Один нейрон
Основной тип клеток нервной системы, которые мы, как правило, и называем «клетки мозга», – это нейроны. В нашем мозге их сотни миллиардов, и все они как-то друг с другом взаимодействуют, формируя сложные сети. Вдобавок к ним имеются еще глиальные клетки, занятые на формовочных работах, – они обеспечивают структурную крепость и изолирующие прокладки нейронов, запасают для них энергию, помогают исправить нейронные повреждения.
Естественно, никоим образом нельзя сравнивать нейроны с глиальными клетками. На каждый нейрон приходится десять клеток глии, которые к тому же подразделяются на несколько типов. Они участвуют в процессе взаимодействия нейронов друг с другом, слагаются в глиальные сети, сообщающиеся своим собственным, отличным от нейронного, манером. Так что глия тоже исключительно важна. Тем не менее я для упрощения сосредоточусь именно на нейронах.
По своему клеточному устройству нейроны решительно отличаются от других клеток, и это сразу выводит нервную систему на особое положение. Клетки в организме – обычно небольшие по размеру и относительно автономные единицы, к примеру мелкие округлые красные кровяные клетки.
А нейроны, напротив, это полностью лишенные симметрии длинные штуки с отростками во всех направлениях, какие только возможны. Отростки могут, в свою очередь, достигать немыслимой длины.
Попробуем представить, как в начале XX в. царь и бог нейробиологии Сантьяго Рамон-и-Кахаль вычленил один такой нейрон. Он был подобен фантастическому древу с тысячью ветвей, по-научному такие называют «высоко арборизированные нейроны».
Многие нейроны имеют колоссальный размер. Между началом и концом этого предложения помещается несметное множество красных кровяных клеток, а отростки многих нейронов спинного мозга вытягиваются на десятки сантиметров. Вот у синего кита такие нейроны имеют длину в половину баскетбольного поля.
Строение нейронов является ключом к пониманию их функций.
Основное, что делают нейроны, – переговариваются друг с другом, передают возбуждение от одного к другому.
Значит, на одном конце нейрона должны быть, так сказать, уши: особые отростки, которые получают информацию от других нейронов. А на другом конце – отростки, которые служат ртом, т. е. передают сообщение следующему в очереди.
Уши, т. е. информационные входы, называются дендритами. Информационный выход начинается с одного цельного провода, именуемого аксоном, который на конце ветвится; эти аксонные (нервные) окончания и являются ртом (забудем на время миелиновые оболочки). Они соединяются с дендритами следующего аксона. Таким образом дендритные уши нейрона ставятся в известность, что предыдущий нейрон возбудился. Информационное сообщение перетекает от дендритов к телу клетки, оттуда к аксону и аксонным окончаниям, а затем к следующему нейрону.
Давайте подумаем, что означает выражение «информация перетекает» в терминах химии. Что реально передается от дендритов к окончанию аксона? Волна электрического возбуждения. Внутри нейрона находятся различные положительно и отрицательно заряженные ионы. Непосредственно снаружи нейронной мембраны имеются свои положительно и отрицательно заряженные ионы. Когда нейрон на одной из своих дендритных веточек получает сигнал возбуждения от предыдущего нейрона, то на мембране дендрита открываются каналы, через которые внутрь перетекают одни ионы, а наружу – другие. В результате внутри эта дендритная веточка оказывается более положительно заряженной, чем раньше. Заряд распространяется по направлению к аксону, к его окончаниям, и оттуда переходит на следующий нейрон. Вот такая химия.
К ней прилагаются два наиважнейших уточнения.
Потенциал покоя. Когда нейрон получает сигнал возбуждения от предыдущего нейрона, то его внутренняя среда заряжается положительно по отношению к среде снаружи клетки. Вернемся к нашей метафоре – теперь у нейрона есть что сказать, и он желает сделать это погромче. Но как описать то состояние, когда ему нечего сказать, когда к нему не приходят никакие сообщения? Может быть, это состояние равновесия, при котором внутри и снаружи заряд одинаковый и нейтральный? Никогда и ни за что! Возможно, зайди речь о селезенке или большом пальце, то там – пожалуйста, сколько угодно. Но, как уже говорилось выше, у нейронов все построено на контрастах. Если нейрону нечего сказать, это вовсе не пассивность, когда от всех процессов остается лишь умирающая струйка. Нет, это состояние активное. Активное, деятельное, ожидающее, требующее напряженных усилий. В состоянии «мне нечего сказать» нет никакой нейтральности зарядов, а есть внутренний заряд, отрицательный по отношению к наружному.
И это контраст контрастов: «мне нечего сказать» = отрицательный заряд внутри нейрона; «у меня есть что сказать» = положительный заряд внутри нейрона. И ни один нейрон не может перепутать эти два состояния. Отрицательный внутренний заряд называется потенциалом покоя. А возбужденное состояние – потенциалом действия. Так почему же создание этого критически важного потенциала покоя – активный процесс, а не пассивный? Потому что нейроны должны работать изо всех сил, задействуя различные мембранные насосы, чтобы перекачивать наружу положительно заряженные ионы и задерживать внутри ионы с противоположным знаком, – и все это для поддержания внутри состояния покоя с отрицательным зарядом. Но вот приходит сигнал возбуждения – насосы перестают работать, каналы открываются, и по ним устремляется поток ионов, заряд внутри становится положительным. Волна возбуждения спадает, каналы закрываются, насосы возвращаются к работе, восстанавливая внутри отрицательный потенциал. Примечательно, что около половины всей своей энергии нейроны тратят на поддержание потенциала покоя, т. е. на работу ионных насосов. Совершенно ясно, что поддерживать контраст между «нечего сказать» и «у меня горячие новости» – задача не из дешевых.
В этом и состояло первое из уточнений; а теперь второе.
Потенциал действия на самом деле не такой. Только что я примерно обрисовал следующую цепочку событий: одна дендритная веточка получает сигнал возбуждения от предыдущего нейрона (который получил сигнал до того), в результате в дендрите создается потенциал действия, бегущий к телу клетки и через него дальше, по аксону, к аксонным окончаниям, а затем настает очередь следующего нейрона. Но все не так. На самом деле происходит вот что.
Нейрон сидит в состоянии «нечего сказать» и напряженно ждет – это означает поддержание потенциала покоя с отрицательным зарядом внутри. От соседнего нейрона на один из дендритов поступает сигнал. Каналы на мембране открываются, и по этой дендритной веточке ионы устремляются внутрь и наружу. Но лишь чуть-чуть, совсем не до такой степени, чтобы изнутри поменять заряд на положительный у всего нейрона, просто в данной дендритной веточке отрицательный заряд становится чуть поменьше. (Чтобы дать представление о цифрах [хотя здесь это и необязательно], привожу их: потенциал покоя составляет примерно от –70 мВ и сдвигается до –60 мВ.) А затем каналы закрываются. И этот малюсенький подскок в положительную сторону распространяется вверх по дендриту. Насосы начинают работать, выкачивая ионы обратно – туда, где им положено находиться. Таким образом, на конце дендритной веточки заряд увеличивается с –70 до –60 мВ. Но немножечко дальше по дендриту потенциал увеличился с –70 мВ до всего лишь –65 мВ. И дальше по веточке, до –69 мВ. Иными словами, сигнал затухает, двигаясь вдоль нейрона. Как будто на гладкую спокойную поверхность озера падает мелкий камешек. По воде расходится рябь, и чем дальше от эпицентра, тем меньше высота волночек, а потом они вовсе сглаживаются не слишком далеко от места падения камешка. На расстоянии же многих километров, там, где в нашей аналогии находится конец аксона, от этой ряби не остается даже и следа.
Потому нужно понимать, что если возбудилась одна дендритная веточка, то этого совсем недостаточно для передачи сигнала до самого конца аксона и начала следующего нейрона. Как же тогда сигнал проходит от дендрита до аксона? Вернемся к прекрасному рисунку нейрона на странице 603, выполненному Кахалем.
Великое множество ветвящихся дендритов оканчивается многочисленными тонкими выступами (тут можно назвать их как положено по-научному: «оканчивается многочисленными дендритными шипиками»). И чтобы сигнал получился сколько-нибудь ощутимым и дошел от дендритов к концу нейрона, требуется суммировать возбуждение: один и тот же шипик должен возбудиться несколько раз и/или целая куча шипиков должна возбудиться одновременно. Нельзя получить волну, просто бросив камешек, нужно бросить хотя бы пригоршню камешков.
В основании аксона, где он выходит из тела клетки, есть особое образование (его называют «аксонный холмик»). Если вся рябь от дендритных входов в сумме сдвинула потенциал покоя от –70 до –40 мВ, то рубеж перейден. И коли это произошло, то всё – джинн выпущен из бутылки. В мембране аксонного холмика открываются другие типы ионных каналов, ионы мощными потоками текут внутрь и наружу клетки, а в результате получается положительный заряд (около 30 мВ). Другими словами – вот он, потенциал действия, который открывает те же самые типы каналов в следующем участочке мембраны аксона, повторяя и там потенциал действия, а тот запускает следующий участочек, и следующий и т. д. до самых аксонных окончаний.
С точки зрения передачи информации у нейрона два типа сигнальных систем. Одна задействована при передаче сигнала от дендритных шипиков к аксонному холмику, и это аналоговый сигнал, затухающий с течением времени и по мере продвижения по аксону. Другая работает при передаче сигнала от аксонного холмика к окончаниям аксона. Это цифровая система, и она действует по принципу «все или ничего», подновляя сигнал по мере его продвижения по аксону.
Давайте вообразим себе некоторые цифры. Скажем, у нейрона в среднем имеется сотня дендритных шипиков и около сотни аксонных окончаний. Как это выражается в терминах аналоговой и цифровой передачи сигнала?
Иногда практически никак. Пусть у нейрона А 100 (как мы это вообразили) аксонных окончаний. Каждый из них соединен с одним из дендритных шипиков следующего аксона в цепочке (аксона B). Потенциал действия нейрона А передается по аксону на всю сотню аксонных окончаний, и все 100 дендритных шипиков нейрона B возбуждаются. Чтобы разность потенциалов в аксонном холмике нейрона B достигла порогового уровня и возник потенциал действия, требуется одновременное возбуждение 50 дендритных шипиков. А возбуждение 100 дендритных шипиков нейрона B гарантированно приведет к возникновению в нем потенциала действия.
А теперь пусть наш нейрон А половину аксонных окончаний посылает к нейрону B, а другую половину – к нейрону С. Вот в нейроне А возник потенциал действия. Гарантирует ли это возникновение потенциалов действия в нейронах В и С? Гарантирует. В каждом из аксонных холмиков пороговое значение потенциала будет достигнуто, т. к. туда дошли одновременные «волночки» от 50 дендритных «камешков».
Но что, если нейрон А распределяет аксонные окончания между десятком целевых нейронов, назовем их от B до K? Получат ли они тогда свой потенциал действия? Нет и нет – десять дендритных шипиков никак не дотягивают до нужных 50, и до порогового значения еще ох как далеко.
Так откуда же тогда возникает потенциал действия в одном из этого десятка нейронов, скажем, в нейроне К, ведь к нему приходят всего десять дендритных шипиков от нейрона А? И что в это время делают остальные 90 дендритных шипиков К? А они получают сигнал от девяти других нейронов, по десять входов на каждый шипик. И возникнет ли теперь в нейроне B потенциал действия? Да, если хотя бы в половине нейронов, посылающих к нему свои отростки, возникли потенциалы действия. Иными словами, каждый нейрон суммирует импульсы от всех приходящих к нему аксонов. И отсюда получаем правило: чем больше своих проекций нейрон А посылает к другим нейронам, тем шире его влияние, но чем шире его влияние, тем оно слабее в пересчете на каждый целевой нейрон. Вот они, вечные побочные эффекты.
В отношении спинного мозга эти рассуждения несущественны, потому что там каждый нейрон, как правило, посылает отростки только к одному (следующему) нейрону в цепочке. Но в мозге нейроны связаны аксонными отростками с тысячами нейронов и получают сигналы от тысяч других, так что в каждом аксонном холмике идет расчет общих сумм – достигнут ли уже рубеж, создавать потенциал действия или еще нет. В мозге нейроны связаны в сеть сходящихся и расходящихся сигналов.
А теперь настоящие, просто сногсшибательные цифры. У каждого нейрона имеется в среднем около 10 000 дендритных шипиков и примерно столько же аксонных окончаний. Умножьте на 100 000 000 000 нейронов и поймете, почему поэмы пишет мозг, а не почки.
И напоследок еще пара фактов. У нейронов есть в запасе дополнительные приемы. Так, чтобы четче обозначить разницу между состояниями «мне нечего сказать» и «у меня есть информация», нейрон умеет быстро и резко останавливать потенциал действия, и делает он это двумя способами. Один называется «задержанное выпрямление», а другой – «рефрактерный период». Еще момент в общей схеме – участие в передаче сигнала глиальных клеток; один из их типов образует вокруг каждого аксона слой особой обертки, называемой «миелиновая оболочка». За счет миелинизации увеличивается скорость перемещения потенциала действия вдоль аксона.
И на посошок, пожалуй, самое важное для будущих рассуждений. Пороговое значение возбуждения в аксонном холмике может со временем сдвигаться, а значит, меняется возбудимость нейронов. Что способствует этому сдвигу? Гормоны, условия питания, жизненный опыт и все остальные факторы, о которых говорилось в этой книге.
Мы пробежались от одного конца нейрона к другому; теперь рассмотрим, как именно нейрон с потенциалом действия передает сигнал возбуждения следующему.