планетезимали до таких скоростей, что они навсегда покидают Солнечную систему. Добиться этого вблизи Земли, где гравитационные тиски Солнца удерживают твердые тела от эффектного побега, намного сложнее. Если масса молодой Солнечной системы вокруг планет-гигантов действительно была больше, тогда обычная масса ядра могла бы достигать приблизительно 10 масс Земли, то есть именно столько, сколько нужно, чтобы начать формирование массивной атмосферы.
Вблизи Плутона, на расстоянии 40 а.е., притяжение Солнца настолько слабо, что сфера Хилла достигает огромных размеров, в результате чего масса изоляции составляет около 5 масс Земли. Это намного больше массы Плутона, которая равна всего лишь 0,2% массы Земли. Исходя из этого несоответствия, можно предположить, что время, необходимое Плутону, чтобы расчистить свою орбиту, все равно окажется больше возраста Солнечной системы. И хотя даже сейчас Плутон остается зажатым в море объектов меньшего размера (что и послужило основанием для признания его карликовой планетой в 2006 г.), проводить сравнение с его массой изоляции не совсем правильно, ведь подобные дальние объекты Солнечной системы, скорее всего, формировались не там, где они находятся сейчас.
Наши планетообразующие планетезимали теперь называют зародышами планет. Приблизительно 30–50 таких объектов должны были находиться в пространстве между орбитами Меркурия и Марса. Хотя изначально они формируются на разных орбитах, траектории движения зародышей планет в какой-то момент пересекаются. При этом они сталкиваются не только друг с другом, но и со свежими планетезималями, попадающими к ним из разных частей окружающего пространства Солнечной системы. Все заканчивается жестокой битвой на выживание, в результате которой зародыши планет сливаются, образуя всего четыре землеподобных мира.
Чтобы спровоцировать столь мощные столкновения, нужен массивный гравитационный «громила», который будет изменять орбиты зародышей планет и планетезималей. Появиться он может в результате превращения зародышей планет в газовые гиганты за снеговой линией.